
SubIt!

Group 1

Joel Westberg
Mikael Granholm
Simon Stenström

Sofie Björk
Henrik Eriksson Hegardt

Inneh̊all

1 Introduction 4
1.1 Purpose . 4
1.2 Scope . 4
1.3 Intended Audience . 4
1.4 Related Documents . 4
1.5 Glossary . 4

1.5.1 Technical Terms . 4
1.5.2 SubIt! Defined Words 4

1.6 Abstract . 5

2 System Overview 5
2.1 General Description . 5
2.2 Overall Architecture Description 6

2.2.1 UI Manager . 7
2.2.2 File Manager . 7
2.2.3 Page Manager . 7
2.2.4 User Manager . 7
2.2.5 Web Clients . 7
2.2.6 File System . 7
2.2.7 Database . 7

2.3 Detailed Architecture . 7
2.3.1 File Submission . 8
2.3.2 Login Attempt . 9
2.3.3 Insert data (Users, courses, assignments, etc 10
2.3.4 Regular Usage . 11

3 Design Considerations 12
3.1 Assumptions and Dependencies 12
3.2 General Constraints . 12

4 Graphical User Interface 13
4.1 Overview . 13
4.2 Header . 13
4.3 Footer . 13
4.4 Login screen . 13
4.5 List current courses . 14
4.6 Find course . 14
4.7 Student view of course (not registered to course) 14
4.8 Student view of course (not in Project Group) 15
4.9 Student view of course (in project group) 15
4.10 Student view of assignemnt (not registered to course) 16
4.11 Join project group . 16

1

4.12 Student submit files . 17
4.13 Student view Project Group 17
4.14 Set course as active . 18
4.15 Set course as inactive . 18
4.16 Course Leader view of course 18
4.17 Teacher view of a course . 19
4.18 Course Leader edit course description 19
4.19 Course leader add/edit an assignment 20
4.20 Course leader add teacher to a course 20
4.21 Course leader list teacher from a course 20
4.22 Teacher/Course leader list students of a course 21
4.23 Teacher/Course leader list project groups 21
4.24 Teacher/Course leader list all submissions of a course 21
4.25 Teacher/Course leader list submissions of a student 22
4.26 Teacher/Course leader list submissions of a project group . . 22
4.27 Course leader view of assignment 23
4.28 Teacher/Course leader grade a submission 24
4.29 View inbox . 24
4.30 Read message . 25
4.31 Compose new message . 26
4.32 Administrator view of Remove course 26
4.33 Administrator view of Remove user 27
4.34 Edit user . 27
4.35 System Administrator add/edit course 27
4.36 System Administrator add/edit user 28
4.37 System Administrator view of administer system 28
4.38 System administrator edit course 29

5 Design Details 30
5.1 Class Responsibility Collaborator Cards 30
5.2 Class Diagram . 32
5.3 State Charts . 32
5.4 Interaction Diagrams . 32
5.5 Detailed Design . 34

5.5.1 class Page . 34
5.5.2 class Assignment . 35
5.5.3 class User . 37
5.5.4 class Course . 38
5.5.5 class ProjectGroup . 39
5.5.6 class Message . 40
5.5.7 class Submission . 41
5.5.8 Database Design . 42

5.6 Package Diagram . 45

2

6 Functional Test Cases 46
6.1 Log in to the system . 46
6.2 List active courses . 46
6.3 Join a course . 47
6.4 List courses user is active in 48
6.5 Submit an assignment . 48
6.6 Create a project group . 49
6.7 Submit assignment as project group 49
6.8 Leave a project group . 50
6.9 View all students in a course 51
6.10 View a submission in a course 51
6.11 View a student’s submissions 52
6.12 List all submissions in a course 53
6.13 Set a grade . 53
6.14 Add teacher . 54
6.15 Remove teacher . 55
6.16 Edit course description . 56
6.17 Create assignment . 56
6.18 Add user . 57
6.19 Remove user . 58
6.20 Add course . 58
6.21 Remove course . 59
6.22 Set course as inactive . 59
6.23 Set course as active . 60
6.24 Send message . 61

3

1 Introduction

1.1 Purpose

The purpose of SubIt! Design Document is to describe the design and the
architecture of SubIt!. The design is expressed in sufficient detail so as to
enable developers to understand the underlying architecture of SubIt!.

1.2 Scope

This document is intended to act as a sufficient foundation for the imple-
mentation of SubIt!. The system is basically a webserver application with
connections to a fileserver and a database. The setup of the system(s) hand-
ling the fileserver and the database is outside the scope of this document.

1.3 Intended Audience

This Design Document is intended to act as a technical reference tool for
developers involved in the development of SubIt!.

1.4 Related Documents

Throughout this Design Document are references to the SubIt! Requirements
Document. The reader are assumed to be familiar with this document or at
least have access to it.

