
Namn:

Personnummer:

Datorarkitektur, 2009

Tentamen 2009-03-13

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points plus 3 possible bonus points.

• The aproximate limits for grades on this exam are:

– To pass (grade E): 30 points.

– For grade D: 37 points.

– For grade C: 45 points.

– For grade B: 52 points.

– For grade A: 59 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like but no computer, calulator,
telephone etc. Good luck!

Page 1 of 12

Problem 1. (9 points):
Assume we are running code on a 10-bit machine using two’s complement arithmetic for signed integers. A
“short” integer is encoded using 5 bits. Fill in the empty boxes in the table below. The following definitions
are used in the table:

short sy = -6;
int y = sy;
int x = -23;
unsigned ux = x;

Note: You need not fill in entries marked with “–”.

Expression Decimal Representation Binary Representation

Zero 0

– −10

– 29

– 01 1010 0010

ux

y

x >> 3

TMax

−TMin

TMax + TMax

TMin + TMin

Page 2 of 12

Problem 2. (14 points):
Consider the following 12-bit floating point representation based on the IEEE floating point format:

• There is a sign bit in the most significant bit.

• The next five bits are the exponent. The exponent bias is 15.

• The last six bits are the significand.

The rules are like those in the IEEE standard (normalized, denormalized, representation of 0, infinity, and
NAN).
We consider the floating point format to encode numbers in a form:

(−1)s ×m× 2E

where m is the mantissa and E is the exponent.
Fill in the table below for the following numbers, with the following instructions for each column:

Hex: The 3 hexadecimal digits describing the encoded form.

m: The fractional value of the mantissa. This should be a number of the form x or x/y, where x is an
integer, and y is an integral power of 2. Examples include: 0, 23/16, and 1/64.

E: The integer value of the exponent.

Value: The numeric value represented. Use the notation x or x× 2z , where x and z are integers.

As an example, to represent the number 7/2, we would have s = 0, m = 7/4, and E = 1. Our number
would therefore have an exponent field of 0x10 (decimal value 15 + 1 = 16) and a significand field 0x30
(binary 1100002), giving a hex representation 430.
You need not fill in entries marked “—”.

Description Hex m E Value

−0 −0

Smallest value > 1

256 —-

Largest Denormalized

−∞ — — −∞
Number with hex representation 3A0 3A0

Page 3 of 12

Problem 3. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int mat1[M][N];
int mat2[N][M];

int copy_element(int i, int j)
{

mat1[i][j] = mat2[j][i];
}

This generates the following assembly code:

copy_element:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %ecx
leal (%ecx,%ecx,2), %edx
sall $3, %edx
movl 12(%ebp), %eax
subl %ecx, %edx
addl %eax, %edx
leal (%eax,%eax,4), %eax
addl %ecx, %eax
movl mat2(,%eax,4), %eax
movl %eax, mat1(,%edx,4)
leave
ret

A. What is the value of M:

B. What is the value of N:

Page 4 of 12

Problem 4. (10 points):

Buffer overflow

This problem concerns the following C code, excerpted from Dr. Evil’s best-selling autobiography, “World
Domination My Way”. He calls the program NukeJr, his baby nuclear bomb phase.

/*
* NukeJr - Dr. Evil’s baby nuke

*/
#include <stdio.h>
#define EOF -1

int overflow(void);
int one = 1;

/* main - NukeJr’s main routine */
int main() {

int val = overflow();

val += one;
if (val != 15213)
printf("Boom!\n");

else
printf("Curses! You’ve defused NukeJr!\n");

_exit(0); /* syscall version of exit that doesn’t need %ebp */
}

/* overflow - writes to stack buffer and returns 15213 */
int overflow() {

char buf[4];
int val, i=0;

while(scanf("%x", &val) != EOF)
buf[i++] = (char)val;

return 15213;
}

Page 5 of 12

Buffer overflow (cont)

Here is the corresponding machine code for NukeJr when compiled and linked on a Linux/x86 machine:

