
Gravity

Group 10

Daniel Walz

Jesper Ekhall

Lukas Kalinski

Fredrik Nordh

Alexander Nyberg

1. Introduction

This document contains the design of the gravity game. It's purpose is to guide when

implementing the system. It describes the object oriented design complete with classes,

dependencies, methods and associated requirements.

The intended audience are primarily developers of the project but also other stakeholders such as

project managers, testers and commissioners. The reader of this document is assumed to have

read the requirement document.

This document pertains to version 1.0 of the gravity game.

Related documents are:

• Requirement document

• Implementation plan

The implementation plan is a result of this document.

Glossary

For glossary refer to the requirement document.

Abstract

In section 2 of this document we provide a general overview of the system. There is also a

description of the architecture.

In section 3 there are assumptions and dependencies of operating environment etc.

Section 4 contains a description of the user interface including functionality and appearance.

In section 5 there is a detailed description of the object oriented design.

Section 6 contains test cases for each functional requirement.

2. System Overview

2.1 General description

Gravity is a game consisting of planets with their corresponding gravities and space ships with

the ability to fire at least one weapon. Both space ships and some weapon projectiles will be

affected by gravity. The key idea is to combine classic game shooting with gravity constraints,

forcing the player to think about more factors than just where to shoot.

The design uses the basic Model View Controller (MVC) pattern. The idea of this pattern is to

have the world and it's object in one place (known as Model), the View handles the rendering

and the Controller handles changes to the Model (by means of simulated physics).

The design is prepared for the possible extension of networked multiplayer functionality in the

future. This by means of a client server architecture.

2.2 Overall Architecture Description

The system will consist of six modules. Which we in this (2.2) and the next (2.3) section will

show you in Unified Modeling Language. The Game module is the game core, this is where all

game-related operations, such as affecting the game world using an internal physics package as

cmp Overall Architecture

View

Controller

Game

Audio

Registry

SDLFMOD

«framework»
Util

OpenGL

Data Files

Create world on request

«instantiate»

Read image paths

«access»

«use»

Monitor

«access»

Use for OpenGL init

Read sound paths

«access»

Monitor

«access»

«use»

Register game controls

«use»

World gen. + highscores

«use»

Listen for user input

«use»

Read keyboard map

«access»

«flow»

well as switching between the different game states, will be done. The View and Audio modules

will be used by the game module to trigger visual and auditory feedback on what's happening in

the game world. Further, these modules will use third party tools to realize their purposes, i.e.,

the View module will use the Simple DirectMedia Layer (SDL) library to initialize and control

the visual experience, and the Audio module will use the FMOD API to play sound effects. The

Controller module will be responsible for interpreting user input into game commands, by using

matching functionality in the SDL library. The DataStore module will manage shared data, such

as for example a player's position in the game world, as well as the game world itself. The

DataPersistence module will be used by the DataStore module to write persistent data into files.

2.3 Detailed Architecture

2.3.1 Controller

 2.3.2 Game

pkg Controller - Detailed Architecture

Controller

(from Gravity)

notes
Responsible for providing the
Game module with an easy to use
interface for registering different
game controls, so that they react
on user input.

Registry

(from Gravity)

notes
Responsible for holding,
managing persistence
for and prov iding global
data to other modules.

Control

(from Game)

notes
Contains controls that represent
all actions that a end-user can
take during the execution of the
game application.

«use»

Read keyboard map

«access»

 2.3.3 Game Engine

pkg Game - Detailed Architecture

State

notes
Contains all the game states
that the game may found
itself in. For example: Main
Menu or Single Player Game
Session.

«singleton»
Game

notes
Runs the main loop and forwards control
to other game states by calling their
tick() function on synchronized time
intervals. If a game state turns invalid, it
will be removed and a fallback to the
previous state will be done.

«framework»
Util

(from Grav ity)

notes
Contains common utilities, such as
coordinate representations etc.

«use»

Manages game states

«manage»

 2.3.4 Game State

pkg Game Engine - Detailed Architecture

Engine

(from Game)

notes
Contains handlers (strategies) for
the world, as well as the engine that
is responsible for maintaining the
world. Examples of strategies are:
Collision Strategy and Gravity
Strategy.

Player

(from Game)

notes
Contains player-related classes,
such as the player itself.

World

(from Game)

notes
Contains the class structure
representing the game world and
its objects, such as ships and
planets, for example.

«manage»

«manage»

pkg Game State - Detailed Architecture

State

(from Game)

notes
Contains all the game states
that the game may found
itself in. For example: Main
Menu or Single Player Game
Session.

WorldLife

(from Engine)

notes
Contains world strategies for management of the
world's life, i.e., inserting and removing world objects
according to the rules defined by the strategies.

WorldPhysics

(from Engine)

notes
Contains managers of the physics in the world.

World

(from Game)

notes
Contains the class structure representing the
game world and its objects, such as ships
and planets, for example.

Menu

(from Game)

notes
Contains a representation of a menu and its
items.

Controller

(from Gravity)

notes
Responsible for providing the
Game module with an easy to
use interface for registering
different game controls, so that
they react on user input.

Engine

(from Game)

notes
Contains handlers (strategies) for the world,
as well as the engine that is responsible for
maintaining the world. Examples of strategies
are: Collision Strategy and Gravity Strategy.

Registry

(from Gravity)

notes
Responsible for holding,
managing persistence for and
providing global data to other
modules.

Control

(from Game)

notes
Contains controls that represent all actions
that a end-user can take during the
execution of the game application.

«instantiate»

«use»

Activate game controls

«use»

«manage»

Modify world with

«instantiate»

Modify world with

«instantiate»

«use»

«manage»

2.3.5 Player

2.3.6 Audio

pkg Player - Detailed Architecture

Player

(from Game)

notes
Contains player-related classes,
such as the player itself.

World

(from Game)

notes
Contains the class structure
representing the game world and
its objects, such as ships and
planets, for example.

Event

(from Game)

notes
Contains game event manager,
game event listener interface and
game event interface, this way
providing a way to detect any
occuring game event from
anywhere.

WorldEvent

(from Engine)

notes
Contains event representation
classes as well as a world event
manager and a related interface
for world event listeners.

Listens for world events

«use»

Players become listeners

«use»

Insert ships

«manipulate»

pkg Audio - Detailed Architecture

SoundManager

notes
Responsible for monitoring the Game
module and play ing sounds according
to its state.

Game

(from Gravity)

notes
Contains the whole game logic.
Responsible for handling all different game
states, such as menus, game play sessions,
etc, as well as transitions between them.
Further, the logic for each game state is
also found in here, for example, the game
world itself, with ships, etc.

Registry

(from Grav ity)

notes
Responsible for holding, managing
persistence for and prov iding global
data to other modules.

Infrastructure::FMOD

Read sound paths

«access»

Monitors

«access»

«use»

 2.3.7 View

3. Design considerations

3.1 Assumptions and dependencies

This system requires the software components Microsoft Windows XP and OpenGL. Hardware

components needed are a Intel compatible PC with 1GB of RAM, 1GHz and a graphics card

with hardware accelerated OpenGL.

The end users should be oriented in the windows operating systems.

pkg View - Detailed Architecture

OpenGLRenderer

notes
Responsible for rendering
graphics by using OpenGL.

Game

(from Gravity)

notes
Contains the whole game logic.
Responsible for handling all different game
states, such as menus, game play sessions,
etc, as well as transitions between them.
Further, the logic for each game state is
also found in here, for example, the game
world itself, with ships, etc.

Registry

(from Grav ity)

notes
Responsible for holding,
managing persistence for
and providing global data to
other modules.

Infrastructure::OpenGL

Infrastructure::SDL

«use»

«use»Read image paths

«access»

Monitors

«access»

3.2 General Constraints

A general constraint in real time graphical applications is performance, that's why we chose

hardware accelerated OpenGL for graphics rendering.

Since the projects duration is severely limited we have tried to keep functionality simple and

concise so as to be able to keep the schedule and have the project finished on time. Due to this

constraint we have also tried to make the project easy to extend in the future.

Since all of the project members have little or no experience with larger software projects, this is

also a factor in trying to keep the design small.

4. Graphical user interface

4.1 User interface overview

The main functionality for the user is divided in two parts. When starting the game the first

part shown is the main menu. From the main menu the player can choose to see help, start

single or multi player game, view high score, select player controls settings menu or to quit

the game. When starting the game first a map choice menu appears. Also in multi player

mode after selecting the map to play at, an option to choose how many lives each player

should have will appear.

From the controls settings menu there are options to choose which function should be mapped

to a key on the keyboard.

The in game view shows the players view of the game world, fuel, remaining lives, number of

missiles etc. In multi player mode, the screen is split with one view for each player.

From the pause menu, there are only two choices: resume game and end game.

From the map choice menu you select which map to play from.

The high score screen shows a list of the players which have achieved the highest score in

single player mode.

The help screen shows help for the game which explains the game play and the available

options.

4.2 The GUI elements and functional requirements associated with them

4.2.1 Main Menu

Functional requirements

• Single Player or Two Player Choice

• Exiting The Game

custom Menus

Main Menu

Map Choice Menu High Score Menu Game Controls Menu

Game Controls Config Menu

Pause Menu

Help Menu

Main Menu

Map Choice Menu High Score Menu Game Controls Menu Help Menu

Game Controls Config Menu

Pause Menu

Two Players Game Single Player Game

game over

«flow»

pause game

«flow»

game over
«flow»

pause game

«flow»

exit to main menu

«navigate»

«navigate»
start game

«flow»

start game

«flow»

«navigate»«navigate»«nav igate»«navigate»

4.2.2 Pause Menu

4.2.3 High Score Menu

Functional requirements

• Single Player High Score List

ui Main Menu

Main Menu

Single Player

Two Players

Show Highscores

Game Controls

Quit

Map Choice Menu

High Score MenuGame Controls Menu

Help

Help Menu

Map Choice Menu

High Score MenuGame Controls MenuHelp Menu

«navigate»

«navigate» «navigate»

«navigate»

«navigate»

ui Pause Menu

Pause Menu

Resume Game

Exit to Main Menu

Main Menu
Game Session

«navigate»

continue

«flow»

4.2.4 Help Menu

Functional requirements

• Quick Start Help

4.2.5 Map Choice Menu

Functional requirements

• Map Choice

ui High Score Menu

High Score Menu

High Score List

Main Menu

Main Menu

Main Menu

«navigate»

ui Help Menu

Help Menu

Help Text

Main Menu

Main Menu

«navigate»

4.2.6 Controller Setup

Functional requirements

• Controls Configuration

ui Map Choice Menu

Map Choice Menu

Game Start Instructions

Map #1

Map #2

Map #3

Main Menu

Main Menu

Main Menu
«navigate»

ui Game Controls Menu

Game Controls Menu

Configure Player 1

Current Controls Configuration

Main Menu

Main Menu

Main Menu

Game Controls Config Menu

Game Controls Config Menu

Configure Player 2

«navigate»

«navigate»

«navigate»

4.2.7 In-Game Single Player Screen

Functional requirements

• Fuel Restriction

• Planets

• Asteroids

• Items

• World Boundary Wrapping

• Players World View

• Game Play Info

• Single/Multi Player Scoring

• Ship Lives

ui Game Controls Config Menu

Game Controls Config Menu

Configuration Instructions

Game Controls
Config Menu Actions

Game Controls Menu

Where "X" is:
Turn Left: Defines the game control to use for turning the ship left.
Turn Right: Defines the game control to use for turning the ship right.
Thrust: Defines the game control to use to thrust the ship.
Fire Missile: Defines the game control to use to fire a missile.
Fire Laser: Defines the game control to use to fire a laser.

«navigate»
{all controls
are set}

4.2.8 In-Game Multi Player Screen

Functional requirements

• Planets

• Asteroids

• Items

• World boundary wrapping

• Players world view

• Game play info

• Single/multi player scoring

• Ship lives

4.3 Names of controls, methods/procedures and triggers for each screen

4.3.1 Main Menu

Triggered by:

a. Starting the game application;

b. A game session's ending (after viewing the “High Score” screen);

c. Return from any of the sub-menus;

Controls

• Single Player: Triggers a game state transition to the “map choice” menu.

• Multi Player: Triggers a game state transition to the “map choice” menu.

• High Score: Triggers a game state transition to the “high score” menu.

• Game Controls: Triggers a game state transition to the “game controls” menu.

• Quit Game: Triggers a game application exit/end.

4.3.2 Pause Menu

Triggered by: Invoking the “Pause” control by pressing the appropriate key during a game

session.

Controls

• Resume Game: The game session continues.

• End Game: The game session ends.

4.3.3 High Score Menu

Triggered by:

a. Invoking the “High Score” control in the main menu;

b. A game session's ending;

Controls

• Continue:

a. If this menu is triggered from the main menu: Triggers a game state transition to the

“main” menu;

b. If this menu is triggered as a result of a finished game session: Triggers a game state

transition to the “main” menu;

4.3.4 Help Menu

Triggered by:

a. Invoking the “Help” control in the “Main” menu;

b. Invoking the “Help” control by pressing the appropriate key during a game session;

Controls

• Return: Returns to the game state from which it was triggered.

4.3.5 Map Choice

Triggered by:

a. Invoking the “Single Player” control in the “Main” menu;

b. Invoking the “Multi Player” control in the “Main” menu;

Fields

• Map: Defines the map that the game session is to be played on.

Controls

• Start: Initiates a new game session and performs a game state transition to that session.

4.3.6 Game Controls Menu

Triggered by: Invoking the “Game Controls” control in the “Main” menu.

Fields

• Turn Left: Defines the game control to use for turning the ship left.

• Turn Right: Defines the game control to use for turning the ship right.

• Thrust: Defines the game control to use to thrust the ship.

• Fire Missile: Defines the game control to use to fire a missile.

• Fire Laser: Defines the game control to use to fire a laser.

Controls

• Save: Saves the set game controls and performs a game state transition to the “Main”

menu.

• Cancel: Cancels any changes made to the game controls and performs a game state

transition to the “Main” menu.

4.3.7 Single Player Game Screen

Triggered by: Invoking the “Start Game” control in the “Map Choice” menu.

Controls

• Pause: Triggers a game state transition to the “Pause” menu.

4.3.8 Multi Player Game Screen

Triggered by: Selecting start game from the multi player game rule choice screen.

Controls

• Pause: Triggers a game state transition to the “Pause” menu.

5. Design Details

5.1 Class Responsibility Collaborator (CRC) Cards

5.1.1 Audio

Responsible for playing sounds for the game. Does so by monitoring the Game module.

Audio::SoundManager

Type: public Class

 Implements: GameEventListener, Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Audio

Details: Created on 08-03-10 13:59:41. Modified on 08-03-10 14:00:30. Author:

Lukas Kalinski

Responsible for monitoring the Game module and playing sounds according to its state.

Connections

� Access link to class Game<Game>

� Dependency link to component FMOD<Infrastructure>

� Realization link to interface GameEventListener<Event>

� Realization link to interface Tickable<Util>

5.1.2 Controller

Responsible for providing the Game module with an easy to use interface for registering

different game controls, so that they react on user input.

Controller::GameControlManager

Type: package Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Controller

Details: Created on 08-03-09 18:08:29. Modified on 08-03-09 18:29:27. Author:

Lukas Kalinski

Responsible for managing a control's activation/deactivation according to changes registered by

the input listener(s).

Connections

� Aggregation link to class InputManager

� Aggregation link from class GameControl <Control>

� Manipulate link from class InputListener

� Instantiate link from class InputManager

Controller::InputListener

Type: package abstract Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Controller

Details: Created on 08-03-08 17:03:52. Modified on 08-03-09 18:29:33. Author:

Lukas Kalinski

Abstract input listener.

Connections

� Aggregation link to class InputManager

� Manipulate link to class GameControlManager

� Generalization link from class KeyboardListener

Controller::InputManager

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Controller

Details: Created on 08-01-03 23:04:27. Modified on 08-03-08 23:24:38. Author:

Lukas K

Responsible for detecting what game controls are being activated or deactivated, and calling the

corresponding function on the contained game control objects.

Connections

� Aggregation link from class InputListener

� Aggregation link from class GameControlManager

� Use link from class SinglePlayerPlayState <State>

� Instantiate link from class SinglePlayerPlayState <State>. Creates one for ordinary

controls (i.e., playing the game) and one when game is over and the player is

requested to "press <key> to continue".

� Instantiate link from class TwoPlayersPlayState <State>. Creates one for ordinary

controls (i.e., playing the game) and one when game is over and the player is

requested to "press <key> to continue".

� Use link from class TwoPlayersPlayState <State>

� Instantiate link to class GameControlManager

� Use link from class MenuState <State>

� Instantiate link from class MenuState <State>

Controller::KeyboardListener

Type: public Class

 Extends: InputListener.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Controller

Details: Created on 08-03-08 21:09:59. Modified on 08-03-09 18:00:40. Author:

Lukas Kalinski

Responsible for monitoring a defined set of keyboard keys and call

InputListener::switchOn/switchOff functions when a key's status changes (pressed/unpressed).

Connections

� Use link to artifact SDL

� Access link to class ConfigRegistry<Registry>

� Use link from class ConfigRegistry <Registry>

� Generalization link to class InputListener

5.1.3 Game

Contains the whole game logic. Responsible for handling all different game states, such as

menus, game play sessions, etc, as well as transitions between them. Further, the logic for each

game state is also found in here, for example, the game world itself, with ships, etc.

Game::Game

Type: public «singleton» Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Game

Details: Created on 08-01-04 07:44:45. Modified on 08-03-03 16:28:16. Author:

Lukas K

Runs the main loop and forwards control to other game states by calling their tick() function on

synchronized time intervals. If a game state turns invalid, it will be removed and a fallback to the

previous state will be done.

Connections

� Aggregation link from class GameState <State>

� Aggregation link from class GameState <State>

� Access link from class OpenGLRenderer <View>

� Access link from class SoundManager <Audio>

� Use link from class SinglePlayerPlayState <State>

� Use link from class LeaveStateAction <Menu>

� Call link from class PauseGameControl <Control>

� Call link from class EnterStateAction <Menu>

� Call link to class GameState<State>

� Instantiate link to class MainMenuState<State>

5.1.4 Control

Control::GameControl

Type: public abstract Class {root}

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-29 14:20:20. Modified on 08-03-09 14:58:27. Author:

Lukas Kalinski

Abstract game control class, whose leaf nodes represent a specific game control, used to

manipulate the game state. Examples of possible controls are: "pause game", "steer ship left",

etc.

Connections

� Aggregation link to class GameControlManager<Controller>

� Dependency link to requirement All child controls must call their parent's

activate/deactivate functions if they receive the corresponding call themselves.

� Generalization link from class ConfigKeyboardMapControl

� Generalization link from class FinishStateControl

� Generalization link from class MenuControl

� Generalization link from class GamePlayControl

Control::MenuControl

Type: public abstract Class

 Extends: GameControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-03-01 19:53:53. Modified on 08-03-07 16:41:22. Author:

Lukas Kalinski

Controls used in a menu.

Connections

� Aggregation link from class Menu <Menu>

� Generalization link from class PressMenuButtonControl

� Generalization link from class NextMenuButtonControl

� Generalization link from class PrevMenuButtonControl

� Generalization link to class GameControl

Control::PrevMenuButtonControl

Type: public Class {leaf}

 Extends: MenuControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-03-01 20:03:14. Modified on 08-03-08 14:38:53. Author:

Lukas Kalinski

Responsible for setting a menu's button backward iteration on when activated, and off when

deactivated.

Connections

� Manage link to class Menu<Menu>

� Instantiate link from class MenuState <State>

� Generalization link to class MenuControl

Control::NextMenuButtonControl

Type: public Class {leaf}

 Extends: MenuControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-03-01 20:04:07. Modified on 08-03-08 14:38:45. Author:

Lukas Kalinski

Responsible for setting a menu's button forward iteration on when activated, and off when

deactivated.

Connections

� Manage link to class Menu<Menu>

� Instantiate link from class MenuState <State>

� Generalization link to class MenuControl

Control::PressMenuButtonControl

Type: public Class {leaf}

 Extends: MenuControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-03-01 20:04:47. Modified on 08-03-08 14:38:29. Author:

Lukas Kalinski

Responsible for pressing the menu's currently selected button.

Connections

� Manage link to class Menu<Menu>

� Instantiate link from class MenuState <State>

� Generalization link to class MenuControl

Control::GamePlayControl

Type: public abstract Class

 Extends: GameControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-29 16:59:08. Modified on 08-03-08 12:27:47. Author:

Lukas Kalinski

Abstract class for controls that manipulate the game play state (e.g., ship steering).

Connections

� Generalization link to class GameControl

� Generalization link from class PlayerControl

� Generalization link from class PauseGameControl

Control::PauseGameControl

Type: public Class {leaf}

 Extends: GamePlayControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-11 14:35:51. Modified on 08-03-03 16:28:18. Author:

Lukas Kalinski

Pause a game session.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Call link to class Game<Game>

� Instantiate link to class PauseMenuState<State>

� Generalization link to class GamePlayControl

Control::PlayerControl

Type: public abstract Class

 Extends: GamePlayControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-11 15:14:36. Modified on 08-03-08 15:19:28. Author:

Lukas Kalinski

Abstract class for controls that affect a player.

Connections

� Aggregation link from class Player <Player>

� Generalization link from class ShipMissileFireControl

� Generalization link from class ShipLaserFireControl

� Generalization link from class ShipThrottleControl

� Generalization link from class ShipRightControl

� Generalization link from class ShipLeftControl

� Generalization link to class GamePlayControl

Control::ShipThrottleControl

Type: public Class {leaf}

 Extends: PlayerControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-11 15:16:13. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

Throttle a ship.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>. Create one for each player.

� Manipulate link to class Ship<World>

� Access link to class Player<Player>

� Generalization link to class PlayerControl

Control::ShipLeftControl

Type: public Class {leaf}

 Extends: PlayerControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-11 15:15:58. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

Turn a ship left.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>. Create one for each player.