1.5 Glossary

1.5.1 Technical Terms

PHP
A computer programming language originally designed for producing dyna-
mic web pages. 1

Server
An application, or a device that performs services for connected clients as
part of a client-server architecture. 2

Database
A computer database is a structured collection of records or data that is
stored in a computer system so that a computer program or person using a
query language can consult it to answer queries. 3

1http://en.wikipedia.org/wiki/PHP
2http://en.wikipedia.org/wiki/Server (computing)
3http://en.wikipedia.org/wiki/Database

4

1.5.2 SubIt! Defined Words

Start Date
Is assigned to an assignment. This is the first date that the assignment is
displayed to the students participating in the course, and the first date that
student can submit submissions.
Soft Deadline
Is assigned to an assignment. This is the date that the teachers of a course
want the submissions to be made. If a submission is made later than this
date, it will be viewed as a late assignment.
Hard Deadline
Is assigned to an assignment. This is the last date to hand in a submission.
After this date, it is no longer possible to submit the assignment.
Teachers
Teachers teach something in a course. The can be assistants or co-lecturers
or laboratory assistant.
Course Leader
There is only one course leader for each course. This is the one teacher who
decides who the other teachers are and who decides about assignments.
Assignment
The question/problem/subject that the students are to answer/solve/write
about.
Submission
The file/files that a single student hands in.

1.6 Abstract

SubIt! is a system for handling student’s submission to course specific as-
signments. This document defines what is to be implemented.

Chapter 2 gives an overview of the system in different detail levels, with
focus on data and control flow between the system components.

Chapter 3 discusses assumptions on which design decisions are made.

Chapter 4 shows screenshots of the user interface functions and describes
the general navigation within the system.

Chapter 5 describes the design in detail, including definitions of classes,
functions and variables. Finally the database design is presented.

Chapter 6 provides a set of test cases for the final testing of the imple-
mented system.

5

2 System Overview

2.1 General Description

The system will enable teachers and students to easily communicate, al-
lowing creation of assignments in a course for a teacher, and allowing sub-
missions to be made to said assignment for the student. This is the primary
function of the system, but will also allow other things such as communca-
tion through a messaging system, as well as grading of submissions.
The system is entirely web-based, and is designed to be viewed and fully fun-
ctional in any modern web browser. The design is oriented toward usability,
and navigating as well as using the system should not pose any difficulty to
use for it’s users.

2.2 Overall Architecture Description

The system is divided into four main parts that control the control and data
flow as shown below. Since both files and other data (user privileges, page
information, comments, etc.) are stored within the system, a file system and
a database will be needed.

6

In scope

2.2.1 UI Manager

The UI manager is used to handle the interface and is the contact between
the client and the logic of the system.

2.2.2 File Manager

The File Manager is used to access files and keeps track of file locations.

7

2.2.3 Page Manager

The Page Manager handles the information about the web pages. It responds
to all incoming HTTP GET requests from clients.

2.2.4 User Manager

The User Manager keeps track of all the user data and their priveleges within
the system.

Out of scope

2.2.5 Web Clients

The clients are using an internet browser to access the system. However, this
layer is only used to display the information provided by the system, and is
thus outside the scope of this document.

2.2.6 File System

The File System stores all the files. Since the File Manager keeps track of
the file locations, any file system can be used, as long as it is functional.

2.2.7 Database

The Database serves as the backbone of the system. It will store all infor-
mation needed by any other part of the system. Any database engine can
be used, the choice of database engine is thus out of the design scope.

2.3 Detailed Architecture

The diagrams below show the data flow between the different parts of the
system.

8

2.3.1 File Submission

Upon submission, either an error message will be returned to the clientto
the client if the file submitted was invalid, or an confirmation that the file
was recieved. A correctly submitted file will be saved in the file system and
it’s location stored in the database.

9

2.3.2 Login Attempt

This diagram shows the flow of a regular login attempt through the system.

10

2.3.3 Insert data (Users, courses, assignments, etc

This diagram shows an attempt to insert data into the database such as ad-
ding, or changing an already existing user, course, assignment, etc.

11

2.3.4 Regular Usage

Shows the regular usage of the system. A page is requested by client, and a
response is generated and sent to the client in return.

12

3 Design Considerations

3.1 Assumptions and Dependencies

When designing this system, some things are taken for granted. We assume
that users

• are people more than 15 years old.

• understand the English language.

• know how to use a web browser and have some experience with using
computers.

• have access to the Internet.

• use an updated version of a standard web browser (such as Mozilla
Firefox or Internet Explorer).

We assume that the web server

• has an updated version of PHP.

• has an updated version of PostgreSQL.

3.2 General Constraints

The system will not work if

• the server is not running.

• the network is down.

• the server hard drive is full.

13

4 Graphical User Interface

4.1 Overview

The graphical user interface is presented to the user in a web browser. It is a
simple interface, with a header and footer that allows the user to navigate to
the most often used pages. When the user navigates him/herself somewhere,
there is a path of links underneath the header that shows the user links to
other pages higher up in the hierarchy.

