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Overview

1. Scientific methods, general

2. Theoretical vs. empirical methods in Computer Science

3. Theoretical models in Computer Science

4. Theoretical problems in Computer Science

5. Deductive methods in Computer Science

6. Recursive definitions and proofs by induction

7. Inference systems and their applications
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Scientific Methods, General

Theoretical methods:

Create formal models (mathematics, logic)

Define concepts within these

Prove properties of the concepts

Abstraction, hide details to make the whole more understandable (and to
make it possible to prove properties of it)

Proofs of properties by deductive methods

CDT403 lecture 2012-10-25 2



Empirical methods:

Perform experiments

See how it turned out

Draw conclusions

Simulation:

Start with a formal model at some "easy-to-understand" level

Make "artificial experiments" in your computer

Collect statistics and draw conclusions
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In physics:

Make hypotheses about the surrounding world (theory), observe it
(experiment)

Relate the result of experiment to theory

Adjust the theory if it doesn’t predict the reality well enough

Theory is used to predict the future (e.g., if a bridge will hold for a certain
load, or an asteroid fall down on our heads)
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Common pattern in Computer Science:

The system is constructed to behave according to some theoretical model

Deviations are seen as construction errors rather than deficiencies in the
theory (hardware error, bug in OS, . . .)

In both cases: the theory helps us understand and predict, but in different
ways!

CDT403 lecture 2012-10-25 5



Theoretical vs. Empirical Methods in Computer Science

Computer Science really has a “spectrum”, from “extreme constructivism” to
a use of theory close the one in physics:
“Extreme constructivism”: (ideal) programming language design:

• Formal semantics for the language, pure construction of model defining
the mathematical meaning of each program

• Abstraction of details to make the meaning of the language simpler (for
instance, assume that data structures can grow arbitrarily big)

• Implement the language according to the semantics

One can prove formally within the model that a program is correct – valuable!
But the model does not cover all kinds of errors. E.g., hardware errors, or
stack overflow (or an asteroid falling down on the computer)
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Extreme “physics” approach: performance modelling of complex computer-
and communication systems

• Extremely hard to make analytical calculations

• Simplified performance models, tested against experiments (e.g., long
suites of benchmarks)

• Discrepancy leads to a modified theory, as in physics

• Often simulation (desire to evaluate systems before building them)
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In-between: algorithm analysis

• Build on some form of formal model for how the algorithm executed
(metalanguage with formal semantics), and some performance model
(how long does a step in the algorithm take, how much memory is needed
to store an entity)

• Performance model often of type “one arithmetic operation = one time
unit”

• Given that the performance model is correct, one proves mathematically
that the algorithm needs certain resources (time, memory) to be carried
out

• But the performance model is often very approximate

• Sometimes possible to refine the performance model, but this can make it
impossible to calculate the resource needs of the algorithm
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Theoretical Models in Computer Science

Discrete mathematics: basic set theory, relations, functions, graphs, algebra,
combinatorics, category theory, etc.

The science logic: different logical systems, how to make “proofs about
proofs”

Theory for complete partial orders (formal semantics)

Topology (mathematics with notions of distance and convergence)

Probability theory, statistics

(Traditional analysis)
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Theoretical Problems in Computer Science

What do we want to prove theoretically within Computer Science?

For instance properties of programs, systems, algorithms, and problems

Some examples:

“FFT uses O(n log n) operations”

“With 99% confidence the program p runs faster than 1.3 ms on machine m”

“The program p terminates for all indata”

“If the method M says that a program terminates then this is true”
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“There is no method that can decide, for any program, whether it terminates
or not”

“For each CREW PRAM-algorithm there is an EREW PRAM-algorithm that
can simulate it with a certain slowdown”

P = NP (or P 6= NP )

“The two semantics S1 och S2 agree for each program in the programming
language P ”
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Deductive Methods in Computer Science

1. “Ordinary” mathematical proofs:

• Often finite entities: defined recursively, properties proved with induction

• But also reasoning about limits (“go to the limit”), when infinite behaviours
are modelled

• Encodings and translations – common in Complexity Theory

• Sometimes also more conventional mathematical techniques
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2. Direct modelling with logical inference systems:

• Common in semantics of programming languages (operational semantics)

• Proof methods from logic (proofs about proofs), again induction!