� Manipulate link to class Ship<World>

� Access link to class Player<Player>

� Generalization link to class PlayerControl

Control::ShipRightControl

Type: public Class {leaf}

 Extends: PlayerControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-11 15:16:05. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

Turn a ship right.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>. Create one for each player.

� Manipulate link to class Ship<World>

� Access link to class Player<Player>

� Generalization link to class PlayerControl

Control::ShipLaserFireControl

Type: public Class {leaf}

 Extends: PlayerControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-11 15:16:21. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

Fire a ship's laser gun.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>. Create one for each player.

� Manipulate link to class Ship<World>

� Access link to class Player<Player>

� Generalization link to class PlayerControl

Control::ShipMissileFireControl

Type: public Class {leaf}

 Extends: PlayerControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-02-27 00:34:56. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

Fire a ship's missile launcher.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>. Create one for each player.

� Manipulate link to class Ship<World>

� Access link to class Player<Player>

� Generalization link to class PlayerControl

Control::FinishStateControl

Type: public Class {leaf}

 Extends: GameControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-03-08 14:27:12. Modified on 08-03-08 14:35:44. Author:

Lukas Kalinski

Responsible for finishing the contained state when activated.

Connections

� Aggregation link from class GameState <State>

� Call link to class GameState<State>

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Generalization link to class GameControl

Control::ConfigKeyboardMapControl

Type: public Class {leaf}

 Extends: GameControl.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Control

Details: Created on 08-03-08 15:17:03. Modified on 08-03-08 15:21:41. Author:

Lukas Kalinski

Responsible for reconfiguring the mapping between a keyboard key and a game control.

Connections

� Generalization link to class GameControl

5.1.5 Engine

Contains manipulators and managers of the game world. All game events (such as a collision in

the world) will be triggered from here.

Engine::Engine

Type: public Class

 Implements: Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Engine

Details: Created on 08-02-10 23:01:25. Modified on 08-03-05 17:30:59. Author:

Lukas Kalinski

Responsible for maintaining the players and the game world they play within.

Connections

� Aggregation link from class World <World>

� Association link from class PlayState <State>

� Association link to class Player<Player>

� Call link from class SinglePlayerPlayState <State>

� Manage link from class SinglePlayerPlayState <State>

� Instantiate link from class SinglePlayerPlayState <State>

� Call link from class TwoPlayersPlayState <State>

� Manage link from class TwoPlayersPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Manage link to class World<World>

� Realization link to interface Tickable<Util>

5.1.6 WorldEvent

Contains event representation classes as well as a world event manager and a related interface for

world event listeners.

WorldEvent::CollisionEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-05 00:15:31. Modified on 08-03-10 13:08:13. Author:

Lukas Kalinski

Represents an event of a collision between two objects in the game world and provides these

objects. This event should be cascaded ONCE for each collision (i.e., we do not differentiate the

objects participating in the collision here). Further, a collision event is expected to be cascaded

regardless of whether one or both of the colliders were destroyed.

Connections

� Aggregation link from class WorldObject <World>

� Aggregation link from class WorldObject <World>

� Send link from class CollisionStrategy <WorldPhysics>

� Generalization link to class WorldEvent

WorldEvent::DamageEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-05 16:01:33. Modified on 08-03-10 13:08:02. Author:

Lukas Kalinski

Represents a damage event and provides the destroyable object that was damaged (which isn't

the same as being destroyed).

Connections

� Aggregation link from class DestroyableObject <World>

� Send link from class CollisionStrategy <WorldPhysics>

� Generalization link to class WorldEvent

WorldEvent::DestructionEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-05 16:01:41. Modified on 08-03-10 13:08:06. Author:

Lukas Kalinski

Represents a destruction event and provides the destroyable object that was destroyed as well as

the world object that caused its destruction (by, for example, colliding with it). A destruction

event must not be treated as a RemovalOrderEvent, and vice versa, as a destruction doesn't

necessarily mean that the object will be removed before next tick.

Connections

� Aggregation link from class DestroyableObject <World>

� Aggregation link from class WorldObject <World>

� Send link from class CollisionStrategy <WorldPhysics>

� Generalization link to class WorldEvent

WorldEvent::InsertionEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-05 14:56:11. Modified on 08-03-10 13:07:54. Author:

Lukas Kalinski

Represents the event of a world object being inserted into the game world (i.e., not queued for

insertion!).

Connections

� Aggregation link from class WorldObject <World>

� Generalization link to class WorldEvent

WorldEvent::ItemPickupEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-06 09:57:03. Modified on 08-03-10 13:08:17. Author:

Lukas Kalinski

Represents the event of a ship picking up an item, and provides both the ship and the picked up

item.

Connections

� Aggregation link from class Ship <World>

� Aggregation link from class Item <World>

� Send link from class CollisionStrategy <WorldPhysics>

� Generalization link to class WorldEvent

WorldEvent::ProjectileFireEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-05 12:32:10. Modified on 08-03-10 13:08:10. Author:

Lukas Kalinski

Represents the event of firing a projectile and provides the projectile that was fired.

Connections

� Aggregation link from class Projectile <World>

� Instantiate link from class Ship <World>

� Generalization link to class WorldEvent

WorldEvent::RemovalOrderEvent

Type: public «Message» Message

 Extends: WorldEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-05 11:53:50. Modified on 08-03-10 13:07:58. Author:

Lukas Kalinski

Represents the event of the world being ordered to remove a world object and provides that

object. The removal order will be realized at the end of the world's current tick call. This event

should be listened for by all classes that are keeping pointers to world objects, so that they know

when to get rid of them.

Connections

� Aggregation link from class WorldObject <World>

� Generalization link to class WorldEvent

WorldEvent::WorldEvent

Type: public «Message» Message

 Extends: GameEvent.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldEvent

Details: Created on 08-03-10 13:07:24. Modified on 08-03-10 13:07:36. Author:

Lukas Kalinski

Connections

� Generalization link to class GameEvent<Event>

� Generalization link from class ItemPickupEvent

� Generalization link from class DestructionEvent

� Generalization link from class DamageEvent

� Generalization link from class InsertionEvent

� Generalization link from class ProjectileFireEvent

� Generalization link from class RemovalOrderEvent

� Generalization link from class CollisionEvent

5.1.7 WorldLife

Contains world strategies for management of the world's life, i.e., inserting and removing world

objects according to the rules defined by the strategies.

WorldLife::AsteroidStrategy

Type: public Class

 Implements: WorldStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldLife

Details: Created on 08-02-28 15:30:12. Modified on 08-03-05 14:55:21. Author:

Lukas Kalinski

Responsible for providing the world with asteroids, based on time-based constraints.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Access link to class World<World>. Reads the world's self-defined timestamp in

order to calculate when an insertion should be made.

� Manage link to class World<World>

� Realization link to interface WorldStrategy<World>

WorldLife::ExpirationStrategy

Type: public Class

 Implements: GameEventListener, WorldStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldLife

Details: Created on 08-03-05 11:29:59. Modified on 08-03-05 11:31:37. Author:

Lukas Kalinski

Responsible for deciding what world objects should expire and when they should do so, resulting

in being removed from the world. Examples are: projectiles, which shouldn't be in the world too

long.

Connections

� Aggregation link from class GameEventManager <Event>

� Aggregation link from class MissileItem <World>

� Aggregation link from class FuelItem <World>

� Aggregation link from class MissileProjectile <World>

� Aggregation link from class LaserProjectile <World>

� Access link to class World<World>. Reads the world's self-defined timestamp in

order to calculate expirations.

� Use link to class World<World>. When an object expires, its removal is queued in

the world.

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Realization link to interface WorldStrategy<World>

� Realization link to interface GameEventListener<Event>

WorldLife::ItemStrategy

Type: public Class

 Implements: WorldStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldLife

Details: Created on 08-02-28 15:30:27. Modified on 08-03-05 14:07:46. Author:

Lukas Kalinski

Responsible for providing the world with items, based on time-based constraints.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Manage link to class World<World>. Items may safely be inserted into the world, as

they don't make a spawn point unavailable, as well as they can appear on a spawn

point that is unavailable.

� Access link to class World<World>. Reads the world's self-defined timestamp in

order to calculate when an insertion should be made.

� Realization link to interface WorldStrategy<World>

5.1.8 WorldPhysics

Contains managers of the world physics.

WorldPhysics::BoundaryStrategy

Type: public abstract Class

 Implements: WorldStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldPhysics

Details: Created on 08-02-16 15:42:00. Modified on 08-03-05 17:21:38. Author:

Lukas Kalinski

Responsible for making sure that each and every world object is within the world boundaries

defined in this object, and if it's not, then it is repositioned according to the reposition()

implementation in the concrete class.

Connections

� Aggregation link to class World<World>

� Access link to class WorldObject<World>

� Manage link to class WorldObject<World>. Repositions world object if found

beyond world boundaries.

� Generalization link from class RectangularBoundaryStrategy

� Realization link to interface WorldStrategy<World>

WorldPhysics::CollisionStrategy

Type: public Class

 Implements: WorldStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldPhysics

Details: Created on 08-02-11 00:08:58. Modified on 08-03-05 20:48:55. Author:

Lukas Kalinski

Responsible for detecting and handling collisions between objects in the game world, provided a

game world instance.

Connections

� Manage link to class FuelItem<World>. When picked up.

� Use link to class World<World>. On collisions leading to destruction, the concerned

object(s) are queued for removal in the world.

� Send link to class CollisionEvent<WorldEvent>

� Send link to class DamageEvent<WorldEvent>

� Send link to class DestructionEvent<WorldEvent>

� Manage link to class DestroyableObject<World>

� Manage link to class LaserProjectile<World>

� Manage link to class Asteroid<World>

� Manage link to class Ship<World>

� Instantiate link from class SinglePlayerPlayState <State>

� Dependency link to class MovableObject<World>

� Dependency link to class WorldObject<World>

� Manage link to class SpawnPoint<World>. Toggles on availability on all spawn

points before processing them.

� Dependency link to class Item<World>

� Dependency link to class Planet<World>

� Send link to class ItemPickupEvent<WorldEvent>

� Instantiate link from class TwoPlayersPlayState <State>

� Dependency link to class Projectile<World>

� Realization link to interface WorldStrategy<World>

WorldPhysics::GravityStrategy

Type: public Class

 Implements: WorldStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldPhysics

Details: Created on 08-02-11 00:12:08. Modified on 08-03-03 16:28:16. Author:

Lukas Kalinski

Responsible for calculating and applying gravity affections for each gravity-affectable game

world object.

Connections

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Dependency link to class WorldObject<World>

� Manage link to class MovableObject<World>

� Access link to class Planet<World>

� Realization link to interface WorldStrategy<World>

WorldPhysics::RectangularBoundaryStrategy

Type: public Class

 Extends: BoundaryStrategy.

Status: Proposed. Version 1.0. Phase 1.0.

Package: WorldPhysics

Details: Created on 08-02-28 17:09:30. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

Represents the world boundaries, i.e., the area that world objects are allowed to appear on. Here,

the world boundaries have a rectangular shape.

Connections

� Aggregation link from class Coord2d <Util>

� Aggregation link from class Coord2d <Util>

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Generalization link to class BoundaryStrategy

5.1.9 Event

Event::GameEvent

Type: public «Message» Message

Status: Proposed. Version 1.0. Phase 1.0.

Package: Event

Details: Created on 08-03-05 11:59:43. Modified on 08-03-09 23:02:23. Author:

Lukas Kalinski

Abstract world event class, bringing all events together under a common type.

Connections

� Use link from class GameEventManager

� Generalization link from class WorldEvent <WorldEvent>

Event::GameEventManager

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Event

Details: Created on 08-03-05 00:14:23. Modified on 08-03-09 23:02:30. Author:

Lukas Kalinski

Responsible for cascading every event that is received to all registered observers (for example,

the view and audio module).

Connections

� Aggregation link from interface GameEventListener

� Aggregation link to class ExpirationStrategy<WorldLife>

� Aggregation link to class GameState<State>

� Aggregation link to class Ship<World>

� Send link to interface GameEventListener

� Use link to class GameEvent

� Instantiate link from class GameState <State>

5.1.10 Menu

Menu::EnterStateAction

Type: public Class

 Implements: MenuAction.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Menu

Details: Created on 08-02-08 12:22:37. Modified on 08-03-03 16:28:15. Author:

sfish

Responsible for entering a new state from the current one.

Connections

� Instantiate link from class ControlsMenuState <State>

� Instantiate link from class MapChoiceMenuState <State>. Instantiates one for each

available map.

� Instantiate link from class MainMenuState <State>

� Instantiate link to class GameState<State>

� Call link to class Game<Game>

� Generalization link from class EnterPlayingStateAction <State>

� Realization link to interface MenuAction

Menu::LeaveStateAction

Type: public Class

 Implements: MenuAction.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Menu

Details: Created on 08-03-02 18:54:46. Modified on 08-03-03 16:44:27. Author:

Lukas Kalinski

Responsible for leaving the current state to the previous one, or if none is available, to quit the

game.

Connections

� Instantiate link from class HelpMenuState <State>

� Instantiate link from class ControlsMenuState <State>

� Instantiate link from class HighScoreMenuState <State>. The "back" button action.

� Instantiate link from class MapChoiceMenuState <State>. For the "back" button.

� Instantiate link from class PauseMenuState <State>

� Instantiate link from class MainMenuState <State>

� Use link to class Game<Game>

� Call link to class GameState<State>

� Generalization link from class LeavePauseMenuStateAction <State>

� Realization link to interface MenuAction

Menu::Menu

Type: public Class

 Implements: Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Menu

Details: Created on 08-02-08 12:19:32. Modified on 08-03-09 14:55:50. Author:

sfish

Responsible for holding a set of buttons and providing functionality to "press" them as well as

navigate in the button list.

Connections

� Aggregation link to class MenuState<State>

� Aggregation link to class MenuControl<Control>

� Aggregation link from class MenuButton

� Aggregation link from class MenuButton

� Instantiate link from class HighScoreMenuState <State>

� Instantiate link from class MainMenuState <State>

� Maintain link from class MenuState <State>

� Instantiate link from class MapChoiceMenuState <State>

� Manage link from class PressMenuButtonControl <Control>

� Instantiate link from class ControlsMenuState <State>

� Instantiate link from class ControlsConfigMenuState <State>

� Manage link from class ControlsConfigMenuState <State>

� Instantiate link from class HelpMenuState <State>

� Manage link from class PrevMenuButtonControl <Control>

� Manage link from class NextMenuButtonControl <Control>

� Instantiate link from class PauseMenuState <State>

� Realization link to interface Tickable<Util>

Menu::MenuButton

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Menu

Details: Created on 08-03-02 18:55:42. Modified on 08-03-09 01:09:47. Author:

Lukas Kalinski

Responsible for holding one or more actions to take when pressed.

Connections

� Aggregation link to class Menu

� Aggregation link to class Menu

� Aggregation link from interface MenuAction

� Instantiate link from class HelpMenuState <State>. The "back" button.

� Instantiate link from class ControlsMenuState <State>. One for player 1 config, one

for player 2 config and one for "back to main menu".

� Instantiate link from class HighScoreMenuState <State>. The "back" button.

� Instantiate link from class MapChoiceMenuState <State>. Instantiates one for each

available map plus one for the "back" action.

� Instantiate link from class PauseMenuState <State>

� Instantiate link from class MainMenuState <State>

5.1.11 Player

Player::Player

Type: public Class

 Implements: GameEventListener.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Player

Details: Created on 08-02-11 15:48:29. Modified on 08-03-05 22:38:24. Author:

Lukas Kalinski

Responsible for maintaining generic statistics about a player's activity in the game world, as well

as for managing the player's ships.

Connections

� Aggregation link from class Ship <World>

� Aggregation link to class PlayerControl<Control>

� Association link to class World<World>. The world is fetched from engine during

initialization.

� Association link to class Ship<World>

� Association link from class Engine <Engine>

� Instantiate link from class SinglePlayerPlayState <State>

� Instantiate link from class TwoPlayersPlayState <State>

� Access link from class ShipMissileFireControl <Control>

� Access link from class ShipLaserFireControl <Control>

� Access link from class ShipThrottleControl <Control>

� Access link from class ShipRightControl <Control>

� Access link from class ShipLeftControl <Control>

� Realization link to interface GameEventListener<Event>

5.1.12 State

State::GameState

Type: public abstract Class {root}

 Implements: Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-11 15:53:38. Modified on 08-03-10 12:55:31. Author:

Lukas Kalinski

Represents an abstract state that the game may find itself in.

Connections

� Aggregation link from class GameEventManager <Event>

� Aggregation link to class FinishStateControl<Control>

� Aggregation link to class Game<Game>

� Aggregation link to class Game<Game>

� Call link from class FinishStateControl <Control>

� Call link from class LeaveStateAction <Menu>

� Instantiate link from class EnterStateAction <Menu>

� Instantiate link to class GameEventManager<Event>

� Call link from class Game <Game>

� Generalization link from class PlayState

� Generalization link from class MenuState

� Realization link to interface Tickable<Util>

State::MenuState

Type: public abstract Class

 Extends: GameState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-01-04 04:12:54. Modified on 08-03-03 16:28:18. Author:

Lukas K

The state to be in when navigating through menus.

Connections

� Aggregation link from class Menu <Menu>

� Maintain link to class Menu<Menu>

� Instantiate link to class PrevMenuButtonControl<Control>

� Instantiate link to class NextMenuButtonControl<Control>

� Instantiate link to class PressMenuButtonControl<Control>

� Use link to package Menu<Game>

� Use link to class InputManager<Controller>

� Instantiate link to class InputManager<Controller>

� Generalization link from class HelpMenuState

� Generalization link from class MainMenuState

� Generalization link from class PauseMenuState

� Generalization link from class MapChoiceMenuState

� Generalization link from class HighScoreMenuState

� Generalization link from class ControlsMenuState

� Generalization link to class GameState

� Generalization link from class ControlsConfigMenuState

State::MainMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-29 20:05:11. Modified on 08-03-03 16:28:17. Author:

Lukas Kalinski

Connections

� Instantiate link to class HelpMenuState

� Instantiate link to class HighScoreMenuState

� Instantiate link to class ControlsMenuState

� Instantiate link to class MapChoiceMenuState

� Instantiate link to class EnterStateAction<Menu>

� Instantiate link to class Menu<Menu>

� Instantiate link to class MenuButton<Menu>

� Instantiate link to class LeaveStateAction<Menu>

� Instantiate link from class Game <Game>

� Generalization link to class MenuState

State::MapChoiceMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-29 20:07:32. Modified on 08-03-03 21:08:54. Author:

Lukas Kalinski

The map choice menu, containing one button for each available map.

Connections

� Aggregation link from class World <World>

� Use link to class PlayState. Bind the play state that was received on construction to

all the map button actions.

� Instantiate link to class EnterPlayingStateAction. One enter playing state instance for

each available map button.

� Friend link to class EnterPlayingStateAction

� Instantiate link to class LeaveStateAction<Menu>. For the "back" button.

� Instantiate link to class MenuButton<Menu>. Instantiates one for each available map

plus one for the "back" action.

� Instantiate link to class EnterStateAction<Menu>. Instantiates one for each available

map.

� Instantiate link to class Menu<Menu>

� Use link to class WorldMapRegistry<Registry>

� Access link to class WorldMapRegistry<Registry>

� Instantiate link from class MainMenuState

� Access link from class SinglePlayerPlayState

� Access link from class TwoPlayersPlayState

� Generalization link to class MenuState

� Inner class link from class EnterPlayingStateAction

State::MapChoiceMenuState::EnterPlayingStateAction

Type: public Class

 Extends: EnterStateAction.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-03-03 17:23:50. Modified on 08-03-03 20:17:04. Author:

Lukas Kalinski

Connections

� Instantiate link from class MapChoiceMenuState. One enter playing state instance for

each available map button.

� Friend link from class MapChoiceMenuState

� Generalization link to class EnterStateAction<Menu>

� Inner class link to class MapChoiceMenuState

State::ControlsMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-29 20:08:04. Modified on 08-03-03 20:56:15. Author:

Lukas Kalinski

Connections

� Instantiate link to class ControlsConfigMenuState. One for each player (i.e., player 1

and 2).

� Instantiate link to class MenuButton<Menu>. One for player 1 config, one for player

2 config and one for "back to main menu".

� Instantiate link to class LeaveStateAction<Menu>

� Instantiate link to class Menu<Menu>

� Instantiate link to class EnterStateAction<Menu>

� Instantiate link from class MainMenuState

� Generalization link to class MenuState

State::ControlsConfigMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-29 20:08:16. Modified on 08-03-08 15:50:02. Author:

Lukas Kalinski

The state of the controls configuration loop, i.e., where each control for a single player is

reconfigured on a step-by-step basis.

Connections

� Trace link to requirement Player 1 and Player 2 must have distinct controls

� Manage link to class Menu<Menu>

� Instantiate link to class Menu<Menu>

� Instantiate link from class ControlsMenuState. One for each player (i.e., player 1 and

2).

� Generalization link to class MenuState

State::HighScoreMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-29 20:07:43. Modified on 08-03-03 16:28:16. Author:

Lukas Kalinski

Connections

� Instantiate link to class LeaveStateAction<Menu>. The "back" button action.

� Instantiate link to class MenuButton<Menu>. The "back" button.

� Instantiate link to class Menu<Menu>

� Instantiate link from class MainMenuState

� Instantiate link from class SinglePlayerPlayState

� Dependency link from class SinglePlayerPlayState

� Generalization link to class MenuState

State::HelpMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-03-01 17:58:48. Modified on 08-03-03 16:28:16. Author:

Lukas Kalinski

Connections

� Instantiate link to class LeaveStateAction<Menu>

� Instantiate link to class MenuButton<Menu>. The "back" button.

� Instantiate link to class Menu<Menu>

� Instantiate link from class MainMenuState

� Generalization link to class MenuState

State::PauseMenuState

Type: public Class {leaf}

 Extends: MenuState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-29 20:05:25. Modified on 08-03-03 16:28:18. Author:

Lukas Kalinski

Connections

� Instantiate link to class LeavePauseMenuStateAction

� Instantiate link to class LeaveStateAction<Menu>

� Instantiate link to class MenuButton<Menu>

� Friend link to class LeavePauseMenuStateAction

� Instantiate link to class Menu<Menu>

� Access link from class SinglePlayerPlayState. Reads whether the pause menu state

orders a game quit or not.