4.2 Header

The header is displayed in all views of the system except for the log in page.
Bellow the header is the navigation path, which consists of links to pages
higher up in the hierarchy.
In the header the “Current Courses” link leads to a display of the current
courses. “Find courses” leads to the Find Course view. “Log out” logs the
user out of the system and “Inbox” leads to the private message inbox.

4.3 Footer

The footer is displayed in all views of the system.

4.4 Login screen

References to Requirement Document:
User Functional Requirement 1.8.
When logging in the current courses view is displayed.

14

4.5 List current courses

References to Requirement Document:
User Functional Requirement 1.9.
The names of the courses are links to the course descriptions of those courses.

4.6 Find course

References to Requirement Document:
User Functional Requirement 1.1.
When the search button is pressed, a list of courses matching the search is
displayed.
The names of the courses are links and lead to the course description.

4.7 Student view of course (not registered to course)

References to Requirement Document:
User Functional Requirement 1.2.
“Join Course” allows a student to join a course.
The names of the assignments are links that lead to the assignment descrip-
tion of that particular assignment.

15

4.8 Student view of course (not in Project Group)

References to Requirement Document:
User Functional Requirement 2.9.
“Join Group” allows a student to join a project group.
“Leave Course” sets a student as inactive in the course.
The names of the assignments are links that lead to the assignment descrip-
tion of that particular assignment.

4.9 Student view of course (in project group)

References to Requirement Document:
User Functional Requirements 1.3, 2.1 and 2.10.
“Leave Group” allows a student to leave his/her project group.
“Leave Course” sets a student as inactive in the course.
The names of the assignments are links that lead to the assignment descrip-
tion of that particular assignment.

16

4.10 Student view of assignemnt (not registered to course)

4.11 Join project group

References to Requirement Document:
User Functional Requirement 2.9
The button adds the user to the project group specified in the text field
from the system.

17

4.12 Student submit files

References to Requirement Document:
User Functional Requirement 2.3, 2.4, 2.5, 2.8 and 2.11.
The filename is a link to a previously handed in file. Other handed in files
are also listed here.
The date color indicates if the assignment was handed in on time.
“Browse” allows the user to browse the hardrive to find a file to upload.
“Add another file” makes another file field pop up above the comment field.
The “Submit as project group” checkbox should be checked if the user wants
to hand in the submission as a project group.
“Submit” uploads the files and saves the comment.

4.13 Student view Project Group

References to Requirement Document:
User Functional Requirement 1.7.
“Leave group” removes the user from this group.

18

The assignment name is a link to the assignment page.
The button removes the user specified in the text field from the system.

4.14 Set course as active

References to Requirement Document:
User Functional Requirement 5.3
The button sets the course specified in the text field as active for the user.

4.15 Set course as inactive

References to Requirement Document:
User Functional Requirement 5.3
The button sets the course specified in the text field as inactive for the user.

4.16 Course Leader view of course

“Add assignment” sends the course leader to the add assignment view.
“Add teacher” sends the course leader to the add teacher view.
“Remove teacher” sends the course leader to the remove teacher view.
“View students” shows the course leader a list of all students in the course.
“View project groups” shows the project groups in the course.
“View all submissions” shows the submissions in the course.
“Edit course description” sends the course leader to the add course decrip-
tion view.

19

The names of the assignments are links that lead to the assignment descrip-
tion of that particular assignment.

4.17 Teacher view of a course

“View students” shows the course leader a list of all students in the course.
“View project groups” shows the project groups in the course.
“View all submissions” shows the submissions in the course.
The names of the assignments are links that lead to the assignment descrip-
tion of that particular assignment.

4.18 Course Leader edit course description

References to Requirement Document:
System Functional Requirement 4.2.
“Description” field shows and allows editing of current course description.
The “Edit description”-button saves the description to the database.

20

4.19 Course leader add/edit an assignment

References to Requirement Document:
User Functional Requirement 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9.
The fields are prefilled if any information was previously entered.
“Save Changes” saves the changes.

4.20 Course leader add teacher to a course

References to Requirement Document:
User Functional Requirement 4.1.
“Add teacher” adds the user with the provided username as teacher to the
course.

4.21 Course leader list teacher from a course

References to Requirement Document:
User Functional Requirement 4.1.
The “remove” link removes the teacher on that row from being teacher in
the course.

21

4.22 Teacher/Course leader list students of a course

References to Requirement Document:
User Functional Requirement 3.1.
The names of the students are links to the view “submissions of a student”
page.

4.23 Teacher/Course leader list project groups

References to Requirement Document:
User Functional Requirement 1.7.
The names of the groups are links to the view that project group page.

