
Namn:

Personnummer:

Datorarkitektur, 2008

Tentamen 2008-03-14

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points plus 3 possible bonus points.

• The aproximate limits for grades on this exam are:

– To pass (grade E): 30 points.

– For grade D: 37 points.

– For grade C: 45 points.

– For grade B: 52 points.

– For grade A: 59 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 10



Problem 1. (8 points):
Consider a 7-bit two’s complement representation. Fill in the empty boxes in the following table. Addition
and subtraction should be performed based on the rules for 7-bit, two’s complement arithmetic

Number Decimal Representation Binary Representation

Zero 0

n/a −3

n/a 11

n/a −17

n/a 0 110011

n/a 1 010010

TMax

TMin

TMin+TMin

TMin+1

TMax+1

−TMax

−TMin

Page 2 of 10



Problem 2. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int mat1[M][N];
int mat2[N][M];

int copy_element(int i, int j)
{

mat1[i][j] = mat2[j][i];
}

This generates the following assembly code:

copy_element:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %edx
leal 0(,%edx,8), %eax
movl 8(%ebp), %ecx
subl %edx, %eax
pushl %ebx
leal (%ecx,%eax,2), %eax
leal (%ecx,%ecx,8), %ebx
movl mat2(,%eax,4), %eax
addl %edx, %ebx
movl %eax, mat1(,%ebx,4)
popl %ebx
leave
ret

A. What is the value of M:

B. What is the value of N:

Page 3 of 10



Problem 3. (14 points):
Consider the source code below, used to keep track of the rooms currently reserved in a family-run hotel.
Each entry in the residents array stores a name of the customer reserving the room. FLOORS represents
the number of floors in the hotel. ROOMS represents the number of rooms per floor. Both are constants
declared with #define. LEN, the maximum number of bytes allocated for a name, is defined to be 12.

char residents[FLOORS][ROOMS][LEN];

void
reserve_room(int floor, int room, char *custname)
{

strcpy(residents[floor][room], custname);
}

The assembly code for the function reserve room looks like this:

reserve_room:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
movl 16(%ebp),%edx
pushl %edx
movl 8(%ebp),%edx
sall $4,%edx
subl 8(%ebp),%edx
leal (%eax,%eax,2),%eax
leal residents(,%eax,4),%eax
leal (%eax,%edx,4),%edx
pushl %edx
call strcpy
movl %ebp,%esp
popl %ebp
ret

A. What is the value of ROOMS?

B. Due to a strange bug, the program accesses residents[0][1][-2]. What value is actually being
accessed? (Express your answer as residents[x][y][z]where x, y and z are all non-negative
such that residents[x][y][z] access the same value. You may assume that FLOORS and
ROOMS are both greater than 1)

Page 4 of 10



C. The programmer realizes that this implementation is wasteful of memory. Successive fires in several
memory chip factories in Taiwan drive up memory prices and finally convince him to improve the memory
efficiency of his implementation to maintain the competitiveness of the family hotel.

The declaration of residents is changed to be a two dimensional array of pointers to character strings
(names). The new code allocates memory for customer names only for those rooms that are actually re-
served. Otherwise, residents[f][r] stores a NULL pointer. For simplicity, assume there is no
storage overhead due to malloc.

The new declaration looks like this:

char *residents[FLOORS][ROOMS];

void
reserve_room(int floor, int room, char *custname)
{

residents[floor][room] = malloc(LEN);
strcpy(residents[floor][room], custname);

}

After a few months. The programmer goes back to review the memory savings of his improved scheme.
During that period, the hotel was 20% reserved. The programmer is delighted because the savings are found
to be 168 bytes! How many floors does this hotel have? (that is, what is the value of FLOORS?)

Page 5 of 10



Problem 4. (10 points):
Condider the following assembly code for a C for loop:

loop:
pushl %ebp
movl %esp,%ebp
movl 0x8(%ebp),%edx
movl %edx,%eax
addl 0xc(%ebp),%eax
leal 0xffffffff(%eax),%ecx
cmpl %ecx,%edx
jae .L4

.L6:
movb (%edx),%al
xorb (%ecx),%al
movb %al,(%edx)
xorb (%ecx),%al
movb %al,(%ecx)
xorb %al,(%edx)
incl %edx
decl %ecx
cmpl %ecx,%edx
jb .L6

.L4:
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use the symbolic variables h, t and len in your expressions below — do not use register names.)