� Access link from class TwoPlayersPlayState

� Instantiate link from class PauseGameControl <Control>

� Generalization link to class MenuState

� Inner class link from class LeavePauseMenuStateAction

State::PauseMenuState::LeavePauseMenuStateAction

Type: public Class

 Extends: LeaveStateAction.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-03-03 16:17:06. Modified on 08-03-03 17:24:42. Author:

Lukas Kalinski

Responsible for handling a press on the pause menu's "Quit Game" button.

Connections

� Instantiate link from class PauseMenuState

� Friend link from class PauseMenuState

� Generalization link to class LeaveStateAction<Menu>

� Inner class link to class PauseMenuState

State::PlayState

Type: public abstract Class

 Extends: GameState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-01-04 04:14:14. Modified on 08-03-05 23:08:40. Author:

Lukas K

The game state to be in when a game session is active. Responsible for setting up and managing

the game engine.

Connections

� Association link to class Engine<Engine>

� Use link from class MapChoiceMenuState. Bind the play state that was received on

construction to all the map button actions.

� Use link to package Engine<Game>

� Generalization link from class SinglePlayerPlayState

� Generalization link from class TwoPlayersPlayState

� Generalization link to class GameState

State::SinglePlayerPlayState

Type: public Class {leaf}

 Extends: PlayState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-27 21:09:39. Modified on 08-03-06 14:01:28. Author:

Lukas Kalinski

Responsible for starting a single player game and keeping it going until game over rules are met,

resulting in entering the high score menu.

Connections

� Instantiate link to class ShipMissileFireControl<Control>

� Instantiate link to class Engine<Engine>

� Manage link to class Engine<Engine>

� Use link to class HighScoreRegistry<Registry>

� Access link to class PauseMenuState. Reads whether the pause menu state orders a

game quit or not.

� Dependency link to class HighScoreMenuState

� Use link to class Game<Game>

� Instantiate link to class Player<Player>

� Call link to class Engine<Engine>

� Instantiate link to class ShipThrottleControl<Control>

� Instantiate link to class HighScoreMenuState

� Access link to class MapChoiceMenuState

� Instantiate link to class ShipRightControl<Control>

� Instantiate link to class Ship<World>

� Instantiate link to class ShipLaserFireControl<Control>

� Instantiate link to class PauseGameControl<Control>

� Instantiate link to class FinishStateControl<Control>

� Instantiate link to class InputManager<Controller>. Creates one for ordinary

controls (i.e., playing the game) and one when game is over and the player is

requested to "press <key> to continue".

� Use link to class InputManager<Controller>

� Instantiate link to class AsteroidStrategy<WorldLife>

� Instantiate link to class ExpirationStrategy<WorldLife>

� Instantiate link to class ItemStrategy<WorldLife>

� Instantiate link to class RectangularBoundaryStrategy<WorldPhysics>

� Instantiate link to class CollisionStrategy<WorldPhysics>

� Instantiate link to class GravityStrategy<WorldPhysics>

� Manage link to class World<World>

� Instantiate link to class ShipLeftControl<Control>

� Generalization link to class PlayState

State::TwoPlayersPlayState

Type: public Class {leaf}

 Extends: PlayState.

Status: Proposed. Version 1.0. Phase 1.0.

Package: State

Details: Created on 08-02-27 21:07:33. Modified on 08-03-06 14:00:59. Author:

Lukas Kalinski

Responsible for starting a two player game and keeping it going until game over rules are met.

Connections

� Instantiate link to class ShipLaserFireControl<Control>. Create one for each player.

� Use link to class InputManager<Controller>

� Access link to class MapChoiceMenuState

� Access link to class PauseMenuState

� Instantiate link to class Engine<Engine>

� Manage link to class Engine<Engine>

� Call link to class Engine<Engine>

� Instantiate link to class ShipThrottleControl<Control>. Create one for each player.

� Instantiate link to class ShipLeftControl<Control>. Create one for each player.

� Instantiate link to class Player<Player>

� Instantiate link to class ShipMissileFireControl<Control>. Create one for each

player.

� Manage link to class World<World>

� Instantiate link to class PauseGameControl<Control>

� Instantiate link to class FinishStateControl<Control>

� Instantiate link to class InputManager<Controller>. Creates one for ordinary

controls (i.e., playing the game) and one when game is over and the player is

requested to "press <key> to continue".

� Instantiate link to class Ship<World>. Use the same for both players.

� Instantiate link to class AsteroidStrategy<WorldLife>

� Instantiate link to class ExpirationStrategy<WorldLife>

� Instantiate link to class ItemStrategy<WorldLife>

� Instantiate link to class RectangularBoundaryStrategy<WorldPhysics>

� Instantiate link to class CollisionStrategy<WorldPhysics>

� Instantiate link to class GravityStrategy<WorldPhysics>

� Instantiate link to class ShipRightControl<Control>. Create one for each player.

� Generalization link to class PlayState

5.1.13 World

World::Asteroid

Type: public Class

 Extends: DestroyableObject, MovableObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:17:41. Modified on 08-03-03 16:28:15. Author:

sfish

Representation of an asteroid flying around randomly in the game world.

Connections

� Aggregation link to class World

� Manage link from class CollisionStrategy <WorldPhysics>

� Generalization link to class DestroyableObject

� Generalization link to class MovableObject

World::DestroyableObject

Type: public abstract Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-03-04 20:31:56. Modified on 08-03-04 20:33:43. Author:

Lukas Kalinski

World objects implementing this interface are considered destroyable, i.e., it is possible to

destroy them by causing enough damage to them. Note that destruction has nothing to do with

removal from the world.

Connections

� Aggregation link to class DestructionEvent<WorldEvent>

� Aggregation link to class DamageEvent<WorldEvent>

� Manage link from class CollisionStrategy <WorldPhysics>

� Generalization link from class MissileProjectile

� Generalization link from class Ship

� Generalization link from class Asteroid

World::FuelItem

Type: public Class

 Extends: Item.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:21:03. Modified on 08-03-03 16:28:16. Author:

sfish

Representation of an item that contains a fuel powerup.

Connections

� Aggregation link to class ExpirationStrategy<WorldLife>

� Manage link from class CollisionStrategy <WorldPhysics>. When picked up.

� Generalization link to class Item

World::Item

Type: public abstract Class

 Extends: StaticObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:17:51. Modified on 08-03-04 21:17:01. Author:

sfish

Contains common behavior and properties of items occuring in the game world.

Connections

� Aggregation link to class ItemPickupEvent<WorldEvent>

� Aggregation link to class World

� Dependency link from class CollisionStrategy <WorldPhysics>

� Generalization link from class MissileItem

� Generalization link from class FuelItem

� Generalization link to class StaticObject

World::LaserProjectile

Type: public Class

 Extends: Projectile.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:18:45. Modified on 08-03-04 14:16:21. Author:

sfish

Representation of a laser projectile, which is not affected by gravities.

Connections

� Aggregation link to class ExpirationStrategy<WorldLife>

� Manage link from class CollisionStrategy <WorldPhysics>

� Instantiate link from class Ship. Uses internal world instance to do so.

� Generalization link to class Projectile

World::MissileItem

Type: public Class

 Extends: Item.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:21:31. Modified on 08-03-03 16:28:18. Author:

sfish

Representation of an item that contains ship missiles.

Connections

� Aggregation link to class ExpirationStrategy<WorldLife>

� Generalization link to class Item

World::MissileProjectile

Type: public Class

 Extends: DestroyableObject, Projectile.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:18:50. Modified on 08-03-03 16:28:18. Author:

sfish

Representation of a gravity-affectable missile projectile.

Connections

� Aggregation link to class ExpirationStrategy<WorldLife>

� Instantiate link from class Ship. Uses internal world instance to do so.

� Generalization link to class Projectile

� Generalization link to class DestroyableObject

� Realization link to requirement Affected movement affects orientation too

World::MovableObject

Type: public abstract Class

 Extends: WorldObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:17:29. Modified on 08-03-03 16:28:18. Author:

sfish

Contains common behavior and properties of movable game world objects.

Connections

� Aggregation link from class Vector2d <Util>

� Aggregation link to class World

� Manage link from class GravityStrategy <WorldPhysics>

� Dependency link from class CollisionStrategy <WorldPhysics>

� Generalization link from class Projectile

� Generalization link from class Ship

� Generalization link from class Asteroid

� Generalization link to class WorldObject

World::Planet

Type: public Class

 Extends: StaticObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:17:45. Modified on 08-03-03 16:28:18. Author:

sfish

Representation of a planet.

Connections

� Access link from class GravityStrategy <WorldPhysics>

� Dependency link from class CollisionStrategy <WorldPhysics>

� Generalization link to class StaticObject

World::Projectile

Type: public abstract Class

 Extends: MovableObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:18:12. Modified on 08-03-03 16:28:19. Author:

sfish

Contains common behavior and properties of weapon projectiles fired by a ship.

Connections

� Aggregation link to class ProjectileFireEvent<WorldEvent>

� Aggregation link from class Ship

� Dependency link from class CollisionStrategy <WorldPhysics>

� Generalization link from class MissileProjectile

� Generalization link from class LaserProjectile

� Generalization link to class MovableObject

World::Ship

Type: public Class

 Extends: DestroyableObject, MovableObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-08 11:18:01. Modified on 08-03-03 16:28:19. Author:

sfish

Representation of the ship that a game player will control.

Connections

� Aggregation link to class ItemPickupEvent<WorldEvent>

� Aggregation link to class Player<Player>

� Aggregation link to class Projectile

� Aggregation link to class World

� Aggregation link from class GameEventManager <Event>

� Association link from class Player <Player>

� Instantiate link to class LaserProjectile. Uses internal world instance to do so.

� Instantiate link to class MissileProjectile. Uses internal world instance to do so.

� Instantiate link to class ProjectileFireEvent<WorldEvent>

� Dependency link from artifact Status Bar Renderer(s)

� Dependency link from artifact Status Bar Renderer(s)

� Dependency link from artifact Status Bar Renderer(s)

� Manipulate link from class ShipLeftControl <Control>

� Manipulate link from class ShipRightControl <Control>

� Manipulate link from class ShipThrottleControl <Control>

� Manipulate link from class ShipLaserFireControl <Control>

� Manipulate link from class ShipMissileFireControl <Control>

� Instantiate link from class TwoPlayersPlayState <State>. Use the same for both

players.

� Instantiate link from class SinglePlayerPlayState <State>

� Manage link from class CollisionStrategy <WorldPhysics>

� Generalization link to class DestroyableObject

� Generalization link to class MovableObject

� Realization link to requirement Affected movement affects orientation too

World::SpawnPoint

Type: public Class

 Extends: StaticObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-28 14:51:57. Modified on 08-03-04 21:23:14. Author:

Lukas Kalinski

Defines a point in which a world object may appear, telling whether the area is free of obstacles

or not.

Connections

� Aggregation link to class World

� Manage link from class CollisionStrategy <WorldPhysics>. Toggles on availability

on all spawn points before processing them.

� Generalization link to class StaticObject

World::StaticObject

Type: public abstract Class

 Extends: WorldObject.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-11 21:50:57. Modified on 08-03-03 16:28:20. Author:

Lukas Kalinski

Contains common behavior and properties of static game world objects.

Connections

� Generalization link from class SpawnPoint

� Generalization link to class WorldObject

� Generalization link from class Item

� Generalization link from class Planet

World::World

Type: public Class

 Implements: GameEventListener, Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-10 22:05:16. Modified on 08-03-03 16:28:20. Author:

Lukas Kalinski

Representation of the whole game world, containing all world objects that are supposed to exist

at a certain moment during a game session.

Connections

� Aggregation link from class WorldObject

� Aggregation link to class MapChoiceMenuState<State>

� Aggregation link from class MovableObject

� Aggregation link from class Asteroid

� Aggregation link from class Item

� Aggregation link to class Engine<Engine>

� Aggregation link from class Ship

� Aggregation link from class WorldObject

� Aggregation link from class BoundaryStrategy <WorldPhysics>

� Aggregation link from interface WorldStrategy. Interface for a world strategy. A

world strategy is something that modifies/alters the world and/or its objects.

� Aggregation link from class SpawnPoint

� Association link from class Player <Player>. The world is fetched from engine

during initialization.

� Use link from class ExpirationStrategy <WorldLife>. When an object expires, its

removal is queued in the world.

� Call link to class WorldObject

� Manage link from class Engine <Engine>

� Instantiate link from class WorldMapRegistry <Registry>

� Use link from class CollisionStrategy <WorldPhysics>. On collisions leading to

destruction, the concerned object(s) are queued for removal in the world.

� Manage link from class TwoPlayersPlayState <State>

� Manage link from class ItemStrategy <WorldLife>. Items may safely be inserted into

the world, as they don't make a spawn point unavailable, as well as they can appear

on a spawn point that is unavailable.

� Access link from class ItemStrategy <WorldLife>. Reads the world's self-defined

timestamp in order to calculate when an insertion should be made.

� Access link from class ExpirationStrategy <WorldLife>. Reads the world's self-

defined timestamp in order to calculate expirations.

� Access link from class AsteroidStrategy <WorldLife>. Reads the world's self-defined

timestamp in order to calculate when an insertion should be made.

� Manage link from class AsteroidStrategy <WorldLife>

� Manage link from class SinglePlayerPlayState <State>

� Realization link to interface GameEventListener<Event>

� Realization link to interface Tickable<Util>

World::WorldObject

Type: public abstract Class

 Implements: Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: World

Details: Created on 08-02-11 21:49:28. Modified on 08-03-03 16:28:20. Author:

Lukas Kalinski

Contains common behavior and properties of game world objects.

Connections

� Aggregation link to class CollisionEvent<WorldEvent>

� Aggregation link from class Vector2d <Util>

� Aggregation link to class World

� Aggregation link to class World

� Aggregation link from class Shape <Util>

� Aggregation link from class Coord2d <Util>

� Aggregation link to class CollisionEvent<WorldEvent>

� Aggregation link to class InsertionEvent<WorldEvent>

� Aggregation link to class RemovalOrderEvent<WorldEvent>

� Aggregation link to class DestructionEvent<WorldEvent>

� Call link from class World

� Manage link from class BoundaryStrategy <WorldPhysics>. Repositions world

object if found beyond world boundaries.

� Access link from class BoundaryStrategy <WorldPhysics>

� Dependency link from class GravityStrategy <WorldPhysics>

� Dependency link from class CollisionStrategy <WorldPhysics>

� Generalization link from class StaticObject

� Generalization link from class MovableObject

� Realization link to requirement World objects shall not do their own cleanup.

� Realization link to interface Tickable<Util>

5.1.14 Registry

Responsible for holding, managing persistence for and providing global data to other modules.

Registry::ConfigRegistry

Type: public «singleton» Class

 Extends: Registry.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Registry

Details: Created on 08-02-10 23:12:56. Modified on 08-03-09 19:07:25. Author:

Lukas Kalinski

Responsible to provide and handle persistence for the game configuration.

Connections

� Access link from class KeyboardListener <Controller>

� Use link to class KeyboardListener<Controller>

� Generalization link to class Registry

Registry::HighScoreRegistry

Type: public «singleton» Class

 Extends: Registry.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Registry

Details: Created on 08-02-11 14:20:22. Modified on 08-03-09 18:55:44. Author:

Lukas Kalinski

Responsible for storing high scores in a file, as well as deciding what scores should be

considered being high scores.

Connections

� Use link from class SinglePlayerPlayState <State>

� Generalization link to class Registry

Registry::Registry

Type: public abstract Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Registry

Details: Created on 08-03-09 18:57:20. Modified on 08-03-09 18:58:13. Author:

Lukas Kalinski

Abstract registry class, holding file management functions.

Connections

� Generalization link from class HighScoreRegistry

� Generalization link from class WorldMapRegistry

� Generalization link from class ConfigRegistry

Registry::WorldMapRegistry

Type: public «singleton» Class

 Extends: Registry.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Registry

Details: Created on 08-02-11 22:34:50. Modified on 08-03-06 11:23:10. Author:

Lukas Kalinski

Responsible for generating game worlds while being provided a map name.

Connections

� Use link from class MapChoiceMenuState <State>

� Access link from class MapChoiceMenuState <State>

� Instantiate link to class World<World>

� Generalization link to class Registry

5.1.15 Util

Contains common utilities, such as coordinate representations etc.

Util::CircularShape

Type: public Class

 Extends: Shape.

Status: Proposed. Version 1.0. Phase 1.0.

Package: Util

Details: Created on 08-03-02 16:12:06. Modified on 08-03-03 16:28:15. Author:

Lukas Kalinski

A circular shape.

Connections

� Generalization link to class Shape

Util::Coord2d

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Util

Details: Created on 08-02-27 21:46:56. Modified on 08-03-03 16:28:15. Author:

Lukas Kalinski

Represents a coordinate in the absolute 2D-space.

Connections

� Aggregation link to class WorldObject<World>

� Aggregation link to class RectangularBoundaryStrategy<WorldPhysics>

� Aggregation link to class RectangularBoundaryStrategy<WorldPhysics>

Util::Shape

Type: public abstract Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Util

Details: Created on 08-03-02 16:11:34. Modified on 08-03-03 16:28:19. Author:

Lukas Kalinski

An abstrac geometric shape.

Connections

� Aggregation link to class WorldObject<World>

� Generalization link from class CircularShape

Util::Vector2d

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Util

Details: Created on 08-02-11 21:34:04. Modified on 08-03-03 16:28:20. Author:

Lukas Kalinski

Defines a vector in 2D space by combining a coordinate and a length.

Connections

� Aggregation link to class WorldObject<World>

� Aggregation link to class MovableObject<World>

5.1.16 View

Responsible for drawing graphics for the game. Does so by monitoring the Game module and

associating elements in it with own graphical objects, which then will be painted.

AnimationSprite

Type: public Class

 Extends: Sprite. Implements: Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-06 15:19:07. Modified on 08-03-06 15:19:11. Author:

Lukas Kalinski

Connections

� Generalization link to class Sprite

� Realization link to interface Tickable<Util>

AsteroidSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:39:01. Modified on 08-03-10 14:31:22. Author:

Lukas Kalinski

Responsible for managing sprites for an asteroid.

Connections

� Generalization link to class SpriteManager

FuelItemSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:46:26. Modified on 08-03-10 14:31:33. Author:

Lukas Kalinski

Responsible for managing sprites for a fuel item.

Connections

� Generalization link to class SpriteManager

LaserSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:46:09. Modified on 08-03-10 14:31:43. Author:

Lukas Kalinski

Responsible for managing sprites for a laser.

Connections

� Generalization link to class SpriteManager

MenuButtonSpriteManager

Type: public Class

 Extends: TextSpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-06 15:20:03. Modified on 08-03-06 15:20:11. Author:

Lukas Kalinski

Connections

� Generalization link to class TextSpriteManager

MissileItemSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:49:03. Modified on 08-03-10 14:31:59. Author:

Lukas Kalinski

Responsible for managing sprites for a missile item.

Connections

� Generalization link to class SpriteManager

MissileSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:46:19. Modified on 08-03-10 14:31:38. Author:

Lukas Kalinski

Responsible for managing sprites for a missile.

Connections

� Generalization link to class SpriteManager

OpenGLRenderer

Type: public Class

 Implements: Renderer, Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-06 13:25:08. Modified on 08-03-06 13:25:46. Author:

Lukas Kalinski

Responsible for rendering graphics by using OpenGL.

Connections

� Aggregation link from class SpriteManager

� Aggregation link from class SpriteManager

� Access link to class Game<Game>

� Realization link to interface Tickable<Util>

� Realization link to interface Renderer

PlanetSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:49:35. Modified on 08-03-10 14:32:07. Author:

Lukas Kalinski

Responsible for managing sprites for a planet.

Connections

� Generalization link to class SpriteManager

ShipSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-06 13:42:27. Modified on 08-03-10 14:31:15. Author:

Lukas Kalinski

Responsible for managing sprites for a ship.

Connections

� Generalization link to class SpriteManager

SpawnPointSpriteManager

Type: public Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 23:50:01. Modified on 08-03-10 14:32:12. Author:

Lukas Kalinski

Responsible for managing sprites for a spawn point.

Connections

� Generalization link to class SpriteManager

Sprite

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-06 15:21:40. Modified on 08-03-06 15:21:45. Author:

Lukas Kalinski

Connections

� Aggregation link to class SpriteManager

� Aggregation link to class SpriteManager

� Aggregation link to class SpriteManager

� Generalization link from class AnimationSprite

SpriteManager

Type: public abstract Class

 Implements: GameEventListener, Tickable.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-09 21:24:51. Modified on 08-03-10 14:33:11. Author:

Lukas Kalinski

Abstract sprite manager.

Connections

� Aggregation link from class Sprite

� Aggregation link to class OpenGLRenderer

� Aggregation link to class OpenGLRenderer

� Aggregation link from class Sprite

� Aggregation link from class Sprite

� Generalization link from class LaserSpriteManager

� Generalization link from class MissileSpriteManager

� Generalization link from class FuelItemSpriteManager

� Generalization link from class MissileItemSpriteManager

� Generalization link from class PlanetSpriteManager

� Generalization link from class ShipSpriteManager

� Generalization link from class TextSpriteManager

� Generalization link from class AsteroidSpriteManager

� Generalization link from class SpawnPointSpriteManager

� Realization link to interface GameEventListener<Event>

� Realization link to interface Tickable<Util>

TextSpriteManager

Type: public abstract Class

 Extends: SpriteManager.

Status: Proposed. Version 1.0. Phase 1.0.

Package: View

Details: Created on 08-03-06 15:20:33. Modified on 08-03-10 14:33:03. Author:

Lukas Kalinski

Abstract sprite manager that will manage texts.