Let’s see some examples. . .
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Example 2: Algorithm Analysis

Purpose: to find the cost of executing an algorithm (that solves a given
problem)

(Archetypal problem: to sort a sequence of numbers)

Cost is typically running time, but can also be memory requirements, power
consumption, etc.

To calculate the cost requires:

• a machine model

• a notation, i.e., “programming language” for the machine

Typically only interested in the asymptotic complexity of the algorithm

“How fast does the execution time grow with the size of the input?”
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An example: insertion sort

1 for j = 2 to length(A) do

2 key = A[j]

3 i = j - 1

4 while i > 0 and A[i] > key do

5 A[i+1] = a[i]

6 i = i - 1

7 A[i+1] = key

We want to find the execution time as a function of input size (length(A))
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Let us informally analyze insertion sort!

Assume execution time of a program is sum of the time of all executions of
individual statements,

and that the execution time of an individual statement is constant

(How reasonable is this assumption, really?)

Thus, we can, for each statement take its execution time times the number
of times it is executed, and then sum over all statements
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Say statements 1 - 7 have execution times c1, . . . , c7

Each statement s is executed ts times

Then total execution time is

7X

s=1

ts · cs

Let’s calculate the different ts on wyteboard and see what we get. . .
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Results of analysis:

Best-case execution time (with n = length of A):

c1n + (c2 + c3 + c4 + c7)(n� 1)

order ⇥(n) (what do we mean by this?)

Worst-case execution time:

(

c4
2 +

c5
2 +

c6
2 )n2

+ (c1 + c2 + c3 +

c4
2 �

c5
2 �

c6
2 + c7)n� (c2 + c3 + c4 + c7)

order ⇥(n2
)

Average-case execution time:

order ⇥(n2
)

CDT403 lecture 2012-10-25 26



What is ⇥(n) (and ⇥(n2
))?

⇥(f) means the set of functions that grow as fast as f when the argument

becomes large enough

Mathematically,

⇥(f) = { g | 9c1, c2, n0 > 0.8n � n0.0  c1f(n)  g(n)  c2f(n) }

“h is order ⇥(f)” means h 2 ⇥(f)

✓(f) is similar to the more commonly used O(f) (ordo)
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What kind of mathematics did we use?

Proving h 2 ⇥(f) is done by ordinary mathematical methods (reasoning
about inequalities, deciding the existence of certain entities, . . .)

Facts about sums, algebraic manipulations

Probability theory to get the average-case execution time

In short, traditional mathematics

Note, though, that certain details are swept under the carpet!

In particular, implicit assumptions about semantics of loops etc. (how do we
know the body of for j = 2 to n is executed exactly n� 1 times?)
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Example 3: Complexity Theory

Deals with problems, or classes of problems, rather than single algorithms

Tries to find limits for how costly a certain problem (or class of problems) is
on a certain machine model

An example of a problem is sorting:

• O(n log n) algorithms are known (for sequential machine model)

• Not proved whether this is the ultimate lower limit!

A famous class of problems (a complexity class):

NP , the set of all problems that can be solved in polynomial time (O(nk
) for

some k) by a non-deterministic Turing machine (⇡ set of problems solvable
by “brute force parallel search” in polynomial time)
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A “hardest” problem in NP is known, 3-SAT: if 3-SAT always can be solved in
polynomial time then each problem in NP can be solved in polynomial time

Proof by encoding: that each problem in NP can be translated into 3-SAT
such that a solution of the translated problem solves the original problem (in
polynomial time relative to the time to solve the translated problem in 3-SAT)

(Or the reverse: if there is any problem in NP that cannot be solved in
polynomial time, then 3-SAT cannot either!)

