Basic Internet programming – Formalities

'Hands-on' tools for internet programming

DD1335 (gruint10)

Serafim Dahl

serafim@nada.kth.se

What is this course about?

Providing tools for hands-on internet programming

What is this course about?

- Providing tools for hands-on internet programming
- There are only 9 lectures do show up, please!

- Basics on the internet
 - Protocols, addresses, hosts
 - HTML, markup
 - Internet connections, servers (Java)

- Basics on the internet
 - Protocols, addresses, hosts
 - HTML, markup
 - Internet connections, servers (Java)
- Server-Side Internet Programming
 - CGI, Servlets (Java)
 - Java Server Pages (JSP) and other scripting (ASP)
 - 3-tier systems: JDBC (Java-SQL)

- Basics on the internet
 - Protocols, addresses, hosts
 - HTML, markup
 - Internet connections, servers (Java)
- Server-Side Internet Programming
 - CGI, Servlets (Java)
 - Java Server Pages (JSP) and other scripting (ASP)
 - 3-tier systems: JDBC (Java-SQL)
- Client-Side Internet Programming
 - Javascript
 - CSS
 - Applets (Java) and maybe some other technique(s)

- Basics on the internet
 - Protocols, addresses, hosts
 - HTML, markup
 - Internet connections, servers (Java)
- Server-Side Internet Programming
 - CGI, Servlets (Java)
 - Java Server Pages (JSP) and other scripting (ASP)
 - 3-tier systems: JDBC (Java-SQL)
- Client-Side Internet Programming
 - Javascript
 - CSS
 - Applets (Java) and maybe some other technique(s)
- Other Issues
 - XML, Web Services, Semantic Web
 - PHP and other scripting languages

Labs and Project

Labs

Labs

Principles: wide, not deep.

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4),

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.
 - Send me an email with a 5-line project idea and names of group members

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.
 - Send me an email with a 5-line project idea and names of group members
 - The project must be an interactive WWW system. Simple HTML pages are not enough

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.
 - Send me an email with a 5-line project idea and names of group members
 - The project must be an interactive WWW system. Simple HTML pages are not enough
 - Required: server-side programming (e.g. shopping baskets, booking systems, resource allocation)

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.
 - Send me an email with a 5-line project idea and names of group members
 - The project must be an interactive WWW system. Simple HTML pages are not enough
 - Required: server-side programming (e.g. shopping baskets, booking systems, resource allocation)
 - Required: JavaScript (e.g. client-side checking of user input, etc)

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.
 - Send me an email with a 5-line project idea and names of group members
 - The project must be an interactive WWW system. Simple HTML pages are not enough
 - Required: server-side programming (e.g. shopping baskets, booking systems, resource allocation)
 - Required: JavaScript (e.g. client-side checking of user input, etc)
 - Not much technical complexity, but a high editorial quality (good layout, including CSS), making the best of the Internet medium

- Labs
 - Principles: wide, not deep.
 - A lot to do, but all easy, mostly with a template to start from
 - Net and programming basics (Lab1), Net connections (Lab 2)
 - Server side (Lab 3, Lab 4), Client side (Lab 5)
- Projects
 - You define your projects.
 - You form the project groups.
 - Send me an email with a 5-line project idea and names of group members
 - The project must be an interactive WWW system. Simple HTML pages are not enough
 - Required: server-side programming (e.g. shopping baskets, booking systems, resource allocation)
 - Required: JavaScript (e.g. client-side checking of user input, etc)
 - Not much technical complexity, but a high editorial quality (good layout, including CSS), making the best of the Internet medium
 - Make goups of 3 to 6 people

Administration

Course codes: gruint10

Administration

Course codes: gruint10

 Register on the course (for admin of course element results): Log in to some computer
Start a web browser and connect to https://rapp.nada.kth.se/rapp and login
Activate the course instance "gruint10"