Connections

� Generalization link to class SpriteManager

� Generalization link from class MenuButtonSpriteManager

5.2 Class Diagram

Diagram: Controller

class Controller

InputManager

+ LOCAL_PRIMARY_PLAYER: unsigned short = 1 {readOnly}
+ LOCAL_SECONDARY_PLAYER: unsigned short = 2 {readOnly}

«Manager»
+ registerLocalControl(NextMenuButtonControl&) : void
+ registerLocalControl(PrevMenuButtonControl&) : void
+ registerLocalControl(PressMenuButtonControl&) : void
+ registerLocalControl(PauseGameControl&) : void
+ registerLocalControl(FinishStateControl&) : void
+ registerLocalControl(ConfigKeyboardMapControl&) : void
+ registerLocalPlayerControl(ShipThrottleControl&, unsigned short) : void
+ registerLocalPlayerControl(ShipLeftControl&, unsigned short) : void
+ registerLocalPlayerControl(ShipRightControl&, unsigned short) : void
+ registerLocalPlayerControl(ShipLaserFireControl&, unsigned short) : void
+ registerLocalPlayerControl(ShipMissileFireControl&, unsigned short) : void
+ refresh() : void
+ reset() : void

SDL

Control::GameControl
{root}

InputListener

- m_switches: std::map<unsigned short, bool*>

«Manager»
+ enableListen(unsigned short, bool*) : void
enableListen(unsigned short) : void
switchOn(unsigned short) : void

Sets *(m_switches[controlAlias]) to true.
switchOff(unsigned short) : void

Sets *(m_switches[controlAlias]) to false.

Registry

«singleton»
Registry::ConfigRegistry

KeyboardListener

+ CA_MENU_BTN_NEXT: unsigned short = 1 {readOnly}
+ CA_MENU_BTN_PREV: unsigned short = 2 {readOnly}
+ CA_MENU_BTN_PRESS: unsigned short = 3 {readOnly}
+ CA_GAMEPLAY_PAUSE: unsigned short = 4 {readOnly}
+ CA_GAMEPLAY_P1_SHIP_THROTTLE: unsigned short = 5 {readOnly}
+ CA_GAMEPLAY_P1_SHIP_LEFT: unsigned short = 6 {readOnly}
+ CA_GAMEPLAY_P1_SHIP_RIGHT: unsigned short = 7 {readOnly}
+ CA_GAMEPLAY_P1_SHIP_FIRE_LASER: unsigned short = 8 {readOnly}
+ CA_GAMEPLAY_P1_SHIP_FIRE_MISSILE: unsigned short = 9 {readOnly}
+ CA_GAMEPLAY_P2_SHIP_THROTTLE: unsigned short = 10 {readOnly}
+ CA_GAMEPLAY_P2_SHIP_LEFT: unsigned short = 11 {readOnly}
+ CA_GAMEPLAY_P2_SHIP_RIGHT: unsigned short = 12 {readOnly}
+ CA_GAMEPLAY_P2_SHIP_FIRE_LASER: unsigned short = 13 {readOnly}
+ CA_GAMEPLAY_P2_SHIP_FIRE_MISSILE: unsigned short = 14 {readOnly}
+ CA_FINISH_GAME_STATE: unsigned short = 15 {readOnly}
+ CA_CONFIG_KEYMAP: unsigned short = 16 {readOnly}
- m_listenedKeysMap: std::map<unsigned short, unsigned short>

«Manager»
enableListen(unsigned short) : void

Responsible for monitoring a defined set of
keyboard keys and call
InputListener::switchOn/switchOff functions
when a key's status changes
(pressed/unpressed).

Responsible for detecting what game controls
are being activated or deactivated, and
calling the corresponding function on the
contained game control objects.

GameControlManager

- m_controlSwitch: bool = false

+ GameControlManager(GameControl&)

«Manager»
+ refresh() : void

«Access»
+ getSwitchPointer() : bool*

Responsible for managing a control's
activation/deactivation according to changes
registered by the input listener(s).

Using an InputManager

User input API

«use»

Get key code for
control alias

«access»

Indirectly affects switch

«manipulate»

-m_listeners 0..*

-m_control 1

-m_controlManagers 0..*

«instantiate»

 Diagram: Game

class Game

«singleton»
Game

- m_singleton: Game* = 0

«Manager»
+ instance() : Game
+ init() : void
+ run() : void

Runs game loop.
+ enterState(GameState&) : void
+ registerTickable(Tickable*) : void
+ unregisterTickable(Tickable*) : void

«Access»
+ getCurrentState() : GameState&
+ getStateLevel() : unsigned int

Runs the main loop and forwards control to other game states by
calling their tick() function on synchronized time intervals. If a game
state turns invalid, it will be removed and a fallback to the previous
state will be done.

MenuState

State::MainMenuState
{leaf}

State::GameState
{root}

State Switching

«interface»
Util::Tickable

-m_tickables

0..*

-m_currentState

1

-m_stateStack

0..*

tick()

«call»

tick() while current
and not finished

«call»

enter on init

«instantiate»

 Diagram: Game Engine

class Game Engine

Engine

+ Engine()

«Access»
+ getWorld() : World&
+ getPlayer(unsigned int) : Player&
+ getPlayers() : std::vector<Player>::iterator

«Event»
+ tick() : void

«Manager»
+ init(World&) : void
+ addPlayer(Player&) : void

«Helper»
+ validateWorld(World) : void

World::World

«interface»
Util::Tickable

Player::Player

Details

-m_world

1

-m_players

1..*

«manage»

 Diagram: Collision Strategy

class Collision Strategy

CollisionStrategy

«Manager»
+ applyWorldStrategy(World) : void
- handleCollision(WorldObject&, WorldObject&) : void
- handleCollision(Item&, Ship&) : void
- handleCollision(Ship&, FuelItem&) : void
- handleCollision(Ship&, MissileItem&) : void
- handleCollision(SpawnPoint&, MovableObject&) : void
- handleCollision(Projectile&, DestroyableObject&) : void
- handleCollision(DestroyableObject&, Projectile&) : void
- handleCollision(DestroyableObject&, Planet&) : void
- handleCollision(Asteroid&, Asteroid&) : void
- handleCollision(Ship&, Ship&) : void
- handleCollision(Ship&, Asteroid&) : void
- handleCollision(Asteroid&, Ship&) : void
- handleCollision(LaserProjectile&, Planet&) : void

«Helper»
- collidesWith(WorldObject&, WorldObject&) : bool

World::World

Responsible for detecting and handling
collisions between objects in the game
world, prov ided a game world instance.

WorldEvent

«Message»
WorldEvent::CollisionEvent

WorldEvent

«Message»
WorldEvent::DamageEvent

WorldEvent

«Message»
WorldEvent::DestructionEvent

World::DestroyableObject

World::WorldObject

World::LaserProjectile

World::Ship

World::FuelItem

StaticObject

World::Item

World::Projectile

World::Asteroid

StaticObject

World::Planet

World::MovableObject

StaticObject

World::SpawnPoint

Note that removal order events are sent out by the world, as
a result of calling queueRemoval() on it, and that we
therefore should not be sending these here.

WorldEvent

«Message»
WorldEvent::ItemPickupEvent

«send»

«send»

Queues world
object removals

«use»

Affects movement or removes

«manage»

«send»

«send»

Damages

«manage»

Toggles availability on/off

«manage»

Removes

«manage»

Damages

«manage»

Damages

«manage»

 Diagram: GravityStrategy

class GravityStrategy

GravityStrategy

«Manager»
+ applyWorldStrategy(World) : void
- affect(WorldObject&, WorldObject&) : void
- affect(MovableObject&, Planet&) : void

Responsible for calculating and apply ing gravity
affections for each gravity-affectable game world
object.

World::WorldObject

World::MovableObject

StaticObject

World::Planet

Affect movement

«manage»

Read mass

«access»

 Diagram: World Physics

class World Physics

CollisionStrategy

GravityStrategy

«interface»
World::WorldStrategy

«Manager»
+ applyWorldStrategy(World) : void

BoundaryStrategy

Details

Responsible for detecting and handling
collisions between objects in the game
world, provided a game world instance.Details

Responsible for making sure that each and
every world object is within the world
boundaries defined in this object, and if it's
not, then it is repositioned according to the
reposition() implementation in the concrete
class.

Responsible for calculating and apply ing
gravity affections for each
gravity-affectable game world object.Details

Interface implemented by
classes that need to manage
the world by apply ing
self-defined strategies on it.

 Diagram: World Physics - Boundary Strategies

class World Physics - Boundary Strategies

BoundaryStrategy

«Manager»
+ applyWorldStrategy(World) : void

Loops through all world objects, applying reposition()
if isBeyond().

reposition(WorldObject) : void

«Access»
isBeyond(WorldObject) : bool

Util::Coord2d

- m_x: float
- m_y: float

+ Coord2d(float, float)

«Access»
+ getX() : float
+ getY() : float

RectangularBoundaryStrategy

+ RectangularBoundaryStrategy(Coord2d, Coord2d)

«Manager»
reposition(WorldObject) : void

«Access»
isBeyond(WorldObject) : bool

World::WorldObject

Responsible for mak ing sure that each and every
world object is within the world boundaries
defined in this object, and if it's not, then it is
repositioned according to the reposition()
implementation in the concrete class.

-m_lowerRight

1

-m_upperLeft

1

Read position

«access»

Reposition

«manage»

 Diagram: AsteroidStrategy

class AsteroidStrategy

AsteroidStrategy

+ AsteroidStrategy(unsigned int)

«Manager»
+ applyWorldStrategy(World) : void

World::World

Responsible for providing the world with
asteroids, based on time-based constraints.

Get time

«access»

Queue asteroid insertions

«manage»

 Diagram: ExpirationStrategy

class ExpirationStrategy

ExpirationStrategy

- m_laserExpire: unsigned int = 0
- m_missileExpire: unsigned int = 0
- m_missileItemExpire: unsigned int = 0
- m_fuelItemExpire: unsigned int = 0

+ ExpirationStrategy(EventManager*) : void

«Manager»
+ notifyEvent(GameEvent&) : void
+ notifyEvent(RemovalEvent&) : void

Removes possible internal pointers to the
objects that are being removed from the world.

+ applyWorldStrategy(World) : void
Calls handleExpiration() for each object in the
world.

+ setLaserExpiration(unsigned int) : void
+ setMissileExpiration(unsigned int) : void
+ setMissileItemExpiration(unsigned int) : void
+ setFuelItemExpiration(unsigned int) : void
- handleExpiration(WorldObject&) : void
- handleExpiration(LaserProjectile&) : void
- handleExpiration(MissileProjectile&) : void
- handleExpiration(MissileItem&) : void
- handleExpiration(FuelItem&) : void

Item

World::FuelItem

Item

World::MissileItem

DestroyableObject
Projectile

World::MissileProjectile

Projectile

World::LaserProjectile

«interface»
Event::GameEventListener

World::World

Responsible for deciding what world objects
should expire and when they should do so,
resulting in being removed from the world.
Examples are: projectiles, which shouldn't be in
the world too long.

IMPORTANT:
This strategy *must* be
registered in the event
manager, otherways it
will contain deleted
pointers.

Each GameEventListener is responsible for
making sure that it is registered as well as
unregistered before being destroyed.

(from Event)

Event::GameEventManager
-m_eventManager

1

-m_lasers

0..*

-m_missiles

0..*

-m_missileItems

0..*

-m_fuelItems

0..*

Get world's time

«access»

Queues world
object removals

«use»

 Diagram: ItemStrategy

class ItemStrategy

ItemStrategy

«Manager»
+ registerItem(Item, unsigned int) : void
+ applyWorldStrategy(World) : void

World::World

Responsible for providing the world with
items, based on time-based constraints.

Insert item(s)

«manage»

Get time

«access»

 Diagram: World Life

class World Life

AsteroidStrategy

ItemStrategy

«interface»
World::WorldStrategy

«Manager»
+ applyWorldStrategy(World) : void

ExpirationStrategy
Details

Details

Details

Responsible for deciding what world
objects should expire and when they
should do so, resulting in being removed
from the world. Examples are: projectiles,
which shouldn't be in the world too long.

Responsible for providing the world with
items, based on time-based constraints.

Responsible for providing the world with
asteroids, based on time-based constraints.

 Diagram: CollisionEvent

class CollisionEvent

WorldEvent

«Message»
CollisionEvent

+ CollisionEvent(WorldObject*, WorldObject*)

«Access»
+ getFirst() : WorldObject&
+ getSecond() : WorldObject&

World::WorldObject

Represents an event of a collision between two
objects in the game world and provides these
objects. This event should be cascaded ONCE for
each collision (i.e., we do not differentiate the
objects participating in the collision here). Further, a
collision event is expected to be cascaded regardless
of whether one or both of the colliders were
destroyed.

-m_second

1

-m_first

1

 Diagram: DamageEvent

class DamageEvent

WorldEvent

«Message»
DamageEvent

+ DamageEvent(DestroyableObject&)

«Access»
+ getDamaged() : DestroyableObject&

World::DestroyableObject

Represents a damage event and provides
the destroyable object that was damaged
(which isn't the same as being destroyed).

-m_damaged

1

 Diagram: DestructionEvent

 Diagram: InsertionEvent

class DestructionEvent

WorldEvent

«Message»
DestructionEvent

+ DestructionEvent(DestroyableObject&, WorldObject&)

«Access»
+ getDestroyed() : DestroyableObject&

World::DestroyableObject

Represents a destruction event and provides the destroyable
object that was destroyed as well as the world object that
caused its destruction (by, for example, colliding with it). A
destruction event must not be treated as a
RemovalOrderEvent, and v ice versa, as a destruction doesn't
necessarily mean that the object will be removed before next
tick.

World::WorldObject
-m_cause

1

-m_destroyed

1

class InsertionEvent

WorldEvent

«Message»
InsertionEvent

+ InsertionEvent(WorldObject*)

«Access»
+ getInserted() : WorldObject&

World::WorldObject

Represents the event of a world object
being inserted into the game world (i.e.,
not queued for insertion!).

-m_inserted

1

 Diagram: ItemPickupEvent

 Diagram: ProjectileFireEvent

class ItemPickupEvent

WorldEvent

«Message»
ItemPickupEvent

+ ItemPickupEvent(Item*, Ship*)

«Access»
+ getItem() : Item&
+ getShip() : Ship&

DestroyableObject
MovableObject

World::Ship

StaticObject

World::Item

Represents the event of a ship picking up an
item, and provides both the ship and the picked
up item.

-m_item

1

-m_ship

1

class ProjectileFireEvent

WorldEvent

«Message»
ProjectileFireEvent

+ ProjectileFireEvent(Projectile*)

«Access»
+ getProjectile() : Projectile&

Represents the event of firing a projectile and
prov ides the projectile that was fired.

MovableObject

World::Projectile

-m_projectile

1

 Diagram: RemovalEvent

class RemovalEvent

WorldEvent

«Message»
RemovalOrderEvent

+ RemovalOrderEvent(WorldObject*)

«Access»
+ getWorldObject() : WorldObject&

World::WorldObject

Represents the event of the world being
ordered to remove a world object and
provides that object. The removal order
will be realized at the end of the world's
current tick call. This event should be
listened for by all classes that are keeping
pointers to world objects, so that they
know when to get rid of them.

-m_worldObject

1

Diagram: World Event

class World Event

«Message»
CollisionEvent

«Message»
RemovalOrderEvent

«Message»
ProjectileFireEvent

«Message»
InsertionEvent

«Message»
DamageEvent

«Message»
DestructionEvent

Details

Details

Details

Details

Details

Details

Represents the event of a world object being
inserted into the game world (i.e., not queued for
insertion!).

Represents the event of the world being ordered to
remove a world object and prov ides that object.
The removal order will be realized at the end of the
world's current tick call. This event should be
listened for by all classes that are keeping pointers to
world objects, so that they know when to get rid of
them.

Represents a damage event and provides the
destroyable object that was damaged (which isn't
the same as being destroyed).

Represents a destruction event and provides the
destroyable object that was destroyed as well as the
world object that caused its destruction (by, for
example, colliding with it). A destruction event must
not be treated as a RemovalOrderEvent, and vice
versa, as a destruction doesn't necessarily mean that
the object will be removed before next tick.

Represents the event of firing a projectile and
prov ides the projectile that was fired.

Represents an event of a collision between two
objects in the game world and prov ides these
objects. This event should be cascaded ONCE for
each collision (i.e., we do not differentiate the
objects participating in the collision here). Further, a
collision event is expected to be cascaded regardless
of whether one or both of the colliders were
destroyed.

«Message»
ItemPickupEvent Represents the event of a ship picking up an item,

and provides both the ship and the picked up item.

Details

GameEvent

«Message»
WorldEvent

 Diagram: ControlsConfigMenuState

 Diagram: ControlsMenuState

class ControlsConfigMenuState

MenuState

ControlsConfigMenuState
{leaf}

+ ControlsConfigMenuState()

«Manager»
+ enterFrom(GameState*) : void
+ handleFallback(GameState&) : void

does nothing by default

«Event»
+ tick() : void

Polls controller and updates
contained menu if necessary .

class ControlsMenuState

MenuState

ControlsMenuState
{leaf}

«Manager»
+ enterFrom(GameState*) : void
+ handleFallback(ControlsConfigMenuState&) : void

Does nothing, except for restricting states to accept
fallback from.

Menu::Menu

Menu::EnterStateAction

Menu::LeaveStateAction

Menu::MenuButton

MenuState

ControlsConfigMenuState
{leaf}

One per player

«instantiate» 2

«instantiate»
3

«instantiate» 1

«instantiate» 1

«instantiate»
2

 Diagram: Game State

 Diagram: HelpMenuState

class Game State

MenuState

PlayState

GameState
{root}

- m_valid: bool = true

«Access»
+ isValid() : bool
+ getEventManager() : GameEventManager&

Creates a new GameEventManager if not
already set, and returns it.

«Manager»
+ enterFrom(GameState*) : void
+ handleFallback(GameState&) : void

does nothing by default
+ finish() : void

Engine

(from Game)

Menu

(from Game)
Menu States

Playing States

«interface»
Util::Tickable

Event::GameEventManager
-m_eventManager

0..1

Create when first requested

«instantiate»

«use»

«use»

class HelpMenuState

MenuState

HelpMenuState
{leaf}

«Manager»
+ enterFrom(GameState*) : void
+ handleFallback(GameState&) : void

Throws illegal falback exception.

Menu::Menu

Menu::MenuButton

Menu::LeaveStateAction
«instantiate»

1

«instantiate»
1

«instantiate»
1

 Diagram: HighScoreMenuState

 Diagram: MainMenuState

class HighScoreMenuState

MenuState

HighScoreMenuState
{leaf}

«Manager»
+ enterFrom(MainMenuState*) : void
+ enterFrom(SinglePlayerPlayState*) : void
+ handleFallback(GameState&) : void

Throws illegal fallback exception.

Menu::Menu

Menu::MenuButton

Menu::LeaveStateAction
«instantiate» 1

«instantiate» 1

«instantiate» 1

class MainMenuState

MenuState

MainMenuState
{leaf}

«Manager»
+ enterFrom(GameState*) : void

Menu::Menu

Menu::EnterStateAction

Menu::LeaveStateAction

Menu::MenuButton

MenuState

MapChoiceMenuState
{leaf}

MenuState

ControlsMenuState
{leaf}

MenuState

HighScoreMenuState
{leaf}

MenuState

HelpMenuState
{leaf}

«instantiate»
1

«instantiate»
6

«instantiate»
1

«instantiate»
5

One for each play mode

«instantiate» 2

«instantiate»
1

«instantiate»
1

«instantiate»
1

 Diagram: MapChoiceMenuState

class MapChoiceMenuState

MenuState

MapChoiceMenuState
{leaf}

+ MapChoiceMenuState(PlayState&)

«Access»
+ getWorld() : World&

«Manager»
+ enterFrom(MainMenuState*) : void
+ handleFallback(PlayState&) : void
- generateWorld(std::string&) : void

Uses WorldMapRegistry ...

Menu::Menu

Menu::EnterStateAction

Menu::MenuButton

Menu::LeaveStateAction

MapChoiceMenuState::EnterPlayingStateAction

+ EnterPlayingStateAction(PlayState&, std::string&)

«Event»
+ trigger() : void

Uses the Game singleton's enterState function.

Registry

«singleton»
Registry::WorldMapRegistry

World::World

GameState

PlayState

Bind to map
button actions

«use»

for each map

«instantiate» 1..*

«friend»

«instantiate»
1

«instantiate»
2..*

«instantiate» 1..*

«instantiate» 1

generate world

«use»

get names of
available maps

«access» -m_world1

«inner class»

 Diagram: Menu Game States

class Menu Game States

GameState

MenuState

«Access»
+ getMenu() : Menu&

«Event»
+ tick() : void

Polls controller and updates
contained menu if necessary.

«Manager»
initMenu(Menu) : void

MainMenuState
{leaf}

PauseMenuState
{leaf}

MapChoiceMenuState
{leaf}

HighScoreMenuState
{leaf}

ControlsMenuState
{leaf}

ControlsConfigMenuState
{leaf}

Details

Details

HelpMenuState
{leaf}

Details

Details

Details

Details

Menu::Menu

Details

Controller::InputManager

MenuControl

Control::PrevMenuButtonControl
{leaf}

MenuControl

Control::NextMenuButtonControl
{leaf}

MenuControl

Control::PressMenuButtonControl
{leaf}

Setup and refresh

«use»

«instantiate»

«instantiate»
1

«instantiate»
1

«instantiate»
1

Keeps updated

«maintain»

-m_menu

1

 Diagram: PauseMenuState

class PauseMenuState

MenuState

PauseMenuState
{leaf}

- m_quitGame: bool = false

«Access»
+ doQuitGame() : bool

«Manager»
+ enterFrom(PlayState*) : void
+ handleFallback(GameState&) : void

PauseMenuState::LeavePauseMenuStateAction

+ LeavePauseMenuStateAction(PauseMenuState*)

«Event»
+ trigger() : void

Updates pause menu state, setting
m_quitGame=true and calls
LeaveStateAction::trigger().