3-SAT is NP -complete

CDT403 lecture 2012-10-25 30



Proof that another problem Q is NP -complete:

1. Show Q 2 NP

2. Show that if one can solve Q in (sequential) polynomial time then 3-SAT
can be solved in polynomial time (via translation of 3-SAT into Q)

Complexity theory uses encodings a lot
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Another famous complexity class:

P , the set of all problems that can be solved in polynomial time by a
deterministic Turing machine (cf. NP )

The class of problems that can be solved sequentially in polynomial time
(like, for instance, sorting)

Open question: is P = NP?

Generally assumed that P 6= NP , but has not been proved!

If indeed P = NP , then the concept of NP -completeness becomes quite
meaningless
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Example 4: Complete Partial Orders

A mathematical model that is good for describing the meaning of recursive
definitions

It can be thought of as describing information contents

The idea is that more and more information about the result of a
computation becomes available as the computation proceeds

We may want to describe infinite computations (e.g., a server computing an
unbounded number of results)

Therefore we need to “go to the limit” in the model
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A complete partial order (cpo) is a structure hD,vi, where D is a set and v
is a binary relation on D such that:

• it is a partial order; and

• there is a bottom element ? 2 D such that ? v d for all d 2 D; and

• for each infinitely non-decreasing chain d0 v d1 v · · · v di v · · ·, there is a
least upper bound

F1
i=0 di.
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Least upper bound means:

• dj v
F1

i=0 di for all j; and

• if e @ F1
i=0 di for some e 2 D then there is a k such that, for all j > k,

holds that e @ dj.

Definition: a function f :D ! D is continuous if f(

F1
i=0 di) =

F1
i=0 f(di) for

all least upper bounds
F1

i=0 di
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An interesting result in the theory of cpo’s is Kleene’s Fixed-Point Theorem:

Let f be continuous. Define fix (f) =

F1
i=0 f i

(?). Then fix (f) is the least
solution w.r.t. v of the equation d = f(d).

We say it is the least fixed point of f

Many recursive definitions are of the form d = f(d)

For instance, a recursively defined function in a simple functional language:

fac(n) = if n == 0 then 0 else n

*

fac(n-1)

This can be seen as an equation fac = f(fac)

With suitably chosen cpo, Kleene’s fixed-point theorem gives a well-defined
mathematical meaning to fac

Cpo’s are central in denotational semantics of programming languages
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Recursive Definitions and Proofs by Induction

Induction over natural numbers

Show that the property P is true for all natural numbers (whole numbers � 0)

1. Show that P holds for 0

2. Show, for all natural numbers n, that if P holds for n then P holds also for
n + 1

3. Conclude that P holds for all n

Formulated in formal logic:

[P (0) ^ 8n.P (n) =) P (n + 1)] =) 8n.P (n)
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Example: show that for all natural numbers n holds that

nX

i=0

(2i� 1) = n2 � 1
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Why does induction over the natural numbers work?

The set of natural numbers N is an inductively defined set

(A variation of) Peano’s axiom:

• 0 2 N

• 8x.x 2 N =) s(x) 2 N

• 8x.0 6= s(x)

• 8x, y.x 6= y =) s(x) 6= s(y)

s(x) “successor” to x, or x + 1

0 ! s(0) ! s(s(0)) ! s(s(s(0))) ! · · ·
0 1 2 3 · · ·
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Note how proofs by induction over the natural numbers follow the structure
of their definition

0 ! s(0) ! s(s(0)) ! s(s(s(0))) ! · · ·
0 1 2 3 · · ·

P (0) =) P (1) =) P (2) =) P (3) · · ·

Also note that the definition of N is given a well-defined meaning by Kleene’s
fixed-point theorem:

; ✓ {0} ✓ {0, 1} ✓ {0, 1, 2} ✓ · · ·
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Inductively defined sets are typically sets of infinitely many finite objects

Entities in Computer Science are often finite (data structures, programs, . . .)