4.24 Teacher/Course leader list all submissions of a course

22

References to Requirement Document:
User Functional Requirement 3.6.
The assignment names are links to the “grade submission” page.
The writer names are links to the “List all submissions of a (student/project
group)” page.
If the submission is handed in as a project group, there is a cross in the “As
PG” column.
If the submission is already graded, there is a grade in the “grade” column.

4.25 Teacher/Course leader list submissions of a student

References to Requirement Document:
User Functional Requirement 3.3.
The assignment names are links to the “grade submission” page.
If the submission is handed in as a project group, there is a cross in the “As
PG” column.
If the submission is already graded, there is a grade in the “grade” column.

4.26 Teacher/Course leader list submissions of a project group

23

References to Requirement Document:
User Functional Requirement 1.7 and 3.3.
The students names are links to that student’s submissions page.
The assignment names are links to the “grade assignment” page.
If the submission is already graded, there is a grade in the “grade” column.

4.27 Course leader view of assignment

References to Requirement Document:
User Functional Requirement 1.3 and 3.6.
“Edit” is a link to the “Edit course description” page.
The writer names are links to the “List all submissions of a (student/project
group)” page.
If the submission is handed in as a project group, there is a cross in the “As
PG” column.
If the submission is already graded, there is a grade in the “grade” column.

24

4.28 Teacher/Course leader grade a submission

References to Requirement Document:
User Functional Requirement 3.2, 3.4 and 3.5.
The filename is a link to the file.
The Grade text field is unchecked and any sign can be inserted.
The “Submit” button saves the grade and comment.

4.29 View inbox

References to Requirement Document:
User Functional Requirement 2.6 and 4.1.
“Inbox” updates the inbox view.
“Compose message” shows the compose message view.
The subjects of the messages are links to display that message in the read
message view.
The “from” column indicates from what user name the message was sent.
The “recieved” column indicates when the message was sent.
Bold text indicates that the message is unread.

25

4.30 Read message

References to Requirement Document:
User Functional Requirement 1.5.
“Inbox” shows the inbox view.
“Compose message” shows the compose message view.
The Reply and Reply all buttons displays the Compose Message view, with
to and subject fields already filled.

26

4.31 Compose new message

References to Requirement Document:
User Functional Requirement 1.4.
“Inbox” shows the inbox view.
“Compose message” shows the compose message view.
The Send message-button sends the message to the user name(s) specified
in the “To:” text field.

4.32 Administrator view of Remove course

References to Requirement Document:
User Functional Requirement 5.2
The button removes the course specified in the text field.

27

4.33 Administrator view of Remove user

References to Requirement Document:
User Functional Requirement 5.1
The button removes the user specified in the text field from the system.

4.34 Edit user

References to Requirement Document:
User Functional Requirement 5.1
The button sends the user to the Add/Edit user view.

4.35 System Administrator add/edit course

References to Requirement Document:
System Functional Requirement 5.2.
The “Course name:” field contains the name of the course.
The “Course Leader” field contains the username of the course leader of the
course.
The “Add/edit course” button will save the data to the database.

28

4.36 System Administrator add/edit user

References to Requirement Document:
System Functional Requirement 5.1.
The “Name:” field contains the name of the user.
The “Personal identification number:” field contains the pin of the user.
The “E-mail:” field contains the email of the user.
The “Username” field contains the username of the user.
The “Password:” field contains the password of the user.
The “Add/edit course” button will save the data to the database.

4.37 System Administrator view of administer system

References to Requirement Document:
“Add user” sends the system administrator to the add user view.
“Remove user” sends the system administrator to the remove user view.
“Edit user” sends the system administrator to the edit user view.
“Add course” sends the system administrator to the add course view.
“Remove course” sends the system administrator to the remove course view.
“Edit course” sends the system administrator to the edit course view.
“Set course as active” sends the system administrator to the set course as
active view.

29

“Set course as inactive” sends the system administrator to the set course as
inactive view.

4.38 System administrator edit course

References to Requirement Document:
System Functional Requirement 5.2.
“Enter course name:” field contains the course name to be edited.
The “Edit course”-button sends the System Administrator to the edit course
view for the course specified.

30

5 Design Details

5.1 Class Responsibility Collaborator Cards

Page
Generates and outputs website User
Coordinates classes Course
Handles all user input (logins, submissions, etc) ProjectGroup

Assignment
Submission
Message

User
Knows real name Course
Knows user name ProjectGroup
Knows personal identification number
Allows change of all above data
Can confirm username/password combination
Can retrieve active courses
Can retrieve project group(s) participating in

ProjectGroup
Knows course None
Knows name
Knows course
Alows change of above data
Can retreive list of users
Can add user to group
Can remove user from group

Course
Knows description User
Knows name ProjectGroup
Knows course leader Assignment
Allows change of above data
Can retrieve project groups
Can retrieve teachers
Can retrieve participating users
Allows addition of new teacher
Allows removal of teacher
Allows addition of a new participant
Allows removal of a participant

31

Assignment
Knows course None
Knows soft deadline
Knows hard deadline
Knows start date
Knows description
Allows change of all above data
Can retrieve submissions for assignment

Submission
Knows assignment None
Knows creator
Knows project group
Knows location of files
Knows student comment
Knows grade
Knows teacher comment
Allows change of above data
Allows addition of files
Can retrieve all files for submission
Allows setting and retreival of submission ti-
mestamps

Message
Knows sender None
Knows recipients
Knows title
Knows message body
Knows read
Allows change of all above data

32

5.2 Class Diagram

5.3 State Charts

5.4 Interaction Diagrams

33

34

5.5 Detailed Design

5.5.1 class Page

Functions
General Note:
All functions below take into account the priveleges of the logged in user.