Menu::LeaveStateAction

Menu::Menu

Menu::MenuButton

«inner class»

«instantiate» 1

«instantiate» 1

«instantiate» 2

«friend»

«instantiate» 1

 Diagram: Play Game States

class Play Game States

GameState

PlayState

m_awaitsFinish: bool = false

«Access»
+ getEngine() : Engine&
+ isAwaitingFinish() : bool

«Manager»
+ enterFrom(GameState*) : void

Throws invalid parent state exception.
+ handleFallback(GameState&) : void

Throws illegal fallback exception.

SinglePlayerPlayState
{leaf}

TwoPlayersPlayState
{leaf}

Engine::Engine

Details

Details

The game state to be in when
a game session is active.
Responsible for setting up and
managing the game engine.

#m_engine

1

 Diagram: SinglePlayerPlayState 1

class SinglePlayerPlayState 1

PlayState

SinglePlayerPlayState
{leaf}

«Event»
+ tick() : void

«Manager»
+ enterFrom(MapChoiceMenuState*) : void

Reads world and self-initializes.
+ handleFallback(PauseMenuState&) : void

Handles fallback from the pause menu state,
checking whether it ordered a game quit or
not.

+ handleFallback(HighScoreMenuState&) : void
Finishes this state.

- triggerGameOver() : void
Saves high score and entes high score menu.

constraints
{Uses PlayState::enterFrom(GameState*)}
{Uses PlayState::handleFallback(GameState*)}

MenuState

MapChoiceMenuState
{leaf}

MenuState

PauseMenuState
{leaf}

MenuState

HighScoreMenuState
{leaf}

«singleton»
Game::Game

Player::Player

Engine::Engine

Diagram 2 Diagram 3

«instantiate»

tick()

«call»

«instantiate»
1

Enters high score
menu state on game
over

«use»

Finishes on fallback from

Reads on fallback from

«access»

Add player and init

«manage»

«instantiate»
1

Get world

«access»

 Diagram: SinglePlayerPlayState 2

class SinglePlayerPlayState 2

PlayState

SinglePlayerPlayState
{leaf}

«Event»
+ tick() : void

«Manager»
+ enterFrom(MapChoiceMenuState*) : void

Reads world and self-initializes.
+ handleFallback(PauseMenuState&) : void

Handles fallback from the pause menu state,
checking whether it ordered a game quit or
not.

+ handleFallback(HighScoreMenuState&) : void
Finishes this state.

- triggerGameOver() : void
Saves high score and entes high score menu.

GameControl

Control::FinishStateControl
{leaf}

GamePlayControl

Control::PauseGameControl
{leaf}

PlayerControl

Control::ShipLaserFireControl
{leaf}

PlayerControl

Control::ShipLeftControl
{leaf}

PlayerControl

Control::ShipMissileFireControl
{leaf}

PlayerControl

Control::ShipRightControl
{leaf}

PlayerControl

Control::ShipThrottleControl
{leaf}

Controller::InputManager

Diagram 1 Diagram 3

Setup and refresh

«use»

«instantiate»
2

When "press <key>
to continue"

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

 Diagram: SinglePlayerPlayState 3

class SinglePlayerPlayState 3

PlayState

SinglePlayerPlayState
{leaf}

«Event»
+ tick() : void

«Manager»
+ enterFrom(MapChoiceMenuState*) : void

Reads world and self-initializes.
+ handleFallback(PauseMenuState&) : void

Handles fallback from the pause menu state,
checking whether it ordered a game quit or
not.

+ handleFallback(HighScoreMenuState&) : void
Finishes this state.

- triggerGameOver() : void
Saves high score and entes high score menu.

Registry

«singleton»
Registry::HighScoreRegistry

Diagram 1 Diagram 2

WorldLife::AsteroidStrategy

WorldLife::ExpirationStrategy

WorldLife::ItemStrategy

WorldPhysics::CollisionStrategy

BoundaryStrategy

WorldPhysics::RectangularBoundaryStrategy

WorldPhysics::GravityStrategy

World::World

DestroyableObject
MovableObject

World::Ship

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

Add strategies

«manage»

Save possible high score

«use»

Player ship template

«instantiate»
1

 Diagram: TwoPlayersPlayState 1

class TwoPlayersPlayState 1

PlayState

TwoPlayersPlayState
{leaf}

«Event»
+ tick() : void

«Manager»
+ enterFrom(MapChoiceMenuState*) : void

Reads world and self-initializes.
+ handleFallback(PauseMenuState&) : void

Handles fallback from the pause menu
state, checking whether it ordered a game
quit or not.

- triggerGameOver() : void

constraints
{Uses PlayState::enterFrom(GameState*)}
{Uses PlayState::handleFallback(GameState*)}

Player::Player

MenuState

PauseMenuState
{leaf}

MenuState

MapChoiceMenuState
{leaf}

Engine::Engine

Diagram 2 Diagram 3

tick()

«call»

Add players and init

«manage»

«instantiate»
1

Reads on fallback from

«access»

Get world

«access»

«instantiate»
2

 Diagram: TwoPlayersPlayState 2

class TwoPlayersPlayState 2

PlayState

TwoPlayersPlayState
{leaf}

«Event»
+ tick() : void

«Manager»
+ enterFrom(MapChoiceMenuState*) : void

Reads world and self-initializes.
+ handleFallback(PauseMenuState&) : void

Handles fallback from the pause menu
state, checking whether it ordered a game
quit or not.

- triggerGameOver() : void

GameControl

Control::FinishStateControl
{leaf}

GamePlayControl

Control::PauseGameControl
{leaf}

PlayerControl

Control::ShipLaserFireControl
{leaf}

PlayerControl

Control::ShipLeftControl
{leaf}

PlayerControl

Control::ShipMissileFireControl
{leaf}

PlayerControl

Control::ShipRightControl
{leaf}

PlayerControl

Control::ShipThrottleControl
{leaf}

Controller::InputManager

Diagram 1 Diagram 3

«instantiate»
2

When "press <key>
to continue"

«instantiate»
1

«instantiate»
1

«instantiate»
2

«instantiate» 2

«instantiate»
2

«instantiate»
2

«instantiate»
2

Setup and refresh

«use»

 Diagram: TwoPlayersPlayState 3

class TwoPlayersPlayState 3

PlayState

TwoPlayersPlayState
{leaf}

«Event»
+ tick() : void

«Manager»
+ enterFrom(MapChoiceMenuState*) : void

Reads world and self-initializes.
+ handleFallback(PauseMenuState&) : void

Handles fallback from the pause menu
state, checking whether it ordered a game
quit or not.

- triggerGameOver() : void

DestroyableObject
MovableObject

World::Ship

WorldLife::AsteroidStrategy

WorldLife::ExpirationStrategy

WorldLife::ItemStrategy

WorldPhysics::CollisionStrategy

BoundaryStrategy

WorldPhysics::RectangularBoundaryStrategy

WorldPhysics::GravityStrategy

World::World

Diagram 2Diagram 1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

«instantiate»
1

Add strategies

«manage»

Player ship template

«instantiate»
1

 Diagram: Asteroid

class Asteroid

MovableObject

Asteroid

- INIT_STRENGTH: unsigned int {readOnly}
- m_rotationSpeed: float

+ Asteroid(float)

«Event»
+ tick() : void

Updates position and orientation (i.e., rotation).

DestroyableObject

+ DestroyableObject(unsigned int)

«Access»
+ isDestroyed() : bool

«Manager»
+ reduceStrength(unsigned int) : void
+ destroy() : void

 Diagram: Game World

class Game World

World

- m_time: unsigned int = 0

+ World(BoundaryStrategy&)

«Access»
+ getTime() : unsigned int

+ getBoundaryStrategy() : BoundaryStrategy&
+ getWorldObjectsIterator() : std::vector<WorldObject>::iterator
+ getSpawnPointsIterator() : std::vector<SpawnPoint*>::iterator
+ getMovableObjectsIterator() : std::vector<MovableObject*>::iterator

«Event»
+ tick() : void

runs tick() on all contained world objects and applies available world
strategies

+ notifyEvent(WorldEvent&) : void
+ notifyEvent(ProjectileFireEvent&) : void

Inserts projectile into the world.

«Manager»
+ addStrategy(WorldStrategy&) : void
+ addStrategy(BoundaryStrategy&) : void
+ queueInsert(Ship*) : void
+ queueInsert(Asteroid&) : void
- tryInsertShips() : void

- tryInsertAsteroids() : void
- insert(WorldObject&, Coord2d&) : void
- insert(MovableObject&, Coord2d&) : void

Inserts a pointer to the movable object into m_movableObjects.
- insert(SpawnPoint&, Coord2d&) : void

Inserts a pointer to the spawn point object into m_spawnPoints.

- insert(Item&) : void
+ queueRemoval(WorldObject&) : void

Cascades a removal event through the event manager.
- performRemovals() : void
- remove(WorldObject&) : void

- remove(SpawnPoint&) : void
Removes pointer from m_spawnPoints.

- remove(MovableObject&) : void
Removes pointer from m_movableObjects.

WorldObject

«interface»
Util::Tickable

World Objects

StaticObject

SpawnPoint

MovableObject

«interface»
WorldStrategy

Engine::Engine

Strategies
for Physics

Strategies for
World Life

WorldPhysics::BoundaryStrategy

«interface»
Event::GameEventListener

DestroyableObject

Ship

StaticObject

Item

DestroyableObject

Asteroid

«manage»

-m_worldObjects

0..*

tick()

«call»

-m_spawnPoints

0..*

-m_movableObjects

0..*

-m_removeQueue

0..*

-m_queuedAsteroids

0..*

-m_boundaryStrategy

1

-m_queuedShips

0..*

-m_queuedItems

0..*

-m_strategies

1..*

 Diagram: Game World Object Destroying

class Game World Object Destroying

DestroyableObject

- m_strength: unsigned int

+ DestroyableObject(unsigned int)

«Access»
+ isDestroyed() : bool

«Manager»
+ reduceStrength(unsigned int) : void
+ destroy() : void

World objects implementing this interface
are considered destroyable, i.e., it is
possible to destroy them by causing
enough damage to them. Note that
destruction has nothing to do with removal
from the world.

 Diagram: Game World Objects

class Game World Objects

WorldObject

m_mass: double

+ WorldObject(double, Shape)

«Event»
+ tick() : void

do nothing by default

«Manager»
+ setPosition(Coord2d&) : void

«Access»
+ getPosition() : Coord2d&
+ getOrientation() : Vector2d&
+ getShape() : Shape&
+ getMass() : double

MovableObject

«Event»
+ tick() : void

updates position

«Manager»
+ setMovement(Vector2d) : void

«Access»
+ getMovement() : Vector2d

StaticObject

Util::Coord2d

Util::Vector2d

«interface»
Util::Tickable

«Event»
+ tick() : void

Movable Game World ObjectsStatic Game World Objects

Util::Shape

Position is defined when
being inserted into the
world.

World objects shall
not do their own
cleanup.

Destroyable World Object

-m_shape

1

#m_orientation

1

#m_position

1

 Diagram: Movable Game World Objects

class Movable Game World Objects

WorldObject

MovableObject

«Event»
+ tick() : void

updates position

«Manager»
+ setMovement(Vector2d) : void

«Access»
+ getMovement() : Vector2d

DestroyableObject

Asteroid

DestroyableObject

Ship

Projectile

Util::Vector2d

Details

Details

Details

#m_movement

1

 Diagram: Projectile

class Projectile

MovableObject

Projectile

+ Projectile(Ship)

«Access»
+ getFiringShip() : Ship
+ getMaxDamageStrength() : unsigned int

MissileProjectile

- INIT_STRENGTH: unsigned int {readOnly}
- SET_OFF_SPEED: unsigned int {readOnly}

+ MissileProjectile(Ship)
Missile movement is set relative to the speed and
direction of the ship.

«Access»
+ getMaxDamageStrength() : unsigned int

«Event»
+ tick() : void

Updates the position and maintains orientation so
that it follows the missile's movement.

LaserProjectile

- SET_OFF_SPEED: unsigned int {readOnly}

+ LaserProjectile(Ship)
Laser movement is set relative to the speed and
direction of the ship.

«Access»
+ getMaxDamageStrength() : unsigned int

constraints
{m_mass == 0}

Affected movement affects
orientation too

MovableObject

Ship

DestroyableObject

+ DestroyableObject(unsigned int)

«Access»
+ isDestroyed() : bool

«Manager»
+ reduceStrength(unsigned int) : void
+ destroy() : void

-m_firingShip

1

Sends INIT_STRENGTH
to constructor

 Diagram: Ship

class Ship

MovableObject

Ship

- INIT_STRENGTH: unsigned int {readOnly}
- MAX_SPEED: unsigned int {readOnly}
- m_limitFuel: int = true
- m_limitLasers: bool = true
- m_limitMissiles: bool = true
- m_fuelAmount: float
- m_lasersCount: unsigned int
- m_missilesCount: unsigned int
- m_laserGunChargeLevel: float = 1.0
- m_missileLauncherChargeLevel: float = 1.0
- m_isTurningLeft: bool = false
- m_isTurningRight: bool = false
- m_isThrottling: bool = false
- m_laserGunOn: bool = false
- m_missileLauncherOn: bool = false

«Access»
+ getFuelLevel() : unsigned int
+ getMissilesCount() : unsigned int
+ getLasersCount() : unsigned int
+ hasLimitedFuel() : bool
+ hasLimitedLasers() : bool
+ hasLimitedMissiles() : bool

«Event»
+ tick() : void

updates position and charges weapons

«Manager»
+ setEventManager(EventManager*) : void
+ setLimitLasers(bool) : void
+ toggleThrottle(bool) : void
+ setLimitFuel(bool) : void
+ setLimitMissiles(bool) : void
+ toggleTurnLeft(bool) : void
+ toggleTurnRight(bool) : void
+ toggleLaserGun(bool) : void
+ toggleMissileLauncher(bool) : void
- fireLaser() : void
- chargeLaserGun(float) : void
- fireMissile() : void
- chargeMissileLauncher(float) : void

Projectile

LaserProjectile

Projectile

MissileProjectile

Affected movement
affects orientation too

Status Bar Renderer(s)

notes
Replace this with the actual
renderer(s) when designed.

DestroyableObject

+ DestroyableObject(unsigned int)

«Access»
+ isDestroyed() : bool

«Manager»
+ reduceStrength(unsigned int) : void
+ destroy() : void

Event::GameEventManager

WorldEvent

«Message»
WorldEvent::ProjectileFireEvent

Ship Weapon Firing

-m_eventManager

0..1

monitor missiles count if limited

monitor lasers count if limited

monitor fuel amount if limited

«instantiate»

Inserts into world

«instantiate»

Inserts into world

«instantiate»

 Diagram: Static Game World Objects

class Static Game World Objects

Planet

+ TYPE_RED: unsigned short = 1 {readOnly}
+ TYPE_BLUE: unsigned short = 2 {readOnly}
+ TYPE_GREEN: unsigned short = 3 {readOnly}
- m_type: unsigned short

+ Planet(double, float, unsigned short)

«Access»
+ getType() : unsigned short

Item

+ Item()

constraints
{m_mass == 0}

FuelItem

- m_fuelAmount: unsigned int

+ FuelItem(unsigned int)

«Access»
+ getFuelAmount() : unsigned int

MissileItem

- m_numMissiles: unsigned int

+ MissileItem(unsigned int) : void

«Access»
+ getMissileCount() : unsigned int

WorldObject

StaticObject

SpawnPoint

- m_isFree: bool

+ SpawnPoint()

«Access»
+ isFree() : bool

«Manager»
+ toggleAvailability(bool) : void

constraints
{m_mass == 0}

 Diagram: EnterStateAction

class EnterStateAction

EnterStateAction

+ EnterStateAction(GameState)

«Event»
+ trigger() : void

Uses the Game singleton's enterState
function.

State::GameState
{root}

«singleton»
Game::Game

«instantiate»

enter game state

«call»

 Diagram: LeaveStateAction

class LeaveStateAction

State::GameState
{root}

«singleton»
Game::Game

LeaveStateAction

+ LeaveStateAction() : void

«Event»
+ trigger() : void

Accesses the current state through
the Game singleton and calls its
finish() function.

get current game state

«use»

finish

«call»

 Diagram: Menu

class Menu

Menu

- ITERATE_NONE: unsigned short = 1 {readOnly}
- ITERATE_BACKWARD: unsigned short = 2 {readOnly}
- ITERATE_FORWARD: unsigned short = 3 {readOnly}
- ITERATION_INIT_DELAY: unsigned short = 50 {readOnly}
- ITERATION_DELAY: unsigned short = 25 {readOnly}
- m_buttonIteration: unsigned short = ITERATE_NONE
- m_iterationCountdown: unsigned int

+ Menu(std::string)

«Event»
+ tick() : void

«Manager»
+ addButton(MenuButton) : void
+ toggleBackwardButtonIteration(bool) : void
+ toggleForwardButtonIteration(bool) : void
+ pressSelectedButton() : void
- selectPrevButton() : void
- selectNextButton() : void

GameState

State::MenuState

Details

MenuButton

«interface»
Util::Tickable

Responsible for holding a set of
buttons and prov iding
functionality to "press" them as
well as nav igate in the button
list.

-m_selectedButton

1

-m_buttons

1..*

Keeps updated

«maintain»

 Diagram: Menu Button

class Menu Button

EnterStateAction

+ EnterStateAction(GameState)

«Event»
+ trigger() : void

Uses the Game singleton's enterState function.

LeaveStateAction

+ LeaveStateAction() : void

«Event»
+ trigger() : void

Accesses the current state through the Game
singleton and calls its finish() function.

MenuButton

- m_name: std::string

+ MenuButton(std::string&)

«Access»
+ getName() : std::string&

«Event»
+ press() : void

Triggers contained action(s).

«Manager»
+ addAction(MenuAction&) : void

Details

Details

«interface»
MenuAction

«Event»
+ trigger() : void

-m_actions1..*

 Diagram: FinishStateControl

class FinishStateControl

GameControl

FinishStateControl
{leaf}

+ FinishStateControl(GameState*) : void

«Event»
+ activate() : void
+ deactivate() : void

State::GameState
{root}

Responsible for finishing the contained state
when activated.

-m_state

1

Finish

«call»

 Diagram: Game Controls

class Game Controls

Abstract game control class, whose leaf nodes
represent a specific game control, used to

manipulate the game state. Examples of possible
controls are: "pause game", "steer ship left", etc.

GameControl
{root}

- m_isActivated: bool

«Access»
+ isActivated() : bool

«Manager»
+ activate() : void
+ deactivate() : void

Game Play Controls

GamePlayControl Abstract class for controls that
manipulate the game play state
(e.g., ship steering).

MenuControl

Menu Navigation Controls

Controls used in a menu.

FinishStateControl
{leaf}

Details

Responsible for finishing the
contained state when activated.

ConfigKeyboardMapControl
{leaf}

Details

Responsible for reconfiguring
the mapping between a
keyboard key and a game
control.

All child controls must call their parent's
activate/deactivate functions if they receive

the corresponding call themselves.

 Diagram: Game Controls - Game Play

class Game Controls - Game Play

ShipLaserFireControl
{leaf}

ShipLeftControl
{leaf}

ShipMissileFireControl
{leaf}

ShipRightControl
{leaf}

ShipThrottleControl
{leaf}

PlayerControl

+ PlayerControl(Player*)

GameControl
{root}

GamePlayControl

PauseGameControl
{leaf}

Details

Details

Details

Details

Details

Details

Player::Player

-m_player

1

 Diagram: Game Controls - Menu Navigation

class Game Controls - Menu Navigation

GameControl

MenuControl

+ MenuControl(Menu*)

«Event»
+ deactivate() : void

PrevMenuButtonControl
{leaf}

NextMenuButtonControl
{leaf}

PressMenuButtonControl
{leaf}

Details

Details

Details

Menu::Menu
#m_menu

1

 Diagram: MenuNavigateDownAction

class MenuNavigateDownAction

MenuControl

NextMenuButtonControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Menu::Menu

Responsible for setting a menu's button
forward iteration on when activated, and
off when deactivated.

Start/stop button iteration

«manage»

 Diagram: MenuNavigateUpAction

Diagram: MenuPressAction

class MenuNavigateUpAction

MenuControl

PrevMenuButtonControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Menu::Menu

Responsible for setting a menu's button
backward iteration on when activated,
and off when deactivated.

Start/stop button iteration

«manage»

class MenuPressAction

MenuControl

PressMenuButtonControl
{leaf}

«Event»
+ activate() : void

Menu::Menu

Responsible for pressing the menu's
currently selected button.