08048560 <main>:
8048560: 55 pushl %ebp
8048561: 89 e5 movl %esp,%ebp
8048563: 83 ec 08 subl $0x8,%esp
8048566: e8 31 00 00 00 call 804859c <overflow>
804856b: 03 05 90 96 04 addl 0x8049690,%eax # val += one;
8048570: 08
8048571: 3d 6d 3b 00 00 cmpl $0x3b6d,%eax # val == 15213?
8048576: 74 0a je 8048582 <main+0x22>
8048578: 83 c4 f4 addl $0xfffffff4,%esp
804857b: 68 40 86 04 08 pushl $0x8048640
8048580: eb 08 jmp 804858a <main+0x2a>
8048582: 83 c4 f4 addl $0xfffffff4,%esp
8048585: 68 60 86 04 08 pushl $0x8048660
804858a: e8 75 fe ff ff call 8048404 <_init+0x44> # call printf
804858f: 83 c4 10 addl $0x10,%esp
8048592: 83 c4 f4 addl $0xfffffff4,%esp

0804859c <overflow>:
804859c: 55 pushl %ebp
804859d: 89 e5 movl %esp,%ebp
804859f: 83 ec 10 subl $0x10,%esp
80485a2: 56 pushl %esi
80485a3: 53 pushl %ebx
80485a4: 31 f6 xorl %esi,%esi
80485a6: 8d 5d f8 leal 0xfffffff8(%ebp),%ebx
80485a9: eb 0d jmp 80485b8 <overflow+0x1c>
80485ab: 90 nop
80485ac: 8d 74 26 00 leal 0x0(%esi,1),%esi
80485b0: 8a 45 f8 movb 0xfffffff8(%ebp),%al # L1: loop start
80485b3: 88 44 2e fc movb %al,0xfffffffc(%esi,%ebp,1)
80485b7: 46 incl %esi
80485b8: 83 c4 f8 addl $0xfffffff8,%esp
80485bb: 53 pushl %ebx
80485bc: 68 80 86 04 08 pushl $0x8048680
80485c1: e8 6e fe ff ff call 8048434 <_init+0x74> # call scanf
80485c6: 83 c4 10 addl $0x10,%esp
80485c9: 83 f8 ff cmpl $0xffffffff,%eax
80485cc: 75 e2 jne 80485b0 <overflow+0x14> # goto L1
80485ce: b8 6d 3b 00 00 movl $0x3b6d,%eax
80485d3: 8d 65 e8 leal 0xffffffe8(%ebp),%esp
80485d6: 5b popl %ebx
80485d7: 5e popl %esi
80485d8: 89 ec movl %ebp,%esp
80485da: 5d popl %ebp
80485db: c3 ret

Page 6 of 12

Buffer overflow (cont)

This problem tests your understanding of the stack discipline and byte ordering. Here are some notes to
help you work the problem:

• Recall that Linux/x86 machines are Little Endian.

• The scanf("%x", &val) function reads a whitespace-delimited sequence of characters from
stdin that represents a hex integer, converts the sequence to a 32-bit int, and assigns the result
to val. The call to scanf returns either 1 (if it converted a sequence) or EOF (if no more sequences
on stdin).

For example, calling scanf four time on the input string "0 a ff" would have the following
result:

– 1st call to scanf: val=0x0 and scanf returns 1.

– 2nd call to scanf: val=0xa and scanf returns 1.

– 3rd call to scanf: val=0xff and scanf returns 1.

– 4th call to scanf: val=? and scanf returns EOF.

Buffer overflow (questions):

A. After the subl instruction at address 0x804859f in function overflow completes, the stack
contains a number of objects which are shown in the table below. Determine the address of each
object as a byte offset from buf[0].

Stack object Address of stack object

return address &buf[0] + _______

old %ebp &buf[0] + _______

buf[3] &buf[0] + _______

buf[2] &buf[0] + _______

buf[1] &buf[0] + 1

buf[0] &buf[0] + 0

B. What input string would defuse NukeJr by causing the call to overflow to return to address 0x8048571
instead of 804856b? Notes: (i) Your solution is allowed to trash the contents of the %ebp register.
(ii) Each underscore is a one or two digit hex number.