Example: mathematical definition of the set of (finite) lists of integers, List

• N IL 2 List

• z 2 Z ^ l 2 List =) z : l 2 List

• 8z, l.(z : l 6= N IL)

• 8z, z0, l, l0.(z : l = z0 : l0 =) z = z0 ^ l = l0)
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List is a kind of abstract data type – the internal representation is hidden

Need not be represented as linked structures in memory (but could be)

Typical elements in List: N IL, 3 : (4 : N IL)

Note similarity with the set of natural numbers

List is the set of finite (but arbitrarily long) lists of numbers

CDT403 lecture 2012-10-25 42



We can define mathematical functions over lists. An example:

length(N IL) = 0

length(z : l) = 1 + length(l), for all z 2 Z och l 2 List

Defines length as a function List ! N

Recursive definition: length itself is used in the definition! (Seemingly
circular definition, but note that length is not applied on the same argument
in the right-hand side)

Exercise: show that length really is a well-defined partial function! (That is,
that each function value is uniquely determined by the definition.)

Note the similarity with function definitions in some functional languages
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Exercise: show 8l.length(l) � 0

How to do this?

Each inductively defined set has an induction principle that follows the
inductive definition of the set. Induction is performed on the “pieces” of an
entity built up from smaller entitites (e.g., a list built of elements put in front of
shorter lists).

Induction principle for List. Show that the property P is true for all lists of
integers:

1. Show that P holds for N IL

2. Show, for all lists l and integers z, that if P holds for l, then P holds also
for z : l

3. Conclude that P holds for all lists of integers
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“Mathematical” lists, and functions like length, can be seen as abstract

specifications of what lists are and how functions on them should work

Consider the following piece of C code:

#define NIL 0

struct list

{ int contents;

list

*

succ;

}

int len(list

*

l)

{ int length;

length = 0;

while(l != NIL)

{length++; l = l -> l.succ;}

return(length);

}
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Interesting things to verify:

• That lists of list-structs represent “mathematical” lists in List correctly

• That len(l) = length(l) always, when l is the representation in C of l

The verification requires that a formal semantics is defined for C programs,
and that we define exactly what it means that a C entity represents a
“mathematical” entity
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Logic deals with formal systems for derivations, that is, “how to prove
things”, and properties of derivations (proofs).

Thus, logic is a metatheory, which deals with properties of other theories!

Example of a result in logic: “in all logical systems that can express
arithmetics on whole numbers, it is possible to formulate statements that can
neither be proved nor disproved” (Gödel’s incompleteness theorem)
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Logical systems consist of:

Axioms, which are assumed to hold without proof

Inference rules, of the form “given these premises, this conclusion can be
inferred”

Inference rules are often written on the form

premise 1 · · · premise n

conclusion
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Example (modus ponens in propositional logic):

P P =) Q

Q

A proof of a statement in a logic is a finite derivation of the statement as a

conclusion, starting from axioms

The set of provable statements is thus an inductively defined set, starting
with the axioms as “base cases”. Hmmm. . .

Even the set of proofs is an inductively defined set! Hmmm, hmmm. . .
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Induction principle for proofs (in some given logic). Show that the property P
is true for all proofs:

1. Show that P holds for all axioms (“least possible proofs”)

2. Show, for each derivation rule and its possible premises, that if P holds
for each of the proofs of the premises, then P holds also for the proof of
the conclusion

3. Conclude that P holds for all proofs in the proof system
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In Computer Science, systems are sometimes modelled directly with logical
inference systems!

Example:

• Operational semantics for programming languages

• Type systems

Properties of these can be proved with induction over derivations

We will consider a type system and an operational semantics for a small,
typed language
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Our language:

Three types: int for integers, bool for boolean values, void for programs

Constants 17, 0, true, false, . . .