void loop(char *h, int len)
{

char *t;

for (_____________; ___________; h++, t--) {

_______________;

_______________;

_______________;
}

return;
}

Page 6 of 10



Problem 5. (6 points):
This problem concerns the following, low-quality code:

void foo(int x)
{

int a[3];
char buf[4];
a[0] = 0xF0F1F2F3;
a[1] = x;
gets(buf);
printf("a[0] = 0x%x, a[1] = 0x%x, buf = %s\n", a[0], a[1], buf);

}

In a program containing this code, procedure foo has the following disassembled form on an IA32 machine:

080485d0 <foo>:
80485d0: 55 pushl %ebp
80485d1: 89 e5 movl %esp,%ebp
80485d3: 83 ec 10 subl $0x10,%esp
80485d6: 53 pushl %ebx
80485d7: 8b 45 08 movl 0x8(%ebp),%eax
80485da: c7 45 f4 f3 f2 movl $0xf0f1f2f3,0xfffffff4(%ebp)
80485df: f1 f0
80485e1: 89 45 f8 movl %eax,0xfffffff8(%ebp)
80485e4: 8d 5d f0 leal 0xfffffff0(%ebp),%ebx
80485e7: 53 pushl %ebx
80485e8: e8 b7 fe ff ff call 80484a4 <_init+0x54> # gets
80485ed: 53 pushl %ebx
80485ee: 8b 45 f8 movl 0xfffffff8(%ebp),%eax
80485f1: 50 pushl %eax
80485f2: 8b 45 f4 movl 0xfffffff4(%ebp),%eax
80485f5: 50 pushl %eax
80485f6: 68 ec 90 04 08 pushl $0x80490ec
80485fb: e8 94 fe ff ff call 8048494 <_init+0x44> # printf
8048600: 8b 5d ec movl 0xffffffec(%ebp),%ebx
8048603: 89 ec movl %ebp,%esp
8048605: 5d popl %ebp
8048606: c3 ret
8048607: 90 nop

For the following questions, recall that:

• gets is a standard C library routine.

• IA32 machines are little-endian.

• C strings are null-terminated (i.e., terminated by a character with value 0x00).

• Characters ‘0’ through ‘9’ have ASCII codes 0x30 through 0x39.

Fill in the following table indicating where on the stack the following program values are located. Express these as
decimal offsets (positive or negative) relative to register %ebp:

Program Value Decimal Offset

a

a[2]

x

buf

buf[3]

Saved value of register %ebx

Page 7 of 10



Problem 6. (9 points):
The following problem concerns optimizing a procedure for maximum performance on an Intel Pentium III.
Recall the following performance characteristics of the functional units for this machine:

Operation Latency Issue Time
Integer Add 1 1
Integer Multiply 4 1
Integer Divide 36 36
Floating Point Add 3 1
Floating Point Multiply 5 2
Floating Point Divide 38 38
Load or Store (Cache Hit) 1 1

Consider the following two procedures:

Loop 1 Loop 2
int loop1(int *a, int x, int n) int loop2(int *a, int x, int n)
{ {
int y = x*x; int y = x*x;
int i; int i;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)
x = y * a[i]; x = x * a[i];

return x*y; return x*y;
} }

When compiled with GCC, we obtain the following assembly code for the inner loop:

Loop 1 Loop 2
.L21: .L27:

movl %ecx,%eax imull (%esi,%edx,4),%eax
imull (%esi,%edx,4),%eax incl %edx
incl %edx cmpl %ebx,%edx
cmpl %ebx,%edx jl .L27
jl .L21

Running on a Intel Pentium III machine, we find that Loop 1 requires 3.0 clock cycles per iteration, while
Loop 2 requires 4.0.

A. Explain how it is that Loop 1 is faster than Loop 2, even though it has one more instruction

B. By using the compiler flag -funroll-loops, we can compile the code to use 4-way loop unrolling.
This speeds up Loop 1. Explain why.

C. Even with loop unrolling, we find the performance of Loop 2 remains the same. Explain why.

Page 8 of 10



Problem 7. (5 points):
The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 13 bits wide.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 99 04 03 48
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 2F 81 FD 09 0B 0 8F E2 05 BD
3 06 0 3D 94 9B F7 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 B0 39 D3 F7
6 91 1 A0 B7 26 2D F0 0 0C 71 40 10
7 46 0 B1 0A 32 0F DE 1 12 C0 88 37

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 9 of 10



Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex.
Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 0E34

A. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value

Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 10 of 10