Administration

Course codes: gruint10

 Register on the course (for admin of course element results): Log in to some computer Start a web browser and connect to https://rapp.nada.kth.se/rapp and login Activate the course instance "gruint10"
To get info apart from that on the web

```
course join gruint10
```

Introduction to the internet

Content

A little on:

- network concepts
- web concepts
- internet addresses
- sockets

Introduction to the internet

Content

A little on:

- network concepts
- web concepts
- internet addresses
- sockets

References:

- Harold: Java Network Programming
- Hall: Core Web Programming
- Deitel, et al: Internet and the World Wide Web How to Program
- Ince: Developing Distributed and E-Commerce Applications

Programming network applications

Why network applications?

- Why network applications?
 - Alongside the technical "evolution", communication between application and also between parts of applications residing on different computer become more and more common

- Why network applications?
 - Alongside the technical "evolution", communication between application and also between parts of applications residing on different computer become more and more common
 - Examples of asynchronously communicating applications: web browsers, e-mail, news.

- Why network applications?
 - Alongside the technical "evolution", communication between application and also between parts of applications residing on different computer become more and more common
 - Examples of asynchronously communicating applications: web browsers, e-mail, news.
 - Some other examples: Distributed databases, sound, radio, video and internet telephony.

- Why network applications?
 - Alongside the technical "evolution", communication between application and also between parts of applications residing on different computer become more and more common
 - Examples of asynchronously communicating applications: web browsers, e-mail, news.
 - Some other examples: Distributed databases, sound, radio, video and internet telephony.
- Need for applications where the participants are aware of each others:

- Why network applications?
 - Alongside the technical "evolution", communication between application and also between parts of applications residing on different computer become more and more common
 - Examples of asynchronously communicating applications: web browsers, e-mail, news.
 - Some other examples: Distributed databases, sound, radio, video and internet telephony.
- Need for applications where the participants are aware of each others:
 - Shared bulletin boards, whiteboards, shared word processors, control systems (eg. robots) and (not the least) games (like runescape and world of warcraft).

- Why network applications?
 - Alongside the technical "evolution", communication between application and also between parts of applications residing on different computer become more and more common
 - Examples of asynchronously communicating applications: web browsers, e-mail, news.
 - Some other examples: Distributed databases, sound, radio, video and internet telephony.
- Need for applications where the participants are aware of each others:
 - Shared bulletin boards, whiteboards, shared word processors, control systems (eg. robots) and (not the least) games (like runescape and world of warcraft).
- There is support in the networks, where we will look closer on the internet.

Programming network applications

Large amounts of internet sites

 Auctions, advertising, commerse, portals with collections of sites concerning business, music, film, software, info, reports of various kinds books, search engines, education, ...

Programming network applications

Large amounts of internet sites

 Auctions, advertising, commerse, portals with collections of sites concerning business, music, film, software, info, reports of various kinds books, search engines, education, ...

Kinds of application programs

- E-mail
- News
- Web based databases
- Client-server, per-to-peer
- Telephone
- Video
- ▶ ...
A network is in this respect a collection of interconnected computers and/or other kinds of equipment

A network is in this respect a collection of interconnected computers and/or other kinds of equipment Terminology:

 node, a machine that is connected to the network (computer, printer, bridge, vending machine, ...)

A network is in this respect a collection of interconnected computers and/or other kinds of equipment

- node, a machine that is connected to the network (computer, printer, bridge, vending machine, ...)
- host, a fully autonomous computer connected to the network

A network is in this respect a collection of interconnected computers and/or other kinds of equipment

- node, a machine that is connected to the network (computer, printer, bridge, vending machine, ...)
- host, a fully autonomous computer connected to the network
- address, each node has a unique address (a number of bytes)

A network is in this respect a collection of interconnected computers and/or other kinds of equipment

- node, a machine that is connected to the network (computer, printer, bridge, vending machine, ...)
- host, a fully autonomous computer connected to the network
- address, each node has a unique address (a number of bytes)
- packet, modern networks are packet based, meaning that the information is broken down to and sent as small chunks, each chunk of information handled separately.