• printAssignmentPage(int id)
Generates and shows the assignment page for the specified assignment.
If no id is given, the page for creating a new assignment is shown.

• printSubmissionPage(int id)
Generates and shows the submission page for the specified submission.
If no id is given, the page for making a new submission is shown.

• printCoursePage(int id)
Generates and shows the course page for the specified course. If no id

35

is given, the page for creating a new course is shown.

• printPGPage(int id)
Generates and shows the project group page for the specified project
group.

• printStudentList(int course id) Generates and shows a list of all stu-
dents in the specified course.

• printAssignmentPage(int id)
Generates and shows the assignment page for the specified assignment.

• printInbox()
Generates and shows the inbox.

• printMessage(int id)
Generates and shows the page for the specified private message.

• printCompose(int[] to)
Generates and shows the page for composing a new private message.
Any element in the argument array will be already be filled in as
receivers of the message.

• printLoginPage()
Generates and shows the page with the login form.

• printPGList(int course id)
Generates and shows a list of all Project Groups for the specified
course.

• printSubmissionList(int type, int id)
Generates and shows a list of all submissions. The argument type
specifies what type of list to generate, be it for a student, or for an
entire course. The id argument allows specification of student or course.

• printCreateUserPage()
Generates and shows the page for adding a user to the system.

Variables
This class has no class variables.

5.5.2 class Assignment

Functions

• getId()
Returns id.

36

• getCourse()
Returns course.

• getSoftDeadline()
Returns softDeadline.

• getHardDeadline() Returns hardDeadline.

• getStartDate()
Returns startDate.

• getDescription()
Returns description.

• getFiletypes()
Returns filetypes.

• setCourse(int id)
Sets course.

• setSoftDeadline(long deadline)
Sets softDeadline.

• setHardDeadline(long deadline)
Sets hardDeadline.

• setStartDate(long deadline)
Sets startDate.

• setDescription(string desc)
Sets description.

• setFiletypes(string[] types)
Sets filetypes.

• getSubmissions()
Returns an array of id’s for all submissions for this assignment.

• save()
Saves all data to the database.

Variables

• int id

• int course

• long softDeadline

37

• long hardDeadline

• long startDate

• string description

• string[] filetypes

5.5.3 class User

Functions

• getRealName()
Returns the real name of a user as a String.

• setRealName(String realName)
Sets the real name of a user.

• getUserName()
Returns the user name of a user as a String.

• setUserName(String userName)
Sets the user name of a user.

• getPIDN()
Returns the personal identification number of a user as a String.

• setPIDN(String pIDN)
Sets the personal identification number of a user.

• isPassword(String pw)
Generates and shows the assignment page for the specified assignment.

• setPassword(String pw)
Sets the password of a user.

• getCourses()
Returns an array with the CourseIDs of the courses the user is parti-
cipating in.

• setProjectGroup()
Returns the ProjectGroupID of the project group a user has joined.

• save()
Saves the changes to the database.

Variables

• int id

• String userName, realName, pIDN

38

5.5.4 class Course

Functions

• getCourseId()
Returns the course id.

• getCourseName()
Returns the course name.

• setCourseName(string s)
Set the course name to s.

• getDescription()
Returns the course description.

• setDescription(string s)
Set the course description to s.

• getCourseLeader()
Returns the user id of the course leader.

• setCourseLeader(int i)
Set the course leader to user with id i.

• getTeachers()
Returns an array with user ids of the teachers assigned to the course.

• addTeacher(int i)
Add user with id i to the list of teachers in the course.

• removeTeacher(int i)
Remove the user with id i from the list of teachers in the course.

• getAssignments()
Returns an array with the assignment ids of the course assignments.

• addParticipant(int i)
Add user with user id i to the list of participants in the course.

• removeParticipant(int i)
Remove user with user id i from the list of participants in the course.

• save()
Save to database.

Variables

39

• int id
Course id.

• int array teachers
Array with user id of teachers assigned to course.

• string description
Course description.

• string name
The name of the course.

• int courseLeader
The user id the course leader.

• int array assignments
Array with assignment id of the course assignments.

5.5.5 class ProjectGroup

• getId()
Returns the id as an int.

• getCourse()
Returns the CourseID of as an int.