Press selected button

«manage»

 Diagram: PauseGameControl

 Diagram: ReconfigKeyboardMapControl

class PauseGameControl

GamePlayControl

PauseGameControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

MenuState

State::PauseMenuState
{leaf}

«singleton»
Game::Game

Switch to pause menu

«call»

«instantiate»

class ReconfigKeyboardMapControl

GameControl

ConfigKeyboardMapControl
{leaf}

+ CTRL_P1_SHIP_THROTTLE: unsigned int = 1 {readOnly}
+ CTRL_P1_SHIP_LEFT: unsigned int = 2 {readOnly}
+ CTRL_P1_SHIP_RIGHT: unsigned int = 3 {readOnly}
+ CTRL_P1_SHIP_FIRE_LASER: unsigned int = 4 {readOnly}
+ CTRL_P1_SHIP_FIRE_MISSILE: unsigned int = 5 {readOnly}
+ CTRL_P2_SHIP_THROTTLE: unsigned int = 6 {readOnly}
+ CTRL_P2_SHIP_LEFT: unsigned int = 7 {readOnly}
+ CTRL_P2_SHIP_RIGHT: unsigned int = 8 {readOnly}
+ CTRL_P2_SHIP_FIRE_LASER: unsigned int = 9 {readOnly}
+ CTRL_P2_SHIP_FIRE_MISSILE: unsigned int = 10 {readOnly}
- m_controlAlias: unsigned int
- m_newKey: unsigned int
- m_done: bool = false

+ ConfigKeyboardMapControl(unsigned int)

«Access»
+ isDone() : bool

«Event»
+ activate() : void
+ deactivate() : void

«Manager»
+ setNewKey(unsigned int) : void

 Diagram: ShipLaserFireControl

 Diagram: ShipLeftControl

class ShipLaserFireControl

Player::Player

DestroyableObject
MovableObject

World::Ship

PlayerControl

ShipLaserFireControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Toggle laser gun on/off

«manipulate»

Get current ship

«access»

class ShipLeftControl

Player::Player

DestroyableObject
MovableObject

World::Ship

PlayerControl

ShipLeftControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Toggle left turning on/off

«manipulate»

Get current ship

«access»

 Diagram: ShipMissileFireControl

class ShipMissileFireControl

Player::Player

DestroyableObject
MovableObject

World::Ship

PlayerControl

ShipMissileFireControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Toggle missile launcher on/off

«manipulate»

Get current ship

«access»

 Diagram: ShipRightControl

Diagram: ShipThrottleControl

class ShipRightControl

PlayerControl

ShipRightControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Player::Player

DestroyableObject
MovableObject

World::Ship

Toggle right turning on/off

«manipulate»

Get current ship

«access»

class ShipThrottleControl

PlayerControl

ShipThrottleControl
{leaf}

«Event»
+ activate() : void
+ deactivate() : void

Player::Player

DestroyableObject
MovableObject

World::Ship

Toggle throttle on/off

«manipulate»

Get current ship

«access»

 Diagram: Player

Diagram: Game Event

class Player

Player

- m_name: std::string
- m_shipsLeft: unsigned short = 3
- m_killedShips: unsigned int = 0
- m_destroyedAsteroids: unsigned int = 0

+ Player(std::string&, Ship&)

«Access»
+ getName() : std::string&
+ getLives() : unsigned int
+ getCurrentShip() : Ship&
+ getDestroyedAsteroidsCount() : unsigned int
+ getDestroyedShipsCount() : unsigned int

«Event»
+ notifyEvent(GameEvent&) : void
+ notifyEvent(WorldDestructionEvent&) : void

«Manager»
+ init(Engine&) : void
- tryRespawnShip() : bool
- handleDetectedDestruction(WorldObject&, WorldObject&) : void
- handleDetectedDestruction(Ship&, Projectile&) : void

DestroyableObject
MovableObject

World::Ship

«interface»
Event::GameEventListener

Player - Ship Management

Player - Initialization

Responsible for maintaining generic statistics about a player's activ ity
in the game world, as well as for managing the player's ships.

World::World

-m_shipTemplate

1

-m_world

0..1

-m_currentShip

0..1

class Game Event

GameEventManager

«Manager»

+ cascadeEvent(GameEvent&) : void
+ registerListener(GameEventListener*) : void
+ unregisterListener(GameEventListener*) : void

«interface»
GameEventListener

«Event»
+ notifyEvent(GameEvent&) : void

Responsible for cascading every event that is
received to all registered observers (for
example, the view and audio module).

«Message»

GameEvent

The event shall not live longer than
during the cascading of and
notification about it, therefore of
<<Message>> stereotype.

Each GameEventListener is responsible for
making sure that it is registered as well as
unregistered before being destroyed.

World Events

-m_listeners

0..*

Cascade occuring events

«send»

Receive for cascade

«use»

 Diagram: Audio

class Audio

Infrastructure::FMOD

SoundManager

«Event»
+ tick() : void

Rechecks game module for
events/states that require a sound
to be played.

+ notifyEvent(GameEvent&) : void

«Manager»
+ init() : void
- playRepeat(unsigned short) : void
- playOnce(unsigned short) : void

«interface»
Util::Tickable

«interface»
Event::GameEventListener

«singleton»
Game::Game

Register self as tickable

«use»

Get current game state

«access»

 Diagram: View

class View

«interface»
Renderer

«Manager»
+ render() : void
+ init() : void

OpenGLRenderer

«Event»
+ tick() : void

«Manager»
+ init() : void
+ render() : void
- renderState(ControlsMenuState&) : void
- renderState(MenuState&) : void
- renderState(ControlsConfigMenuState&) : void
- renderState(HighScoreMenuState&) : void
- renderState(HelpMenuState&) : void
- renderState(SinglePlayerPlayState&) : void
- renderState(TwoPlayerPlayState&) : void
- renderSpriteManager(TextSpriteManager&) : void

«interface»
Util::Tickable

SpriteManager

«singleton»
Game::Game

-m_spriteManagerMap

0..*

-m_spriteManagerMapsStack

0..*

Register self as tickable

«use»

Get current game state

«access»

 Diagram: View - Sprite Managers

class View - Sprite Managers

«interface»
Event::GameEventListener

«interface»
Util::Tickable

SpriteSpriteManager

«Access»
+ getSpriteIterator() : map<Sprite*, Coord2d>::iterator

«Event»
+ tick() : void

Ticks active animation sprites.
+ notifyEvent(GameEvent&) : void

«Manager»
addActiveSprite(Sprite&, Coord2d&) : void
clearActiveSprites() : void

#m_spriteMap

1..*

-m_activeTickableSprites

0..*

-m_activeSprites

1..*

Diagram: View - Sprites

class View - Sprites

AnimationSprite

- m_animMap: std::map<unsigned short, std::vector<unsigned short> >
- m_frames: std::vector<unsigned short>*
- m_tickInterval: unsigned short
- m_tickCountdown: unsigned short
- m_animsTotal: unsigned short
- m_animsLeft: unsigned short = 0

+ AnimationSprite(unsigned short, unsigned short)
Calls parent constructor with the first frame in the animation.

+ AnimationSprite(unsigned short, unsigned short, unsigned short)
Calls parent constructor with the first frame in the animation.

«Access»
+ isFinished() : bool

«Event»
+ tick() : void

Decrements m_tickCountdown and if it reaches 0, advances to next
image frame, changing m_image, or, if repeat is requested and the last
element was reached, falls back to the first frame.

Sprite

m_image: unsigned short

+ Sprite(unsigned short)

«Access»
+ getImage() : unsigned short

«interface»
Util::Tickable

 Diagram: View - World Sprite Managers

class View - World Sprite Managers

ShipSpriteManager

MenuButtonSpriteManager

+ MenuButtonSpriteManager(std::string&)

TextSpriteManager

+ SIZE_SMALL: unsigned short = 1 {readOnly}
+ SIZE_LARGE: unsigned short = 2 {readOnly}
- m_size: unsigned short
- m_textLines: std::vector<std::vector<Sprite*> >
- m_charToSpriteMap: std::map<char, unsigned short> {readOnly}

+ TextSpriteManager(std::string&, unsigned short)

«Access»
+ getSize() : unsigned short

SpriteManager

«Access»
+ getSpriteIterator() : map<Sprite*, Coord2d>::iterator

«Event»
+ tick() : void

Ticks active animation sprites.
+ notifyEvent(GameEvent&) : void

«Manager»
addActiveSprite(Sprite&, Coord2d&) : void
clearActiveSprites() : void

AsteroidSpriteManager

LaserSpriteManager

MissileSpriteManager

FuelItemSpriteManager

MissileItemSpriteManager

PlanetSpriteManager

SpawnPointSpriteManager

 Diagram: ConfigRegistry

class ConfigRegistry

Registry

«singleton»
ConfigRegistry

- m_singleton: ConfigRegistry
- m_controls: std::map<unsigned short, unsigned short>
- m_localPlayer1Controls: std::map<unsigned short, unsigned short>
- m_localPlayer2Controls: std::map<unsigned short, unsigned short>
- m_gfxRoot: std::string
- m_sfxRoot: std::string

- ConfigRegistry()

«Helper»
+ instance() : ConfigRegistry&

«Access»
+ getControlKey(unsigned short) : unsigned short

Reads m_controls
+ getLocalPlayer1ControlKey(unsigned short) : unsigned short

Reads m_primaryLocalPlayerControls
+ getLocalPlayer2ControlKey(unsigned short) : unsigned short

Reads m_secondaryLocalPlayerControls
+ getGfxRoot() : std::string&
+ getSfxRoot() : std::string&

InputListener

Controller::KeyboardListener

Responsible to provide and handle persistence
for the game configuration.

Use CA_* constants

«use»

 Diagram: HighScoreRegistry

class HighScoreRegistry

Registry

«singleton»
HighScoreRegistry

- m_singleton: HighScoreRegistry* = 0
- m_highScores: std::multimap<std::string, unsigned int>

- HighScoreRegistry()
Loads data from high score file.

«Helper»
+ instance() : HighScoreRegistry&

«Access»
+ getHighScores() : std::multimap<std::string, unsigned int>

«Manager»
+ trySetHighScore(std::name&, unsigned int) : bool

Responsible for storing high scores in a file, as well as deciding what
scores should be considered being high scores.

 Diagram: Registry

class Registry

«singleton»
ConfigRegistry

«singleton»
HighScoreRegistry

constraints

{number of highscores <= 10}

«singleton»
WorldMapRegistry

Registry

«Manager»
saveToFile(std::string&, std::string&) : void
readFromFile(std::string&) : std::string*

Details

Details

Details

Responsible to prov ide and handle
persistence for the game configuration.

Responsible for storing high scores in a
file, as well as deciding what scores
should be considered being high
scores.

Responsible for generating game
worlds while being prov ided a map

name.

 Diagram: WorldMapRegistry

class WorldMapRegistry

Registry

«singleton»
WorldMapRegistry

- m_singleton: WorldMapRegistry* = 0
- m_maps: std::vector<std::string>

- WorldMapRegistry()

«Helper»
+ instance() : WorldMapRegistry&

«Access»
+ getMaps() : std::vector<std::string>::iterator

«Manager»
+ generateFromMap(std::string) : World

World::World

Responsible for generating game worlds while being
prov ided a map name.

Construct and return

«instantiate»

 Diagram: Util

class Util

Vector2d

- m_magnitude: float
- m_angle: float

+ Vector2d(float, float)

«Access»
+ getMagnitude() : float
+ getAngle() : float

Coord2d

- m_x: float
- m_y: float

+ Coord2d(float, float)

«Access»
+ getX() : float
+ getY() : float

Shape

CircularShape

- m_radius: float

+ CircularShape(float)

«Access»
+ getRadius() : float

5.3 State Charts

We have two main flow of control in this game. The first part is before starting the actual game

and navigating the menus. The second part is for what happens while actually playing the game.

5.3.1 Pre-Game Flow

From these menus it's possible to see your high score, get help and setup keyboard for how to

control the game. In the menus it's possible to say how you want to play the game, such as what

map to play at and also if you want to play multiplayer or single player game.

Main Menu

Controller Setup

High Score

Help

Single Player
Map Choice

Multiplayer
Map Choice

In Game Multiplayer
Include Game Play

In Game Single Player
Include Game Play

Select Menu Item
Controller SetupSave or Cancel and

return to Main Menu

Select Menu Item Help

Return to Main Menu

Select Menu Item
High Score

Return to
Main Menu

Select Menu
Item Multiplayer

Select Menu Item
Single Player

Quit Game
Return to Windows

Start Game
From Windows

Choose Map

Choose Map

From Pause Menu or
Player Killed (Multiplayer)

From In Game

5.3.2 In-Game Flow

While playing the game there is a main loop that takes care of reading the keyboard, calculating

game physics, playing sound and applying game logics.

Load Map

Read Controls

Apply Physics

Render Graphics

Play Soundeffect

Apply EventPause Menu

Continue Game

Pause Game

Exit Game (If Single Player Game)
Player Killed
To High Score

(If Multiplayer Game)
Player Killed
To Main Menu

From Map Choice

5.4 Interaction Diagrams

Diagram: Controller - Using an InputManager

sd Controller - Using an InputManager

User

KeyboardListener «singleton»

ConfigRegistry

InputManager

ShipLeftControl

GameControlManager

registerLocalPlayerControl(leftCtrl,
LOCAL_PLAYER_1)

enableListen(SHIP_LEFT,
controlManager->getSwitchPointer())

getLocalPlayer1ControlKey(SHIP_LEFT)
:unsigned short

refresh()
refresh()

[change to on detected]:activate()

[change to off detected]:deactivate()

Diagram: StateSwitch

sd StateSwitch

«singleton»

Game

MainMenuState MapChoiceMenuState SinglePlayerPlayState HighScoreMenuState

Note that the calls to
Game::enterState(...) have been left
out (i.e., the calls that trigger the state

switch in Game). The tick() calls have
also been left out, except for in the
final operation.

enterFrom(0)

enterFrom(mainMenuState)

enterFrom(singlePlayerMenuState)

getWorld() :World&

enterFrom(singlePlayerState)
[back button
pressed]:finish()

handleFallback(highScoreMenuState)

finish()

handleFallback(singlePlayerState)

finish()

*[is current state]:tick()

Diagram: Ship Weapon Firing

sd Ship Weapon Firing

Ship

User

LaserProjectile

«Message»

ProjectileFireEvent

GameEventManager World

Note that the cascading will
probably go to more listeners
than just the World, for
example, the audio module
may be interested, so that it
knows that a sound should
be played.

fireLaser()

cascadeEvent(projectileFireEvent)

notifyEvent(projectileFireEvent)

Diagram: Player - Ship Management

sd Player - Ship Management

PlayerGameEventManager World

notifyEvent(DestructionEvent(Ship))
[was player's ship] :tryRespawnShip() :
bool

[lives left]:queueInsert(ship)

 Diagram: Player - World Initialization

sd Player - World Initialization

PlayerEngine GameEventManager World

Player keeps a pointer to the ship that
he's inserting into the world. When a
removal event is received by Player,
then that pointer is either set to 0, or
repointed to a new ship.

init(this)

getEventManager() :EventManager&

registerListener(this)

getWorld() :World&

queueInsert(ship)

5.5 Detailed Design

Gravity

Audio

Responsible for playing sounds for the game. Does so by monitoring the Game module.

Audio::SoundManager

public Class

 Implements: GameEventListener, Tickable. : Responsible for monitoring the

Game module and playing sounds according to its state.

Audio::SoundManager Methods

Method Type Notes

 tick () «Event»

public abstract:

void

Notifies the object about that the time is being

incremented with one time unit.

Post-condition: Functional Time-Dependent State

Updated - The time-dependent state of the object is

updated.

Action:

 Rechecks game module for events/states that require

a sound to be played.

 notifyEvent

(GameEvent&)

«Event»

public abstract:

void

param: ev [GameEvent& - in]

Checks whether the occured game event should result

in a sound being played or not.

 init () «Manager»

public: void

Pre-condition: Functional Game singleton initialized

 playRepeat (unsigned

short)

«Manager»

private: void

param: soundAlias [unsigned short - in]

Plays a sound by repeating it.

 playOnce (unsigned

short)

«Manager»

private: void

param: soundAlias [unsigned short - in]

Plays a sound once.

Controller

Responsible for providing the Game module with an easy to use interface for registering

different game controls, so that they react on user input.

Controller::GameControlManager

package Class: Responsible for managing a control's activation/deactivation according to

changes registered by the input listener(s).

Controller::GameControlManager Attributes

Attribute Type Notes

 m_controlSwitch private :

bool

Tells the status of the most recently registered input

for this control, which means that the control may still

be activated when this is false.

Initial Value: false;

Controller::GameControlManager Methods

Method Type Notes

 GameControlManager

(GameControl&)

public: param: control [GameControl& - in]

Constructs a game control manager for a specific

game control.

 refresh () «Manager»

public: void

Synchronizes the contained game control with the

status of the m_switch member.

Action:

 1. If the control is activated and the input switch is

false, then the control is deactivated;

2. If the control is deactivated and the input switch is

true, then the control is activated;

3. If the control and the input switch have the

corresponding status, then nothing happens;

 getSwitchPointer () «Access»

public: bool*

Returns a pointer to the contained switch. Will be

called before making an input listener listen for input,

providing it with the switch that it will use to switch

according to input status.

Controller::InputListener

package abstract Class: Abstract input listener.

Controller::InputListener Attributes

Attribute Type Notes

 m_switches private :

std::map<unsig

ned short,

bool*>

Controller::InputListener Methods

Method Type Notes

 enableListen (unsigned

short, bool*)

«Manager»

public: void

param: controlAlias [unsigned short - in]

 One of the CA_* constants, specified by the

concrete listener.

param: controlSwitch [bool* - in]

 Pointer to a boolean switch to manipulate

according to input detected by the listener.

Enables listening for input associated with a control,

by specifying the alias for that control, and to

manipulate the provided boolean pointer depending

on whether the input says that the control should be

"switched on"=true or "switched off"=false.

Pre-condition: Functional Not already listening for

the specified control alias

Post-condition: Functional The virtual function

listen(unsigned short) called

 enableListen (unsigned

short)

«Manager»

protected

abstract: void

param: controlAlias [unsigned short - in]

Tells the input listener to listen for input associated

with the specified control alias, and to call switchOn

or switchOff when the input changes.

Pre-condition: Functional Not already listening for

the specified control alias

Post-condition: Functional Listener listens for input

associated with the control alias

 switchOn (unsigned

short)

«Manager»

protected: void

param: controlAlias [unsigned short - in]

Sets the boolean pointer associated with the specified

control alias to true.

Pre-condition: Functional The specified control alias

is being listened for

Action:

 Sets *(m_switches[controlAlias]) to true.

 switchOff (unsigned

short)

«Manager»

protected: void

param: controlAlias [unsigned short - in]

Sets the boolean pointer associated with the specified

control alias to false.

Pre-condition: Functional The specified control alias

is being listened for

Action:

 Sets *(m_switches[controlAlias]) to false.

Controller::InputManager

public Class: Responsible for detecting what game controls are requested to be activated or

deactivated based on current input, and calling the corresponding function on the contained game

control objects.

Controller::InputManager Attributes

Attribute Type Notes

LOCAL_PRIMARY_P

LAYER

public const

static :

unsigned short

A player type constant used when registering controls

for local player 1.

Initial Value: 1;

LOCAL_SECONDAR

Y_PLAYER

public const

static :

unsigned short

A player type constant used when registering controls

for local player 2.

Initial Value: 2;

Controller::InputManager Methods

Method Type Notes

 registerLocalControl

(NextMenuButtonContr

«Manager» param: control [NextMenuButtonControl& - in]

ol&) public: void

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

 registerLocalControl

(PrevMenuButtonContr

ol&)

«Manager»

public: void

param: control [PrevMenuButtonControl& - in]

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

 registerLocalControl

(PressMenuButtonContr

ol&)

«Manager»

public: void

param: control [PressMenuButtonControl& - in]

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

 registerLocalControl

(PauseGameControl&)

«Manager»

public: void

param: control [PauseGameControl& - in]

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

 registerLocalControl

(FinishStateControl&)

«Manager»

public: void

param: control [FinishStateControl& - in]

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

 registerLocalControl

(ConfigKeyboardMapC

ontrol&)

«Manager»

public: void

param: control [ConfigKeyboardMapControl& - in]

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

registerLocalPlayerCont

rol

(ShipThrottleControl&,

unsigned short)

«Manager»

public: void

param: control [ShipThrottleControl& - in]

param: playerType [unsigned short - in]

 Either LOCAL_PRIMARY_PLAYER or

LOCAL_SECONDARY_PLAYER.

Registers the ship throttle control for a local player,

specifying the player type (primary or secondary).

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

registerLocalPlayerCont

rol (ShipLeftControl&,

unsigned short)

«Manager»

public: void

param: control [ShipLeftControl& - in]

param: playerType [unsigned short - in]

 Either LOCAL_PRIMARY_PLAYER or

LOCAL_SECONDARY_PLAYER.

Registers a ship control for a local player, specifying

the player type (primary or secondary).

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

registerLocalPlayerCont

rol (ShipRightControl&,

unsigned short)

«Manager»

public: void

param: control [ShipRightControl& - in]

param: playerType [unsigned short - in]

 Either LOCAL_PRIMARY_PLAYER or

LOCAL_SECONDARY_PLAYER.

Registers a ship control for a local player, specifying

the player type (primary or secondary).

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

registerLocalPlayerCont

rol

(ShipLaserFireControl

&, unsigned short)

«Manager»

public: void

param: control [ShipLaserFireControl& - in]

param: playerType [unsigned short - in]

 Either LOCAL_PRIMARY_PLAYER or

LOCAL_SECONDARY_PLAYER.

Registers a ship control for a local player, specifying

the player type (primary or secondary).

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

registerLocalPlayerCont

rol

(ShipMissileFireControl

«Manager»

public: void

param: control [ShipMissileFireControl& - in]

param: playerType [unsigned short - in]

 Either LOCAL_PRIMARY_PLAYER or

&, unsigned short) LOCAL_SECONDARY_PLAYER.

Registers a ship control for a local player, specifying

the player type (primary or secondary).

Action:

 Creates a new instance out of the received game

control on the heap, creates a corresponding key

listener on the heap, and inserts the resulting pointers

in the Control-to-Listener map.

 refresh () «Manager»

public: void

Loops through the game control managers vector,

refreshing each one of these.

Post-condition: Functional Each contained control

manager received a refresh() call

 reset () «Manager»

public: void

Deactivates all currently active controls. Useful when

switching to a child game state and want to avoid

having controls left activated when falling back again.

Post-condition: Functional All contained active

controls deactivated

Action:

 Loops through the game control managers vector,

setting their control switch to false and refreshing

them.

Controller::KeyboardListener

public Class

 Extends: InputListener. : Responsible for monitoring a defined set of keyboard

keys and call InputListener::switchOn/switchOff functions when a key's status changes

(pressed/unpressed).

Controller::KeyboardListener Attributes

Attribute Type Notes

CA_MENU_BTN_NEX

T

public const

static :

unsigned short

Control Alias: Navigate to the next button in a menu.

Initial Value: 1;

CA_MENU_BTN_PRE

V

public const

static :

unsigned short

Control Alias: Navigate to the previous button in a

menu.

Initial Value: 2;

CA_MENU_BTN_PRE

SS

public const

static :

unsigned short

Control Alias: Press the currently selected button in a

menu.

Initial Value: 3;

CA_GAMEPLAY_PA

USE

public const

static :

unsigned short

Control Alias: Pause a game play session (state).

Initial Value: 4;

CA_GAMEPLAY_P1_

SHIP_THROTTLE

public const

static :

unsigned short

Control Alias: Throttle the ship of the first keyboard-

controlled player.