A network is in this respect a collection of interconnected computers and/or other kinds of equipment

- node, a machine that is connected to the network (computer, printer, bridge, vending machine, ...)
- host, a fully autonomous computer connected to the network
- address, each node has a unique address (a number of bytes)
- packet, modern networks are packet based, meaning that the information is broken down to and sent as small chunks, each chunk of information handled separately.
- protocol, rules, specifying how to perform communication

Internet is the most know and most wide spread network.

Designed to be robust (errors are unusual)

- Designed to be robust (errors are unusual)
- First version 1969, ARPANET, designed by ARPA, a DoD unit.

- Designed to be robust (errors are unusual)
- First version 1969, ARPANET, designed by ARPA, a DoD unit.
- 1983 there were 562 computers on the ARPANET

- Designed to be robust (errors are unusual)
- First version 1969, ARPANET, designed by ARPA, a DoD unit.
- 1983 there were 562 computers on the ARPANET
- 1986 there were 5000 computers

- Designed to be robust (errors are unusual)
- First version 1969, ARPANET, designed by ARPA, a DoD unit.
- 1983 there were 562 computers on the ARPANET
- 1986 there were 5000 computers
- ▶ 1987 28000,
- ▶ 1989 100000,
- ▶ 1990 300000,
- 2009 1.67 billion (a rough estimate on June 30)

Network basics

A network is built as a set of layers

Application programmers work mainly in the upper layer

- Application programmers work mainly in the upper layer
- Eventually in the transport layer (in distributed applications)

- Application programmers work mainly in the upper layer
- Eventually in the transport layer (in distributed applications)
- Other layers are normally of no concern

IP, TCP, UDP

► IP, Internet Protocol

the network layer protocol (the reason for the name "Internet")

IP, TCP, UDP

► IP, Internet Protocol

the network layer protocol (the reason for the name "Internet")

► TCP, Transport Control Protocol

a connection based protocol which insures a correct data exchange between two nodes

IP, TCP, UDP

► IP, Internet Protocol

the network layer protocol (the reason for the name "Internet")

► TCP, Transport Control Protocol

a connection based protocol which insures a correct data exchange between two nodes

UDP, User Datagram Protocol

a protocol which allows the transmission of independant packets from one node to antoher with no guarantee concerning delivery or order of delivery

► IP address. Each machine is identified by a unique 4-byte number

- ► *IP address*. Each machine is identified by a unique 4-byte number
 - Many computers have a fixed number, others get a dynamically assigned number at connection time

- IP address. Each machine is identified by a unique 4-byte number
 - Many computers have a fixed number, others get a dynamically assigned number at connection time
 - ► 1995 the use of the internet "exploded" and as there are not enough 4-byte numbers (you get a "lousy" 2³² = 4294967296 addresses)

- IP address. Each machine is identified by a unique 4-byte number
 - Many computers have a fixed number, others get a dynamically assigned number at connection time
 - 1995 the use of the internet "exploded" and as there are not enough 4-byte numbers (you get a "lousy" 2³² = 4294967296 addresses), IPv6 was created giving 2¹²⁸ = 340282366920938463463374607431768211456 adresses. Ought to be enough for some time ...
- DNS, Domain Name Server
 - IP-addresses are hard to remember and thus DNS was created to allow symbolic (textuel) names that are looked up and translated to IP-addresses
 - Eg.: www.nada.kth.se is translated to 130.237.225.40

Ports

- Every computer with an IP-address has 65536 logical ports for communication over the internet.
- Some are reserved
 - ports number 0-1023 are reserved (for what and by whome may be seen in the file /etc/services (on UNIX/Linux)
 - eg. the following:
 - port 7 for echo
 - port 20-21 for ftp
 - port 23 for telnet
 - port 25 for smtp (send e-mail)
 - port 80 for http (web server)
 - port 110 for POP3 (read e-mail)

Intranet

There are other networks with the same structure. Local networks are usually called *intranet*. They may link to the internet with special "bridges". Sometimes the bridge uses filtering devices to restrict the data traffic between the networks.