• setCourse(int CourseID)
Sets the course of a the project group.

• getName()
Returns the name of the project group as a String.

• setName(String name)
Sets the name of the project group.

• getUsers()
Returns the userIDs of the users in the project group.

• addUser(int userID)
Adds a user to the project group.

• removeUser(int userID)
Removes a user from the project group.

Variables

• int id, course

• String name

40

5.5.6 class Message

Functions

• getId()
Returns the id.

• getFrom()
Returns the senders id.

• setFrom(int id)
Sets sender id.

• getTo()
Returns the recipients.

• addTo(int id)
Adds id to list of recipients.

• setTo(mixed ids)
Sets id’s in array to be the recipients. Accepts arrays of id’s or comma
formated string as argument.

• getTitle()
Returns the title of the message.

• setTitle(string name)
Sets the title.

• getHideTo
Returns hideTo.

• setHideTo(boolean b) Sets hideTo.

• getBody()
Returns the body.

• setBody(string message)
Sets message body.

• save()
Saves the message. Equivalent to sending it.

• getRead()
Return read status.

• setRead(bool read)
Sets mesage read status.

41

Variables

• int[] to

• int from, id

• string body, title

• bool read, hideTo

5.5.7 class Submission

Functions

• getId()
Returns the id as an int.

• getAssignment()
Returns the assignment of as an int.

• setAssignment(int assignmentID)
Sets the assignment.

• getCreator()
Returns the creator of the submission as an int.

• setCreator(int userID)
Sets the creator of the submission.

• getProjectGroup()
Returns the project group as an int.

• setProjectGroup(int projectGroup)
Sets the project group.

• getFiles()
Returns the files of the submission as a String[].

• addFile(String file)
Adds a file to the files of the submission.

• getSComment()
Returns the sComment as a String.

• setSComment(String sComment)
Sets the sComment.

• getTComment()
Returns the tComment as a String.

42

• setTComment(String tComment)
Sets the tComment.

• getGrade()
Returns the grade as a String.

• setGrade(String grade)
Sets the grade.

• getTimestamps()
Returns the timestamps as a long[].

• setTimestamps(long[] timestamps)
Sets the timestamps.

• save()
Saves the data to the database.

Variables

• int id, assignment, creator, projectgroup

• String sComment, tComment, grade

• String[] files

• long[] timestamps

5.5.8 Database Design

43

user
column name type references
id int
username varchar(255)
password varchar(40)
pin varchar(20)
email varchar(255)
name varchar(255)
admin int

course
column name type references
id int
name varchar(255)
desc text
course leader int user.id

course participants
column name type references
user int user.id
course int course.id
teacher boolean

assignment
column name type references
id int
course int course.id
description text
hard deadline timestamp
soft deadline timestamp
starttime timstamp

assignment filetypes
column name type references
assignment int assignment.id
filetype varchar(10)

44

submission
column name type references
id int
assignment int assignment.id
user int user.id
project group int project group.id
grade varchar(10)
s comment text
t comment text

file
column name type references
id int
submission int submission.id
filename varchar(255)

project group
column name type references
id int
name varchar(255)
course int course.id

project group members
column name type references
project group int project group.id
user int user.id

message
column name type references
id int
sender int user.id
body text
title text
hideTo boolean

message to
column name type references
message int message.id
to int user.id
read boolean

45

5.6 Package Diagram

SubIt! consists of two packages. The package subIt! represents the system
as a whole. In the package subIt! are the class Page which generates the
pages that is sent to the client webbrowser and the subpackage objects on
which the class Page depends. The subpackage objects contains classes that
represents the different functions of the SubIt! system.

46

6 Functional Test Cases

In all test cases except the Log in to the System, it is assumed that the user
has been validated to the system as the sort of user that can execute the
test.

6.1 Log in to the system

Functionality

Existing user identifies and authenticates himself/herself to the system.

Requirement

This test corresponds to Requirement #5 from the Requirements Document.

Inputs

Valid username and password.

Output and Observable Effects

User specific active courses page is displayed.

Procedure

1. Navigate to the SubIt! log in page.

2. Enter a valid username and password.

3. Press the ”Log in” button.

4. Verify that the user specific active courses page is displayed.

6.2 List active courses

Functionality

Display a list of courses available.

Requirement

This test corresponds to Requirement #6 from the Requirements Document.

Inputs

None.

47

Output and Observable Effects

List of available courses is displayed.

Procedure

1. Select ”Find course” in the system header.

2. Make sure the search textfield is empty.

3. Press the ”Search” button.

4. Verify that a list of available courses is displayed.

6.3 Join a course

Functionality

Mark a valid user as active in an existing course.

Requirement

This test corresponds to Requirement #7 from the Requirements Document.

Inputs

The course name.

Output and Observable Effects

The course to be joined is shown in the list of active courses.