Identifiers (program variables) X, Y, Z, . . .

Arithmetical expressions 17, X+99
*

Y, . . .

Boolean expressions false, Y and Z, X > 17, . . .
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Program statements:

• Assignments X = e, where e is an arithmetical or boolean expression

• Sequencing of statements c1;c2, where c1 and c2 are statements

• Conditional statements if b then c1 else c2, where b is a boolean
expression, and c1 and c2 are statements

• Looping statements while b do c, where b is a boolean expression,
and c is a statement

Example: X = 5; while X > 0 do (X = X - 1)
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A formal, operational semantics for the language:

We give the semantics as a logical inference system (just as the type
system)

Derivable facts are statements about programs and program parts, that tell
what result(s) their executions can yield
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The facts use states

A state � is a mapping from program variables to values (i.e., a description
of the “current contents” in memory)

Executing a program, starting in a state �, will transform the state into some
new state �0

Derivable facts are relations hc, �i ! �0

“Starting in state �, executing program c can yield the state �0”

Inference rules to derive facts of this form
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For arithmetic and boolean expressions we have similar relations as
derivable facts:

ha, �i ! n and hb, �i ! b

Here, n is a natural number and b a boolean value

This is since evaluating pure expressions in our language does not change
the state, only a value is returned

Read ha, �i ! n as “if a is evaluated when in state �, then the number n can
be returned”

Similarly for boolean expressions

CDT403 lecture 2012-10-25 63



Axioms and inference rules for arithmetic expressions:

Evaluation of numbers:
hn, �i ! n

Evaluation of numeric program variable:

hX, �i ! �(X)

Evaluation of sums:

ha1, �i ! n1 ha2, �i ! n2

ha1+a2, �i ! n1 + n2

Etc.
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Axioms and inference rules for boolean expressions:

Evaluation of boolean constants:

htrue, �i ! true hfalse, �i ! false

Evaluation of boolean program variable:

hX, �i ! �(X)
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Evaluation of inequality:

ha1, �i ! n1 ha2, �i ! n2 n1 > n2

ha1 > a2, �i ! true

ha1, �i ! n1 ha2, �i ! n2 n1  n2

ha1 > a2, �i ! false

And similarly for the other relational operators . . .

Evaluation of negation:

hb, �i ! false

hnot b, �i ! true

hb, �i ! true

hnot b, �i ! false

Exercise: figure out suitable inference rules that give the semantics of
boolean connectives and, or
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Axioms and inference rules for execution of programs:

Execution of assignment of numeric variable:

ha, �i ! n

hX = a, �i ! �[n/X]

�[n/X] is state for which:

• �[n/X](X) = n

• �[n/X](Y) = �(Y), X 6= Y
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Execution of sequenced programs:

hc1, �i ! �00 hc2, �00i ! �0

hc1;c2, �i ! �0

Execution of conditionals:

hb, �i ! true hc1, �i ! �0

hif b then c1 else c2, �i ! �0

hb, �i ! false hc2, �i ! �0

hif b then c1 else c2, �i ! �0
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Execution of while-statement:

hb, �i ! false

hwhile b do c, �i ! �

hb, �i ! true hc, �i ! �00 hwhile b do c, �00i ! �0

hwhile b do c, �i ! �0

This one tends to require some thinking!

Exercise: find state �0 such that

hwhile X > 0 do X = X - 1, �i ! �0

if �(X) = 1!
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What can we do with this theory?

We can define a sensible equivalence between programs:

c1 ⇠ c2 iff 8�,�0.hc1, �i ! �0 () hc2, �i ! �0

“c1, when started in state �, can yield state �0 precisely when c2 can”

We can now use the equivalence to prove correctness of program

transformations (as used by, e.g., an optimizing compiler)

Exercise: let w = while b do c. Show that
w ⇠ if b then c;w else skip

(Correctness of “loop unrolling”)

(Extended language with skip statement, you figure out how to give its
semantics)
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