Network basics

The client-server model

 Today, the *client-server* model is the prevailing when constructing distributed, cooperating application programs.

The client-server model

- Today, the *client-server* model is the prevailing when constructing distributed, cooperating application programs.
 - a client asks a server for a service (as eg. information about the time)

The client-server model

- Today, the *client-server* model is the prevailing when constructing distributed, cooperating application programs.
 - a client asks a server for a service (as eg. information about the time)
 - a server accomplishes the corresponding task and delivers the service (like sending time info, sending a file from its local file system, eg. a web page)

The client-server model

- Today, the *client-server* model is the prevailing when constructing distributed, cooperating application programs.
 - a client asks a server for a service (as eg. information about the time)
 - a server accomplishes the corresponding task and delivers the service (like sending time info, sending a file from its local file system, eg. a web page)
 - both following a protocol that enables asking for and providing services over the network

The client-server model ...

Not all kinds of application programs fit into the client-server model. Some act simultaneously as both client and server and, if both "ends" of a communication do, that communication is called"*peer-to-peer*".

- Not all kinds of application programs fit into the client-server model. Some act simultaneously as both client and server and, if both "ends" of a communication do, that communication is called "peer-to-peer". Eg:
 - a shared editor
 - a game (runescape, world of warcraft, ...)
 - a telephone connection

Network basics

RFC (Request for comments)

 Some internet standards have been developed publicly already from the prototype stage
- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP
 - Recommended that ought to be implemented, eg. TCP, SMTP, UDP, TelNet, ...

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP
 - Recommended that ought to be implemented, eg. TCP, SMTP, UDP, TelNet, ...
 - Optional, like MIME

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP
 - Recommended that ought to be implemented, eg. TCP, SMTP, UDP, TelNet, ...
 - Optional, like MIME
 - Restricted, that are neccessary only in special cases

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP
 - Recommended that ought to be implemented, eg. TCP, SMTP, UDP, TelNet, ...
 - Optional, like MIME
 - Restricted, that are neccessary only in special cases
 - Not recommended, that should not be implemented

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP
 - Recommended that ought to be implemented, eg. TCP, SMTP, UDP, TelNet, ...
 - Optional, like MIME
 - Restricted, that are neccessary only in special cases
 - Not recommended, that should not be implemented
 - Historical (obsolete, deprecated)

- Some internet standards have been developed publicly already from the prototype stage
- Their protools are publicly accessible on the internet
- These protocols fit into the following categories:
 - Mandatory each host must implement them, eg. IP
 - Recommended that ought to be implemented, eg. TCP, SMTP, UDP, TelNet, ...
 - Optional, like MIME
 - Restricted, that are neccessary only in special cases
 - Not recommended, that should not be implemented
 - Historical (obsolete, deprecated)
 - Informative, that may have been constructed outside the RFC but still are useful without delivering an established protocol

- HTTP, HyperText Transfer Protocol,
 - a standard protocol for the communication between a web server and a web client (web browser)

- HTTP, HyperText Transfer Protocol,
 - a standard protocol for the communication between a web server and a web client (web browser)
- HTML, HyperText Markup Language
 - the first generation standard language for the contruction of web pages, a subset to SGML with extra error tolerance

- HTTP, HyperText Transfer Protocol,
 - a standard protocol for the communication between a web server and a web client (web browser)
- HTML, HyperText Markup Language
 - the first generation standard language for the contruction of web pages, a subset to SGML with extra error tolerance
 - XHTML, eXtensible HTML, second generation language for the contruction of web pages, HTML as a strict subset to XML