Procedure

1. Select ”Find course” in the system header.

2. Enter the name of an existing course.

3. Press the ”Search” button.

4. Select the course in the list of search results.

5. Select ”Join course” in the course page.

6. Select ”Current courses” in the system header.

7. Verify that the course just joined is listed as an active course.

48

6.4 List courses user is active in

Functionality

List courses that the user is active in.

Requirement

This test corresponds to Requirement #9 from the Requirements Document.

Inputs

None.

Output and Observable Effects

A list of user specific active courses is displayed.

Procedure

1. Select ”Current courses” in the system header.

2. Verify that a list of user specific active courses is displayed.

6.5 Submit an assignment

Functionality

Submit a file to an open assignment (an assignment where the hard deadline
is not passed).

Requirement

This test corresponds to Requirement #13 from the Requirements Docu-
ment.

Inputs

Local path to the file to be submitted.

Output and Observable Effects

File is displayed in the list of submitted files.

49

Procedure

1. Select ”Current courses” in the system header.

2. Select the course associated with the open assignment.

3. Select the open assignment.

4. Enter the local path to the file to be submitted in the text field.

5. Press the ”Submit” button.

6. Verify that the file is listed at the assignment page.

6.6 Create a project group

Functionality

Create a project group

Requirement

This test corresponds to Requirement #17 from the Requirements Docu-
ment.

Inputs

The student types the name of the group and will join that group.

Output and Observable Effects

The group that you have joined and the group members of that particular
group will be displayed.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Student enters the name of the group in the groupname textfield.

4. Press the ”Submit” button.

5. Verify that project group exists.

6.7 Submit assignment as project group

Functionality

Lets a group to submit an assignment.

50

Requirement

This test corresponds to Requirement #18 from the Requirements Docu-
ment.

Inputs

One of more files containing the group assignments.

Output and Observable Effects

Verify that the correct files got submitted.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Press the ”Browse” button.

4. To add more files to the project press ”Add another file...”.

5. Check the ”Submit as project group” checkbox.

6. Press ”Submit” button.

7. Verify that the correct files got submitted.

6.8 Leave a project group

Functionality

Let students leave groups.

Requirement

This test corresponds to Requirement #20 from the Requirements Docu-
ment.

Inputs

None.

Output and Observable Effects

If the student is not in a group they will see a ”Join group” label in the far
right upper corner.

51

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. If the student is in a group in the current course the student will be
able to press ”Leave Project Group”.

4. Verify that the student is not in a project group.

6.9 View all students in a course

Functionality

Enables teachers and course leaders to view what students that are partici-
pating in the course.

Requirement

This test corresponds to Requirement #22 from the Requirements Docu-
ment.

Inputs

None.

Output and Observable Effects

The student gets a list over the current students that are active in the
correspoding course.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Press the ”View students” link.

4. Verify that a list of current students is displayed.

6.10 View a submission in a course

Functionality

Enables the teachers and course leaders to view a specific submission in the
corresponding course.

52

Requirement

This test corresponds to Requirement #23 from the Requirements Docu-
ment.

Inputs

None.

Output and Observable Effects

The program that is associated to the assignment’s file extension is started.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Press the ”View students” link.

4. Select the student of interest.

5. Select the assignment of intereset.

6. Verify that the file is loaded and the corresponding program is loaded.

6.11 View a student’s submissions

Functionality

A teacher or course leader can view a student’s submission.

Requirement

This test corresponds to Requirement #24 from the Requirements Docu-
ment.

Inputs

None.

Output and Observable Effects

A list over the student’s submissions.

53

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Press the ”View students” link.

4. Select the student of interest.

5. Verify that submissions made by the student are displayed.

6.12 List all submissions in a course

Functionality

Enables teachers an course leaders to view all of the submitted submissions.

Requirement

This test corresponds to Requirement #25 from the Requirements Docu-
ment.

Inputs

None.

Output and Observable Effects

A list over the submissions is shown.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Press the ”View all submissions” link.

4. Verify that a list of all submissions made in the course is displayed.

6.13 Set a grade

Functionality

Allows the teachers and course leaders to set a grade for a submission or
course for a specific student.

54

Requirement

This test corresponds to Requirement #26 from the Requirements Docu-
ment.

Inputs

The grade that the student has earned and optional comments on the work.

Output and Observable Effects

The corresponding assignment has a grade after submitted grade.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Press the ”View students” link.

4. Select the student of interest.

5. Select the assignment of interest.

6. Fill in the ”Grade:” textbox the corresponding grade the student have
earned.

7. Optional: The teacher could fill in a comment about the work.

8. Press the ”Submit” button.

9. Verify that the grade is set.

6.14 Add teacher

Functionality

Lets the course leader add a teacher to the course that the course leader
administrates.

Requirement

This test corresponds to Requirement #28 from the Requirements Docu-
ment.

Inputs

The username of the teacher.

55

Output and Observable Effects

A new teacher is added to the teachers squad.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Select ”Add teacher” link.