Answer: "0 0 0 0 ___ ___ ___ ___ ___ ___ ___ ___ "

Page 7 of 12

Problem 5. (8 points):
In this problem you will specify how to implement some new instructions for the Y86 machine.
The actions of an instruction is decribed inte the coursebook by a table that shows what is done in each step
of the machine. Here are three examples:

Stage OPl rA, rB irmovl V, rB pushl rA

Fetch icode:ifun←M1[PC] icode:ifun←M1[PC] icode:ifun←M1[PC]

rA:rB←M1[PC+1] rA:rB←M1[PC+1] rA:rB←M1[PC+1]

valC←M4[PC+2]

valP← PC+2 valP← PC+6 valP← PC+2

Decode valA← R[rA] valA← R[rA]

valB← R[rB] valB← R[%esp]

Execute valE← valB OP valA valE← 0 + valC valE← valB + (-4)

Set CC

Memory M4[valE]← valA

Write back R[rB]← valE R[rB]← valE R[%esp]← valE

PC update PC← valP PC← valP PC← valP

You shall describe the three instructions incr, decr and not, that implements the following C-operations:

instruction C-operation

incr x x = x + 1
decr x x = x - 1
not x x = ∼x

All three instructions have the format:

icode ifun 8 rB

All three instructions set the condition codes similar to OPl.

Page 8 of 12

Fill in the operations done in each stage:

Stage incr rB decr rB not rB

Fetch icode:ifun←M1[PC] icode:ifun←M1[PC] icode:ifun←M1[PC]

Decode

Execute

Memory

Write back

PC update

Page 9 of 12

Problem 6. (8 points):
You are writing a new 3D game that you hope will earn you fame and fortune. You are currently working
on a function to blank the screen buffer before drawing the next frame. The screen you are working with is
a 640x480 array of pixels. The machine you are working on has a 64 KB direct mapped cache with 4 byte
lines. The C structures you are using are:

struct pixel {
char r;
char g;
char b;
char a;

};

struct pixel buffer[480][640];
register int i, j;
register char *cptr;
register int *iptr;

Assume:

• sizeof(char) = 1

• sizeof(int) = 4

• buffer begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the array buffer. Variables i, j, cptr, and iptr
are stored in registers.

Page 10 of 12

A. What percentage of the writes in the following code will miss in the cache?

for (j=0; j < 640; j++) {
for (i=0; i < 480; i++){

buffer[i][j].r = 0;
buffer[i][j].g = 0;
buffer[i][j].b = 0;
buffer[i][j].a = 0;

}
}

Miss rate for writes to buffer: _______ %

B. What percentage of the writes in the following code will miss in the cache?

char *cptr;
cptr = (char *) buffer;
for (; cptr < (((char *) buffer) + 640 * 480 * 4); cptr++)

*cptr = 0;

Miss rate for writes to buffer: _______ %

C. What percentage of the writes in the following code will miss in the cache?

int *iptr;
iptr = (int *) buffer;
for (; iptr < (buffer + 640 * 480); iptr++)

*iptr = 0;

Miss rate for writes to buffer: _______ %

D. Which code (A, B, or C) should be the fastest? _______

Page 11 of 12

Problem 7. (3 points):
Consider the following C functions and assembly code:

int fun1(int a, int b)
{

unsigned ua = (unsigned) a;
if (ua < b)

return b;
else

return ua;
}

int fun2(int a, int b)
{

if (b < a)
return b;

else
return a;

}

int fun3(int a, int b)
{

if (a < b)
return a;

else
return b;

}

funX:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
cmpl 8(%ebp), %eax
jl .L5
movl 8(%ebp), %eax

.L5:
leave
ret

Which of the functions compiled into the assembly code shown?

Page 12 of 12