Initial Value: 5;

CA_GAMEPLAY_P1_

SHIP_LEFT

public const

static :

unsigned short

Control Alias: Left-turn the ship of the first keyboard-

controlled player.

Initial Value: 6;

CA_GAMEPLAY_P1_

SHIP_RIGHT

public const

static :

unsigned short

Control Alias: Right-turn the ship of the first

keyboard-controlled player.

Initial Value: 7;

CA_GAMEPLAY_P1_

SHIP_FIRE_LASER

public const

static :

unsigned short

Control Alias: Fire laser guns from the ship of the

first keyboard-controlled player.

Initial Value: 8;

CA_GAMEPLAY_P1_

public const

static :

Control Alias: Fire missiles from the ship of the first

keyboard-controlled player.

SHIP_FIRE_MISSILE unsigned short Initial Value: 9;

CA_GAMEPLAY_P2_

SHIP_THROTTLE

public const

static :

unsigned short

Control Alias: Throttle the ship of the second

keyboard-controlled player.

Initial Value: 10;

CA_GAMEPLAY_P2_

SHIP_LEFT

public const

static :

unsigned short

Control Alias: Left-turn the ship of the second

keyboard-controlled player.

Initial Value: 11;

CA_GAMEPLAY_P2_

SHIP_RIGHT

public const

static :

unsigned short

Control Alias: Right-turn the ship of the second

keyboard-controlled player.

Initial Value: 12;

CA_GAMEPLAY_P2_

SHIP_FIRE_LASER

public const

static :

unsigned short

Control Alias: Fire laser guns from the ship of the

second keyboard-controlled player.

Initial Value: 13;

CA_GAMEPLAY_P2_

SHIP_FIRE_MISSILE

public const

static :

unsigned short

Control Alias: Fire missiles from the ship of the

second keyboard-controlled player.

Initial Value: 14;

CA_FINISH_GAME_S

TATE

public const

static :

unsigned short

Control Alias: Finish the current game state.

Initial Value: 15;

CA_CONFIG_KEYMA

P

public const

static :

unsigned short

Control Alias: Configure the mapping between the

control and the keyboard.

Initial Value: 16;

 m_listenedKeysMap private :

std::map<unsig

ned short,

unsigned short>

Maps the codes of the listened keyboard keys to

control aliases.

Controller::KeyboardListener Methods

Method Type Notes

 enableListen (unsigned

short)

«Manager»

protected

abstract: void

param: controlAlias [unsigned short - in]

Starts listening for input associated with the specified

control alias, resulting in InputListener::switchOn/Off

being called when the corresponding key is

pressed/unpressed.

Pre-condition: Functional Not already listening for

the specified control alias

Post-condition: Functional Listener listens for input

associated with the control alias

Game

Contains the whole game logic. Responsible for handling all different game states, such as

menus, game play sessions, etc, as well as transitions between them. Further, the logic for each

game state is also found in here, for example, the game world itself, with ships, etc.

Game::Game

public «singleton» Class: Runs the main loop and forwards control to other game states by

calling their tick() function on synchronized time intervals. If a game state turns invalid, it will

be removed and a fallback to the previous state will be done.

Game::Game Attributes

Attribute Type Notes

 m_singleton private static :

Game

Contains the singleton instance of Game (self).

Initial Value: 0;

Game::Game Methods

Method Type Notes

 instance () «Manager»

public static:

Game

Creates a new Game instance if not already created

and returns it.

 getCurrentState () «Access»

public:

GameState&

Returns the current game state.

 init () «Manager»

public: void

Runs initialization code and starts the game by

starting up the main menu state loop by calling run().

Pre-condition: Functional Init not called before

Post-condition: Functional The game is in the main

menu state

 run () «Manager»

public: void

Runs the game loop.

Action:

 Runs game loop.

 enterState

(GameState&)

«Manager»

public: void

param: state [GameState& - in]

Enters a game state, pushing the previous one on a

stack.

Pre-condition: Functional The game state has not

been entered already

Post-condition: Functional Previous game state

pushed on stack

Post-condition: Functional The game state was

entered - The game state was entered and its enter()

function was called, specifying the state that it was

entered from.

 getStateLevel () «Access»

public: unsigned

int

Returns the level of the current state. Example: Main

Game State will always be at level 0, states entered

from the main state will have level 1, and so on.

 registerTickable

(Tickable*)

«Manager»

public: void

param: tickable [Tickable* - in]

Registers a tickable object to tick.

 unregisterTickable

(Tickable*)

«Manager»

public: void

param: tickable [Tickable* - in]

Unregisters a tickable object.

Control

Contains controls that represent all actions that a end-user can take during the execution of the

game application.

Control::GameControl

public abstract Class {root}: Abstract game control class, whose leaf nodes represent a specific

game control, used to manipulate the game state. Examples of possible controls are: "pause

game", "steer ship left", etc.

Control::GameControl Attributes

Attribute Type Notes

 m_isActivated private :

bool

Tells whether the control is activated or not.

Control::GameControl Methods

Method Type Notes

 isActivated () «Access»

public: bool

Tells whether the control is activated or not.

 activate () «Manager»

public abstract:

void

Activates the control.

 deactivate () «Manager»

public abstract:

void

Deactivates the control.

Pre-condition: Functional Control is activated

Control::MenuControl

public abstract Class

 Extends: GameControl. : Controls used in a menu.

Control::MenuControl Methods

Method Type Notes

 MenuControl (Menu*) public: param: menu [Menu* - in]

Constructs a menu control, specifying the menu that it

should control.

 deactivate () «Event»

public abstract:

void

Does nothing, as we, by default, haven't turned

anything on with activate() - just performed a one-

time action on the menu state's menu.

Post-condition: Functional Menu not affected

Control::PrevMenuButtonControl

public Class {leaf}

 Extends: MenuControl. : Responsible for setting a menu's button backward

iteration on when activated, and off when deactivated.

Control::PrevMenuButtonControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Starts a backward button iteration on the menu.

Post-condition: Functional Menu started a backward

button iteration

 deactivate () «Event»

public abstract:

void

Stops a backward button iteration on the menu.

Post-condition: Functional Menu stopped backward

button iteration

Control::NextMenuButtonControl

public Class {leaf}

 Extends: MenuControl. : Responsible for setting a menu's button forward

iteration on when activated, and off when deactivated.

Control::NextMenuButtonControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Starts a forward button iteration on the menu.

Post-condition: Functional Menu started a forward

button iteration

 deactivate () «Event»

public abstract:

void

Stops a forward button iteration on the menu.

Post-condition: Functional Menu stopped forward

button iteration

Control::PressMenuButtonControl

public Class {leaf}

 Extends: MenuControl. : Responsible for pressing the menu's currently selected

button.

Control::PressMenuButtonControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Presses the currently selected button in the current

menu state's menu.

Pre-condition: Functional Game is in a menu state

Post-condition: Functional Current menu state's

button pressed

Control::GamePlayControl

public abstract Class

 Extends: GameControl. : Abstract class for controls that manipulate the game

play state (e.g., ship steering).

Control::PauseGameControl

public Class {leaf}

 Extends: GamePlayControl. : Pause a game session.

Control::PauseGameControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Triggers a transition from a game play state to the

pause menu state.

Pre-condition: Functional Current state is a play state

Post-condition: Functional Current state is the pause

menu state

 deactivate () «Event»

public abstract:

void

No function (void).

Control::PlayerControl

public abstract Class

 Extends: GamePlayControl. : Abstract class for controls that affect a player.

Control::PlayerControl Methods

Method Type Notes

 PlayerControl

(Player*)

public: param: player [Player* - in]

 The ship to affect.

Constructs a ship control for a player.

Control::ShipThrottleControl

public Class {leaf}

 Extends: PlayerControl. : Throttle a ship.

Control::ShipThrottleControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Toggles the player's ship throttling on.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional The player's ship is

throttling

 deactivate () «Event»

public abstract:

void

Toggles the player's ship throttling off.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional The player's ship is not

throttling

Control::ShipLeftControl

public Class {leaf}

 Extends: PlayerControl. : Turn a ship left.

Control::ShipLeftControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Turns the player's ship left turning operation on.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional The player's ship started

the left turning operation

 deactivate () «Event»

public abstract:

void

Turns the player's ship left turning operation off.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional The player's ship stopped

the left turning operation

Control::ShipRightControl

public Class {leaf}

 Extends: PlayerControl. : Turn a ship right.

Control::ShipRightControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Turns the player's ship right turning operation on.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional The player's ship started

the right turning operation

 deactivate () «Event»

public abstract:

void

Turns the player's ship right turning operation off.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional The player's ship stopped

the right turning operation

Control::ShipLaserFireControl

public Class {leaf}

 Extends: PlayerControl. : Fire a ship's laser gun.

Control::ShipLaserFireControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Toggles the laser gun on the player's ship on.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional Laser gun on the player's

ship toggled on

 deactivate () «Event»

public abstract:

void

Toggles the laser gun on the player's ship off.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional Laser gun on the player's

ship toggled off

Control::ShipMissileFireControl

public Class {leaf}

 Extends: PlayerControl. : Fire a ship's missile launcher.

Control::ShipMissileFireControl Methods

Method Type Notes

 activate () «Event»

public abstract:

void

Toggles the missile launcher on the player's ship on.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional Missile launcher on the

player's ship toggled on

 deactivate () «Event»

public abstract:

void

Toggles the missile launcher on the player's ship off.

Pre-condition: Functional Current game state is a

play state

Post-condition: Functional Missile launcher on the

player's ship toggled off

Control::FinishStateControl

public Class {leaf}

 Extends: GameControl. : Responsible for finishing the contained state when

activated.

Control::FinishStateControl Methods

Method Type Notes

 FinishStateControl

(GameState*)

public: void param: state [GameState* - in]

Constructs a finish state control for the specified

game state.

 activate () «Event»

public abstract:

void

Finishes the contained state.

Post-condition: Functional Contained game state

finished

 deactivate () «Event»

public abstract:

void

Does nothing.

Post-condition: Functional Nothing done

Control::ConfigKeyboardMapControl

public Class {leaf}

 Extends: GameControl. : Responsible for reconfiguring the mapping between a

keyboard key and a game control.

Control::ConfigKeyboardMapControl Attributes

Attribute Type Notes

CTRL_P1_SHIP_THR

OTTLE

public const

static :

unsigned int

Player one ship throttle.

Initial Value: 1;

 CTRL_P1_SHIP_LEFT public const

static :

unsigned int

Player one ship left.

Initial Value: 2;

CTRL_P1_SHIP_RIGH

T

public const

static :

unsigned int

Player one ship right.

Initial Value: 3;

CTRL_P1_SHIP_FIRE

_LASER

public const

static :

unsigned int

Player one ship laser fire.

Initial Value: 4;

CTRL_P1_SHIP_FIRE

_MISSILE

public const

static :

unsigned int

Player one ship missile fire.

Initial Value: 5;

CTRL_P2_SHIP_THR

OTTLE

public const

static :

unsigned int

Player two ship throttle.

Initial Value: 6;

 CTRL_P2_SHIP_LEFT public const

static :

unsigned int

Player two ship left.

Initial Value: 7;

CTRL_P2_SHIP_RIGH

T

public const

static :

unsigned int

Player two ship right.

Initial Value: 8;

CTRL_P2_SHIP_FIRE

_LASER

public const

static :

unsigned int

Player two ship laser fire.

Initial Value: 9;

CTRL_P2_SHIP_FIRE

_MISSILE

public const

static :

unsigned int

Player two ship missile fire.

Initial Value: 10;

 m_controlAlias private :

unsigned int

The alias of the control to reconfigure.

 m_newKey private :

unsigned int

The new key to set for the control (will be set by

keyboard listener).

 m_done private :

bool

Tells whether the reconfiguration has been done or

not.

Initial Value: false;

Control::ConfigKeyboardMapControl Methods

Method Type Notes

ConfigKeyboardMapCo

ntrol (unsigned int)

public: param: controlAlias [unsigned int - in]

 Must be one of the CTRL_* constants in this class.

Constructs a keyboard map reconfig control,

specifying the alias for the control that is to be

reconfigured.

 isDone () «Access»

public: bool

Tells whether the reconfiguration has been done or

not.

 activate () «Event»

public abstract:

void

Saves the new key by overwriting the old setting.

Pre-condition: Functional New key has been set - In

order to activate this control and save a new key

configuration, we have to know the key, i.e.,

setNewKey has been called.

 deactivate () «Event»

public abstract:

void

Updates the state of this control to "done".

Post-condition: Functional Control status set to done

 setNewKey (unsigned

int)

«Manager»

public: void

param: key [unsigned int - in]

Sets the new keyboard key for the control. Will be

called by keyboard when a key press is detected.

Note, however, that this function will not actually

save the new key, it will just update the class' state.

To save the key, activate() must be called.

Engine

Contains handlers (strategies) for the world, as well as the engine that is responsible for

maintaining the world. Examples of strategies are: Collision Strategy and Gravity Strategy.

Engine::Engine

public Class

 Implements: Tickable. : Responsible for maintaining the players and the game

world they play within.

Engine::Engine Methods

Method Type Notes

 Engine () public: Constructs a game engine.

 getWorld () «Access»

public: World&

Returns the game world instance.

 getPlayer (unsigned int) «Access»

public: Player&

param: num [unsigned int - in]

Returns the player that is associated with the specified

number (first=0, second=1, ...).

 getPlayers () «Access»

public:

std::vector<Pla

yer>::iterator

Returns an iterator of all contained players. May be

called by the game state to check if a player has lost

or not, for example.

 tick () «Event»

public abstract:

void

Ticks the world instance.

Post-condition: Functional World has received a tick

call

 init (World&) «Manager» param: world [World& - in]

public: void

Initiates the engine by specifying the game world that

it should use. The world will be validated before put

into use, resulting in a thrown exception if the world

is invalid.

Pre-condition: Functional All players are added

Pre-condition: Functional World contains no

movable objects - No movable objects are allowed to

be present in the world initially (as this complicates

its validation).

Post-condition: Functional All players initialized -

All players are initialized, being provided the game

world.

Post-condition: Functional Event manager created

Post-condition: Functional World is registered as a

listener in the event manager

Post-condition: Functional World is validated

 addPlayer (Player&) «Manager»

public: void

param: player [Player& - in]

Adds a player to the engine. For each added player

the next player's number increases with 1, starting at

0.

Pre-condition: Functional init() not ran

Pre-condition: Functional Player not present in

engine

Post-condition: Functional Player present in engine

 validateWorld (World) «Helper»

public: void

param: world [World - in]

Makes sure that no static objects are intersecting and

that no movable objects are present.

WorldEvent

Contains event representation classes as well as a world event manager and a related interface for

world event listeners.

WorldEvent::CollisionEvent

public «Message» Message

 Extends: WorldEvent. : Represents an event of a collision between two objects

in the game world and provides these objects. This event should be cascaded ONCE for each

collision (i.e., we do not differentiate the objects participating in the collision here). Further, a

collision event is expected to be cascaded regardless of whether one or both of the colliders were

destroyed.

WorldEvent::CollisionEvent Methods

Method Type Notes

 CollisionEvent

(WorldObject*,

WorldObject*)

public: param: wo1 [WorldObject* - in]

param: wo2 [WorldObject* - in]

Constructs a collision event with the specified

participating world objects.

 getFirst () «Access»

public const:

WorldObject&

Returns the first of the two world objects that

participated in the collision.

 getSecond () «Access»

public const:

WorldObject&

Returns the second of the two world objects that

participated in the collision.

WorldEvent::DamageEvent

public «Message» Message

 Extends: WorldEvent. : Represents a damage event and provides the destroyable

object that was damaged (which isn't the same as being destroyed).

WorldEvent::DamageEvent Methods

Method Type Notes

 DamageEvent

(DestroyableObject&)

public: param: wo [DestroyableObject& - in]

Constructs a damage event, specifying the damaged

object.

 getDamaged () «Access»

public const:

DestroyableObj

ect&

Returns the object that was damaged.

WorldEvent::DestructionEvent

public «Message» Message

 Extends: WorldEvent. : Represents a destruction event and provides the

destroyable object that was destroyed as well as the world object that caused its destruction (by,

for example, colliding with it). A destruction event must not be treated as a RemovalOrderEvent,

and vice versa, as a destruction doesn't necessarily mean that the object will be removed before

next tick.

WorldEvent::DestructionEvent Methods

Method Type Notes

 DestructionEvent

(DestroyableObject&,

WorldObject&)

public: param: wo [DestroyableObject& - in]

param: cause [WorldObject& - in]

 The world object causing the destruction.

Constructs a destruction event, specifying the

destroyed object as well as the world object that

caused its destruction.

 getDestroyed () «Access»

public const:

DestroyableObj

ect&

Returns the object that was destroyed.

WorldEvent::InsertionEvent

public «Message» Message

 Extends: WorldEvent. : Represents the event of a world object being inserted

into the game world (i.e., not queued for insertion!).

WorldEvent::InsertionEvent Methods

Method Type Notes

 InsertionEvent

(WorldObject*)

public: param: wo [WorldObject* - in]

Constructs a world insertion event.

 getInserted () «Access»

public const:

WorldObject&

Returns the world object that was inserted into the

world.

WorldEvent::ItemPickupEvent

public «Message» Message

 Extends: WorldEvent. : Represents the event of a ship picking up an item, and

provides both the ship and the picked up item.

WorldEvent::ItemPickupEvent Methods

Method Type Notes

 ItemPickupEvent

(Item*, Ship*)

public: param: item [Item* - in]

param: ship [Ship* - in]

 getItem () «Access»

public const:

Item&

Returns the item that was picked up by the ship.

 getShip () «Access»

public const:

Ship&

Returns the ship that picked up the item.

WorldEvent::ProjectileFireEvent

public «Message» Message

 Extends: WorldEvent. : Represents the event of firing a projectile and provides

the projectile that was fired.

WorldEvent::ProjectileFireEvent Methods

Method Type Notes

 ProjectileFireEvent

(Projectile*)

public: param: projectile [Projectile* - in]

 getProjectile () «Access»

public const:

Projectile&

Returns the projectile that was fired.

WorldEvent::RemovalOrderEvent

public «Message» Message

 Extends: WorldEvent. : Represents the event of the world being ordered to

remove a world object and provides that object. The removal order will be realized at the end of

the world's current tick call. This event should be listened for by all classes that are keeping

pointers to world objects, so that they know when to get rid of them.

WorldEvent::RemovalOrderEvent Methods

Method Type Notes

 RemovalOrderEvent

(WorldObject*)

public: param: wo [WorldObject* - in]

Constructs a removal event of the specified world

object.

Pre-condition: Functional World object not removed

- The world object must not be removed until this

event has finished cascading.

 getWorldObject () «Access»

public const:

WorldObject&

Returns the world object that is to be removed from

the world (i.e., is not removed *yet*).

WorldEvent::WorldEvent

public «Message» Message

 Extends: GameEvent. :

WorldLife

Contains world strategies for management of the world's life, i.e., inserting and removing world

objects according to the rules defined by the strategies.

WorldLife::AsteroidStrategy

public Class

 Implements: WorldStrategy. : Responsible for providing the world with

asteroids, based on time-based constraints.

WorldLife::AsteroidStrategy Methods

Method Type Notes

 AsteroidStrategy

(unsigned int)

public: param: timeDelta [unsigned int - in]

 The world time delta between asteroid insertions.

Constructs an asteroid insertion world strategy,

specifying the world time delta to wait between

asteroid insertions.

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Throws in a pre-defined amount (see constructor) of

asteroids into the world on each call. If the defined

amount is less than 1, it will mean that an asteroid

will not be thrown in on each call, but more rarely.

WorldLife::ExpirationStrategy

public Class

 Implements: GameEventListener, WorldStrategy. : Responsible for deciding

what world objects should expire and when they should do so, resulting in being removed from

the world. Examples are: projectiles, which shouldn't be in the world too long.

WorldLife::ExpirationStrategy Attributes

Attribute Type Notes

 m_laserExpire private :

unsigned int

The number of ticks from a laser's detection to its

expiration.

Initial Value: 0;

 m_missileExpire private :

unsigned int

The number of ticks from a missile's detection to its

expiration.

Initial Value: 0;

 m_missileItemExpire private :

unsigned int

The number of ticks from a missile item's detection to

its expiration.

Initial Value: 0;

 m_fuelItemExpire private :

unsigned int

The number of ticks from a fuel item's detection to its

expiration.

Initial Value: 0;

WorldLife::ExpirationStrategy Methods

Method Type Notes

 ExpirationStrategy

(EventManager*)

public: void param: eventManager [EventManager* - in]

Constructs an expiration strategy with the specified

event manager to register itself in.

Post-condition: Functional Expiration strategy

registered as a listener in event manager

 notifyEvent

(GameEvent&)

«Manager»

public abstract:

void

param: ev [GameEvent& - in]

Notifies the expiration strategy about an occuring

event. By default, no action taken (see function

overload(s)).

 notifyEvent

(RemovalEvent&)

«Manager»

public abstract:

void

param: ev [RemovalEvent& - in]

Notifies the expiration strategy about an occuring

world removal event.

Post-condition: Functional The removed world object

not found in internal pointers - The queues of world

object pointers that we store internally must not

contain pointers to objects that are being removed

from the world.

Action:

 Removes possible internal pointers to the objects that

are being removed from the world.

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Applies a world strategy on a world instance.

Post-condition: Functional World state changed

according to strategy

Action:

 Calls handleExpiration() for each object in the world.

 setLaserExpiration

(unsigned int)

«Manager»

public: void

param: ticks [unsigned int - in]

Sets the number of ticks to receive before a laser is

removed from the world. Setting ticks to 0 means that

it will last until removed in a natural way.

 setMissileExpiration

(unsigned int)

«Manager»

public: void

param: ticks [unsigned int - in]

Sets the number of ticks to receive before a missile is

removed from the world. Setting ticks to 0 means that

it will last until removed in a natural way.

setMissileItemExpiratio

n (unsigned int)

«Manager»

public: void

param: ticks [unsigned int - in]

Sets the number of ticks to receive before a missile

item is removed from the world. Setting ticks to 0

means that it will last until removed in a natural way.

 setFuelItemExpiration

(unsigned int)

«Manager»

public: void

param: ticks [unsigned int - in]

Sets the number of ticks to receive before a fuel item

is removed from the world. Setting ticks to 0 means

that it will last until removed in a natural way.

 handleExpiration

(WorldObject&)

«Manager»

private: void

param: wo [WorldObject& - in]

Does no handling for a generic world object.

 handleExpiration

(LaserProjectile&)

«Manager»

private: void

param: laser [LaserProjectile& - in]

Handle's a laser's expiration.