4. Enter the name of the teacher to be added in the ”New teachers user-
name:” box

5. Press ”Add teacher” button.

6. Verify that the added user is teacher in course.

6.15 Remove teacher

Functionality

Lets the course leader remove an existing teacher from the course that the
course leader administrates.

Requirement

This test corresponds to Requirement #28 from the Requirements Docu-
ment.

Inputs

None.

Output and Observable Effects

A teacher is removed from the teachers squad.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course of interest.

3. Select ”Remove teacher” link.

4. Select ”remove” on the corresponding teacher to remove the teacher.

5. Verify that the user is no longer teacher in course.

56

6.16 Edit course description

Functionality

Edit the description of the course.

Requirement

This test corresponds to Requirement #29 from the Requirements Docu-
ment.

Inputs

New course description.

Output and Observable Effects

The course description is changed.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course from the list of active courses.

3. Select ”Edit course description” from the course page.

4. Enter the new course description.

5. Press the ”Save changes” button.

6. Verify on the course page that the description is changed.

6.17 Create assignment

Functionality

Add an assignment to a course.

Requirement

This test corresponds to Requirement #30 from the Requirements Docu-
ment.

Inputs

Assignment name, description, start date, soft deadline, hard deadline

57

Output and Observable Effects

Assignment is added to the assignment list of the course.

Procedure

1. Select ”Current courses” in the system header.

2. Select the course from the list of active courses.

3. Select ”Add assignment” from the course page.

4. Enter Assignment name and description and select a start date, soft
deadline and hard deadline

5. Press the ”Save changes” button.

6. Verify on the course page that the assignment is added.

6.18 Add user

Functionality

Adds a new user to the system.

Requirement

This test corresponds to Requirement #38 from the Requirements Docu-
ment.

Inputs

Username, password, personal identification number

Output and Observable Effects

The user is added to the system.

Procedure

1. Select ”Add user” from the start page.

2. Enter Username, password, personal identification number

3. Press the ”Save changes” button.

4. Log out from the system.

5. Verify that the user exist by logging in as the new user.

58

6.19 Remove user

Functionality

Removes a user from the system.

Requirement

This test corresponds to Requirement #38 from the Requirements Docu-
ment.

Inputs

Username.

Output and Observable Effects

The user is removed from the sytem.

Procedure

1. Select ”Remove user” from the start page.

2. Enter the username of the user to be removed.

3. Press the ”Remove user” button.

4. Log out from the system.

5. Verify that the user is removed by trying to log in as the user.

6.20 Add course

Functionality

Adds a new course to the sytem.

Requirement

This test corresponds to Requirement #39 from the Requirements Docu-
ment.

Inputs

Course name, course description.

Output and Observable Effects

Course is added to the course list.

59

Procedure

1. Select ”Add course” from the start page.

2. Enter course name and course description.

3. Press the ”Create course” button.

4. Select ”Find course” from the system header.

5. Enter the course name in the search field.

6. Verify that the course is listed.

6.21 Remove course

Functionality

Removes a course from the system.

Requirement

This test corresponds to Requirement #39 from the Requirements Docu-
ment.

Inputs

Course name.

Output and Observable Effects

The course is removed from the system.

Procedure

1. Select ”Remove course” from the start page.

2. Enter course name.

3. Press the ”Remove course” button.

4. Select ”Find course” from the system header.

5. Enter the course name in the search field.

6. Verify that the course is not listed.

6.22 Set course as inactive

Functionality

The course is marked as inactive.

60

Requirement

This test corresponds to Requirement #40 from the Requirements Docu-
ment.

Inputs

Course name.

Output and Observable Effects

Removes the course from the active courses list.

Procedure

1. Select ”Set course as inactive” from the start page.

2. Enter course name.

3. Press the ”Set course as inactive” button.

4. Select ”Find course” from the system header.

5. Enter the course name in the search field.

6. Verify that the course is not listed.

6.23 Set course as active

Functionality

The course is marked as active.

Requirement

This test corresponds to Requirement #40 from the Requirements Docu-
ment.

Inputs

Course name.

Output and Observable Effects

Adds the course to the active courses list.

61

Procedure

1. Select ”Set course as active” from the start page.

2. Enter course name.

3. Press the ”Set course as active” button.

4. Select ”Find course” from the system header.

5. Enter the course name in the search field.

6. Verify that the course is listed.

6.24 Send message

Functionality

User sends a message to other user(s) of the system.

Requirement

This test corresponds to Requirement #42 from the Requirements Docu-
ment.

Inputs

Recipient username(s), message subject and message

Output and Observable Effects

The message is sent to Recipients.

Procedure

1. Select ”Inbox” in the system header.

2. Select ”Compose message” in the message view.

3. Enter recipent(s) username(s), message subject, and message.

4. Press the ”Send message” button.

5. Verify that the confirmation message is shown.

62