- HTTP, HyperText Transfer Protocol,
 - a standard protocol for the communication between a web server and a web client (web browser)
- HTML, HyperText Markup Language
 - the first generation standard language for the contruction of web pages, a subset to SGML with extra error tolerance
 - XHTML, eXtensible HTML, second generation language for the contruction of web pages, HTML as a strict subset to XML
- MIME, Multipurpose Internet Mail Extension
 - an open standard that determines how multimedia objects are to be transmitted by e-mail

URI, Uniform Resource Identifier

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN
- URL, Uniform Resource Locator

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN
- URL, Uniform Resource Locator
 - a reference for an address on the internet

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN
- ▶ URL, Uniform Resource Locator
 - a reference for an address on the internet
 - looks like: protocol://host[:port]/path/file[#section]

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN
- URL, Uniform Resource Locator
 - a reference for an address on the internet
 - looks like: protocol://host[:port]/path/file[#section]
 - ► eg:

http://www.csc.kth.se:8080/dd1335/gruint09/labs/#lab2

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN
- URL, Uniform Resource Locator
 - a reference for an address on the internet
 - looks like: protocol://host[:port]/path/file[#section]
 - eg:

http://www.csc.kth.se:8080/dd1335/gruint09/labs/#lab2

URN, Universal Resource Name

- URI, Uniform Resource Identifier
 - define how to uniquely identify a resource on the internet
 - is divided into the subgroups URL and URN
- URL, Uniform Resource Locator
 - a reference for an address on the internet
 - looks like: protocol://host[:port]/path/file[#section]
 - eg:

http://www.csc.kth.se:8080/dd1335/gruint09/labs/#lab2

URN, Universal Resource Name

 a "pointer" to a resource without specifying its exact position, eg. the search for a certain kind of documents may deliver the set of URLs (the positions of all the documents)

SGML & HTML

SGML, Standard Generalized Markup Language

SGML & HTML

- SGML, Standard Generalized Markup Language
 - Was created in the 1970s
 - Describes the sematics of a text rather than its presentation

SGML & HTML

- SGML, Standard Generalized Markup Language
 - Was created in the 1970s
 - Describes the sematics of a text rather than its presentation
- HTML, HyperText Markup Language

SGML & HTML

- SGML, Standard Generalized Markup Language
 - Was created in the 1970s
 - Describes the sematics of a text rather than its presentation
- HTML, HyperText Markup Language
 - Was created from SGML early in the 1990s
 - Describes how to present a text rather than its semantics
 - Is "lingua franca" for presentation of hypertext on the web

- ► HTTP, HyperText Transport Protocol
 - a standard describing how a web client and a web server should exchange data

- ► HTTP, HyperText Transport Protocol
 - a standard describing how a web client and a web server should exchange data
 - uses MIME to decode data

- HTTP, HyperText Transport Protocol
 - a standard describing how a web client and a web server should exchange data
 - uses MIME to decode data
 - uses TCP/IP for the transmission of data

- HTTP, HyperText Transport Protocol
 - a standard describing how a web client and a web server should exchange data
 - uses MIME to decode data
 - uses TCP/IP for the transmission of data
 - The client sends a message once the communication has been established eg. GET /index.html HTTP/1.1

- HTTP, HyperText Transport Protocol
 - a standard describing how a web client and a web server should exchange data
 - uses MIME to decode data
 - uses TCP/IP for the transmission of data
 - The client sends a message once the communication has been established eg. GET /index.html HTTP/1.1
 - the web server responds by sending the file index.html to the client

MIME, Multipurpose Internet Mail Extension

- > an open standard for how to send multimedia objects by e-mail
- denotes the type of data that is transmitted,

MIME

MIME, Multipurpose Internet Mail Extension

- an open standard for how to send multimedia objects by e-mail
- denotes the type of data that is transmitted, eg.
 - text/plain, text/html
 - news
 - application/postscript, application/pdf
 - zip
 - image/gif, image/jpeg, image/tiff, image/x-bitmap
 - audio/basic, audio/mpeg
 - video/mpeg, video/quicktime, video/x-msvideo