Post-condition: Functional If no expiration, then not

inserted into monitor queue

Action:

 Checks whether the laser already is monitored or not,

and if not, then it will be put into the monitoring

queue. If, on the other hand, the laser already is

monitored, then an expiration check will be done,

and, if expired, the laser will be put into the world's

remove queue.

 handleExpiration

(MissileProjectile&)

«Manager»

private: void

param: missile [MissileProjectile& - in]

Handle's a missile's expiration.

Post-condition: Functional If no expiration, then not

inserted into monitor queue

Action:

 Checks whether the missile already is monitored or

not, and if not, then it will be put into the monitoring

queue. If, on the other hand, the missile already is

monitored, then an expiration check will be done,

and, if expired, the missile will be put into the world's

remove queue.

 handleExpiration

(MissileItem&)

«Manager»

private: void

param: missileItem [MissileItem& - in]

Handle's a missile item's expiration.

Post-condition: Functional If no expiration, then not

inserted into monitor queue

Action:

 Checks whether the missile item already is monitored

or not, and if not, then it will be put into the

monitoring queue. If, on the other hand, the item

already is monitored, then an expiration check will be

done, and, if expired, the item will be put into the

world's remove queue.

 handleExpiration

(FuelItem&)

«Manager»

private: void

param: fuelItem [FuelItem& - in]

Handle's a fuel item's expiration.

Post-condition: Functional If no expiration, then not

inserted into monitor queue

Action:

 Checks whether the fuel item already is monitored or

not, and if not, then it will be put into the monitoring

queue. If, on the other hand, the item already is

monitored, then an expiration check will be done,

and, if expired, the item will be put into the world's

remove queue.

WorldLife::ItemStrategy

public Class

 Implements: WorldStrategy. : Responsible for providing the world with items,

based on time-based constraints.

WorldLife::ItemStrategy Methods

Method Type Notes

 registerItem (Item,

unsigned int)

«Manager»

public: void

param: item [Item - in]

param: interval [unsigned int - in]

 World time delta between insertions.

Registers an item, specifying the time interval

between its insertions into the world.

Pre-condition: Functional Item not already added

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Checks if there are items that should be inserted into

the world, and does insert them if found.

WorldPhysics

Contains managers of the physics in the world.

WorldPhysics::BoundaryStrategy

public abstract Class

 Implements: WorldStrategy. : Responsible for making sure that each and every

world object is within the world boundaries defined in this object, and if it's not, then it is

repositioned according to the reposition() implementation in the concrete class.

WorldPhysics::BoundaryStrategy Methods

Method Type Notes

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Makes sure that all world objects are within the

defined boundaries. If their not, then they will be

repositioned to match that constraint.

Post-condition: Functional All world objects are

found within defined boundaries - All objects in the

world are found within the defined world boundaries.

Action:

 Loops through all world objects, applying

reposition() if isBeyond().

 reposition

(WorldObject)

«Manager»

protected

abstract: void

param: wo [WorldObject - in]

Repositions a world object without affecting its

movement direction or magnitude.

Pre-condition: Functional World object goes beyond

the boundaries - A world object has gone beyond the

world boundaries at some point.

Post-condition: Functional World object is found

within the boundaries - The world object is moved

back into the area defined by the world boundary

instance.

Post-condition: Functional World object's movement

direction not changed - The movement direction of

the world object must be the same as it was before the

repositioning.

Post-condition: Functional World object's movement

unchanged - The movement direction and magnitude

of the world object must be the same as it was before

the repositioning.

 isBeyond

(WorldObject)

«Access»

protected

abstract: bool

param: wo [WorldObject - in]

Tells whether an object in the world is beyond the

world boundaries or not.

WorldPhysics::CollisionStrategy

public Class

 Implements: WorldStrategy. : Responsible for detecting and handling collisions

between objects in the game world, provided a game world instance.

WorldPhysics::CollisionStrategy Methods

Method Type Notes

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Searches for and handles collisions in the world.

Post-condition: Functional All collisions in the world

are handled

Post-condition: Functional All non-handled spawn

points available - All spawn points that weren't

intersected by anything have their availability set to

true.

 handleCollision

(WorldObject&,

WorldObject&)

«Manager»

private abstract:

void

param: active [WorldObject& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [WorldObject& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Leaves active object unaffected. This function catches

all cases where no collision handling is required.

Post-condition: Functional Active world object

unaffected

 handleCollision

(Item&, Ship&)

«Manager»

private abstract:

void

param: active [Item& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Ship& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Removes the item as a result of it being picked up by

the ship.

Post-condition: Functional Item is put into the

world's remove queue

 handleCollision «Manager» param: active [Ship& - in]

(Ship&, FuelItem&) private abstract:

void

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [FuelItem& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Increases the ship's fuel level.

Post-condition: Functional Ship's fuel level increased

 handleCollision

(Ship&, MissileItem&)

«Manager»

private abstract:

void

param: active [Ship& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [MissileItem& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Increases the ship's missile count.

Post-condition: Functional Ship's missile count

increased

 handleCollision

(SpawnPoint&,

MovableObject&)

«Manager»

private abstract:

void

param: active [SpawnPoint& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [MovableObject& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Sets the spawn point to not being free (see

SpawnPoint::toggleFree()). Note that: if an item

appears on a spawn point, the spawn point shall still

be considered free.

Post-condition: Functional Spawn point not free

 handleCollision

(Projectile&,

DestroyableObject&)

«Manager»

private abstract:

void

param: active [Projectile& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [DestroyableObject& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Puts the projectile in the world's remove queue, as it

is considered consumed.

Post-condition: Functional Projectile put into the

world's remove queue

 handleCollision

(DestroyableObject&,

Projectile&)

«Manager»

private abstract:

void

param: active [DestroyableObject& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Projectile& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Causes damage on the destroyable object, according

to the projectile's "max damage strength".

Post-condition: Functional Damage caused to the

destroyable object

 handleCollision

(DestroyableObject&,

Planet&)

«Manager»

private abstract:

void

param: active [DestroyableObject& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Planet& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Destroys the destroyable object.

Post-condition: Functional The destroyable is

destroyed

 handleCollision

(Asteroid&, Asteroid&)

«Manager»

private abstract:

void

param: active [Asteroid& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Asteroid& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Causes damage on the active asteroid according to the

collision power (i.e., the movement towards the other

asteroid).

Post-condition: Functional Active asteroid damaged

 handleCollision

(Ship&, Ship&)

«Manager»

private abstract:

void

param: active [Ship& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Ship& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Causes damage on the active ship according to the

collision power (i.e., the movement towards the other

ship).

Post-condition: Functional Active ship damaged

 handleCollision

(Ship&, Asteroid&)

«Manager»

private abstract:

void

param: active [Ship& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Asteroid& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Causes damage to the ship according to the collision

power (i.e., the movement towards the asteroid).

Post-condition: Functional Ship damaged

 handleCollision

(Asteroid&, Ship&)

«Manager»

private abstract:

void

param: active [Asteroid& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Ship& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Causes damage to the asteroid according to the

collision power (i.e., the movement towards the ship).

Post-condition: Functional Asteroid damaged

 handleCollision

(LaserProjectile&,

Planet&)

«Manager»

private abstract:

void

param: active [LaserProjectile& - in]

 The world object that actively participates in the

intersection, i.e., may be affected by it.

param: passive [Planet& - in]

 The world object that passively participates in the

intersection, i.e., will not be affected by it (in this

function).

Bounces the laser projectile on the planet.

Post-condition: Functional Laser projectile set off in

a direction from the planet

 collidesWith

(WorldObject&,

WorldObject&)

«Helper»

private: bool

param: wo1 [WorldObject& - in]

param: wo2 [WorldObject& - in]

Tells whether two objects collide or not.

WorldPhysics::GravityStrategy

public Class

 Implements: WorldStrategy. : Responsible for calculating and applying gravity

affections for each gravity-affectable game world object.

WorldPhysics::GravityStrategy Methods

Method Type Notes

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Affects all movable world objects found in the world

according to their gravity fields.

Post-condition: Functional Movable objects'

movement affected - The world objects found in the

range of one or more gravity fields are affected by the

corresponding gravity vectors.

 affect (WorldObject&,

WorldObject&)

«Manager»

private: void

param: wo1 [WorldObject& - in]

param: wo2 [WorldObject& - in]

Does no affection. This function only exists to catch

all cases which the other affect function(s) can't

handle.

 affect

(MovableObject&,

Planet&)

«Manager»

private: void

param: mwo [MovableObject& - in]

param: swo [Planet& - in]

Affects a movable object with a planet's gravity, in

proportion to the object's mass.

WorldPhysics::RectangularBoundaryStrategy

public Class

 Extends: BoundaryStrategy. : Represents the world boundaries, i.e., the area that

world objects are allowed to appear on. Here, the world boundaries have a rectangular shape.

WorldPhysics::RectangularBoundaryStrategy Methods

Method Type Notes

RectangularBoundarySt

rategy (Coord2d,

Coord2d)

public: param: upperLeft [Coord2d - in]

param: lowerRight [Coord2d - in]

Constructs a rectangular boundary with specified

upper left and lower right coordinates, this way

defining the boundaries.

 reposition

(WorldObject)

«Manager»

protected

abstract: void

param: wo [WorldObject - in]

Repositions a world object without affecting its

movement direction or magnitude. See pre and post

conditions for algorithm details.

Pre-condition: Functional World object goes beyond

the boundaries - A world object has gone beyond the

world boundaries at some point.

Post-condition: Functional World object is found

within the boundaries - The world object is moved

back into the area defined by the world boundary

instance.

Post-condition: Functional World object's movement

direction not changed - The movement direction of

the world object must be the same as it was before the

repositioning.

Post-condition: Functional World object's movement

unchanged - The movement direction and magnitude

of the world object must be the same as it was before

the repositioning.

Post-condition: Functional World object's position

mirrored twice - The world object's new position is a

result of mirroring its previous position on both the

vertical and the horizontal axis.

 isBeyond

(WorldObject)

«Access»

protected

abstract: bool

param: wo [WorldObject - in]

Tells whether an object in the world is beyond the

rectangular world boundaries or not.

Event

Contains game event manager, game event listener interface and game event interface, this way

providing a way to detect any occuring game event from anywhere.

Event::GameEvent

public «Message» Message: Abstract world event class, bringing all events together under a

common type.

Event::GameEventManager

public Class: Responsible for cascading every event that is received to all registered observers

(for example, the view and audio module).

Event::GameEventManager Methods

Method Type Notes

 cascadeEvent

(GameEvent&)

«Manager»

public: void

param: ev [GameEvent& - in]

Cascades an event to all registered listeners.

Pre-condition: Functional At least one event listener

present

Post-condition: Functional All registered listeners

received the event

Post-condition: Functional No listener has stored the

event - It must not happen that a listener stores the

events he receives, as the contained pointers may

become invalid before next tick.

 registerListener

(GameEventListener*)

«Manager»

public: void

param: listener [GameEventListener* - in]

Registers an event listener.

Post-condition: Functional Listener inserted into

m_listeners

 unregisterListener

(GameEventListener*)

«Manager»

public: void

param: listener [GameEventListener* - in]

Unregisters an event listener.

Pre-condition: Functional The listener is present in

event manager

Post-condition: Functional The listener is removed

from event manager

Event::GameEventListener

public abstract «interface» Interface: Defines the interface of a class that needs to listen for

game events.

Event::GameEventListener Interfaces

Method Type Notes

 notifyEvent

(GameEvent&)

«Event»

public abstract:

void

param: ev [GameEvent& - in]

Notifies the listener about an occuring game event.

Menu

Contains a representation of a menu and its items.

Menu::EnterStateAction

public Class

 Implements: MenuAction. : Responsible for entering a new state from the

current one.

Menu::EnterStateAction Methods

Method Type Notes

 EnterStateAction

(GameState)

public: param: state [GameState - in]

Constructs an enter game state action, specifying the

game state instance to enter.

 trigger () «Event»

public abstract:

void

Triggers a transition from current game state to a new

game state.

Post-condition: Functional The contained game state

is entered

Action:

 Uses the Game singleton's enterState function.

Menu::LeaveStateAction

public Class

 Implements: MenuAction. : Responsible for leaving the current state to the

previous one, or if none is available, to quit the game.

Menu::LeaveStateAction Methods

Method Type Notes

 LeaveStateAction () public: void Constructs a leave game state action.

 trigger () «Event»

public abstract:

void

Finishes the current game state.

Post-condition: Functional Current game state is set

to finished

Action:

 Accesses the current state through the Game

singleton and calls its finish() function.

Menu::Menu

public Class

 Implements: Tickable. : Responsible for holding a set of buttons and providing

functionality to "press" them as well as navigate in the button list.

Menu::Menu Attributes

Attribute Type Notes

 ITERATE_NONE private const

static :

unsigned short

Initial Value: 1;

ITERATE_BACKWAR

D

private const

static :

unsigned short

Initial Value: 2;

 ITERATE_FORWARD private const

static :

unsigned short

Initial Value: 3;

ITERATION_INIT_DE

LAY

private const

static :

unsigned short

The number of ticks to wait before continuing the

iteration after the first selection. Example: If we're on

button "FOO" and then start an iteration, where the

next button is "BAR", then this delay defines the

number of ticks that we should stay on button "BAR"

before entering a faster iteration over the rest of the

buttons.

Initial Value: 50;

 ITERATION_DELAY private const

static :

unsigned short

The number of ticks to wait on each button during an

ongoing iteration.

Initial Value: 25;

 m_buttonIteration private :

unsigned short

The button iteration mode.

Initial Value: ITERATE_NONE;

 m_iterationCountdown private :

unsigned int

Number of ticks left before continuing an ongoing

iteration.

Menu::Menu Methods

Method Type Notes

 Menu (std::string) public: param: title [std::string - in]

Constructs a menu, specifying its title.

 tick () «Event»

public abstract:

void

Does button iteration when on.

Post-condition: Functional Time-Dependent State

Updated - The time-dependent state of the object is

updated.

 addButton

(MenuButton)

«Manager»

public: void

param: item [MenuButton - in]

Adds a button to the menu. Insert order defines

appearance order.

toggleBackwardButtonIt

eration (bool)

«Manager»

public: void

param: switchTo [bool - in]

Toggles the backward iteration over the buttons in the

menu.

Pre-condition: Functional Button list is not empty -

Should be catched and handled internally, i.e., ignore

navigation.

toggleForwardButtonIte

ration (bool)

«Manager»

public: void

param: switchTo [bool - in]

Toggles the forward iteration over the buttons in the

menu.

Pre-condition: Functional Button list is not empty -

Should be catched and handled internally, i.e., ignore

navigation.

 pressSelectedButton () «Manager»

public: void

Presses the currently selected button.

Post-condition: Functional Currently selected button

is pressed - The button's press() function is called.

 selectPrevButton () «Manager»

private: void

Goes one step backward in the button list, selecting

the previous button.

Pre-condition: Functional Button is not the first one

in the list - Should be catched and handled internally,

i.e., ignore navigation.

Pre-condition: Functional Button list is not empty -

Should be catched and handled internally, i.e., ignore

navigation.

Post-condition: Functional Previous button selected

 selectNextButton () «Manager»

private: void

Goes one step forward in the button list, selecting the

next button.

Pre-condition: Functional Button is not the last one in

the list - Should be catched and handled internally,

i.e., ignore navigation.

Pre-condition: Functional The button list is not

empty - Should be catched and handled internally,

i.e., ignore navigation.

Post-condition: Functional Next button selected

Menu::MenuButton

public Class: Responsible for holding one or more actions to take when pressed.

Menu::MenuButton Attributes

Attribute Type Notes

 m_name private :

std::string

The button's name.

Menu::MenuButton Methods

Method Type Notes

 MenuButton

(std::string&)

public: param: name [std::string& - in]

Constructs a button, specifying its name.

 getName () «Access»

public const:

std::string&

Returns the button's name.

 press () «Event»

public: void

Triggers the contained action(s).

Action:

 Triggers contained action(s).

 addAction

(MenuAction&)

«Manager»

public: void

param: action [MenuAction& - in]

Adds an action to trigger when the menu button is

pressed. First in first out.

Post-condition: Functional The added action is

pushed on the actions stack

Menu::MenuAction

public abstract «interface» Interface: Defines the interface of an action that can be executed by

a menu button.

Menu::MenuAction Interfaces

Method Type Notes

 trigger () «Event»

public abstract:

void

Triggers the action.

Player

Contains player-related classes, such as the player itself.

Player::Player

public Class

 Implements: GameEventListener. : Responsible for maintaining generic

statistics about a player's activity in the game world, as well as for managing the player's ships.

Player::Player Attributes

Attribute Type Notes

 m_name private :

std::string

The name of the player.

 m_shipsLeft private :

unsigned short

Number of ships left to use.

Initial Value: 3;

 m_killedShips private :

unsigned int

Number of killed ships.

Initial Value: 0;

 m_destroyedAsteroids private :

unsigned int

Number of destroyed asteroids.

Initial Value: 0;

Player::Player Methods

Method Type Notes

 Player (std::string&,

Ship&)

public: param: name [std::string& - in]

param: shipTemplate [Ship& - in]

Constructs a player, specifying his name and the ship

template to use when inserting new ships into the

world.

 getName () «Access»

public const:

std::string&

Returns the name of the player.

 getLives () «Access»

public: unsigned

int

Gets the number of lives/ships left.

 getCurrentShip () «Access»

public const:

Ship&

Returns the player's current ship.

getDestroyedAsteroidsC

ount ()

«Access»

public: unsigned

int

Returns the total number of asteroids destroyed by

this player.

getDestroyedShipsCoun

t ()

«Access»

public: unsigned

int

Returns the total number of ships destroyed by this

player.

 notifyEvent

(GameEvent&)

«Event»

public abstract:

void

param: ev [GameEvent& - in]

Catches generic events - does nothing with them.

 notifyEvent

(WorldDestructionEvent

&)

«Event»

public abstract:

void

param: ev [WorldDestructionEvent& - in]

Checks if the destroyed object was a ship and if it was

this player's ship, if yes, then, if there are ships left, a

new ship will be inserted into the world.

 init (Engine&) «Manager»

public: void

param: engine [Engine& - in]

Initializes the player in the current environment.

Post-condition: Functional Registered in the engine's

event manager - The player is registered in the

provided engine's world event manager.

Post-condition: Functional The player is in control of

a ship in the world

 tryRespawnShip () «Manager»

private: bool

Tries to respawn a new ship for the player. Returns

true if respawn succeeds (i.e., the player have lives

left) or false otherwise.

Post-condition: Functional Current ship pointer

updated - Either set to a new ship or to 0.

handleDetectedDestructi

on (WorldObject&,

WorldObject&)

«Manager»

private: void

param: wo1 [WorldObject& - in]

param: wo2 [WorldObject& - in]

Catches all irrelevant destruction events.

handleDetectedDestructi

on (Ship&, Projectile&)

«Manager»

private: void

param: ship [Ship& - in]

param: projectile [Projectile& - in]

Handles the "ship destroyed by projectile" case. If the

ship is this player's ship, then we try to respawn a new

ship in the world. If the projectile is originating from

this ship and the ship isn't this player's, then we

increment the "killed ships" counter.

State

Contains all the game states that the game may found itself in. For example: Main Menu or

Single Player Game Session.

State::GameState

public abstract Class {root}

 Implements: Tickable. : Represents an abstract state that the game may find

itself in.

State::GameState Attributes

Attribute Type Notes

 m_valid private :

bool

Tells whether the game state is supposed to be run

(true) or to be finished (false).

Initial Value: true;

State::GameState Methods

Method Type Notes

 isValid () «Access»

public: bool

Tells whether the game state is supposed to be run

(true) or to be finished (false).

 getEventManager () «Access»

public const:

GameEventMan

ager&

Provides the event manager for the game state.

Action:

 Creates a new GameEventManager if not already set,

and returns it.

 enterFrom «Manager»

public abstract:

param: fromState [GameState* - in]

 Takes a pointer because we need to be able to

(GameState*) void accept 0 as value.

Enters the game state, and, when possible, lets it

know what state it was entered from (i.e., its parent

state). Takes a pointer because we need to be able to

accept 0 as value (when entering main menu, for

example).

Pre-condition: Functional State not entered before

Post-condition: Functional Game state is properly

initialized

Post-condition: Functional Parent state NOT stored

 handleFallback

(GameState&)

«Manager»

public abstract:

void

param: childState [GameState& - in]

Notifies this state about a fallback to it from a child

state, providing the child state instance. The child

game state will be checked, and, when required,

proper action will be taken (for example, if the child

game state was a pause menu, it may have ordered a

"quit", and we should realize it).

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Orders from child state

are realized - Any orders from the child state shall be

realized. For example, if the child state was a pause

menu, and it concluded that the game session should

quit, then we must realize that order.

Action:

 does nothing by default

 finish () «Manager»

public: void

Sets m_valid to false, causing the game state to finish

when isValid() is checked by Game.

State::MenuState

public abstract Class

 Extends: GameState. : The state to be in when navigating through menus.

State::MenuState Methods

Method Type Notes

 getMenu () «Access»

public: Menu&

Returns the menu that is used in the menu state.

 tick () «Event»

public abstract:

void

Makes the menu state to self-update according to the

status of the controller module.

Action:

 Polls controller and updates contained menu if

necessary.

 initMenu (Menu) «Manager»

protected: void

param: menu [Menu - in]

Sets the menu and registers menu controls for it in

input manager. This function must not be called more

than once.

Pre-condition: Functional Menu not already set

Post-condition: Functional Menu controls registered

in input manager

Post-condition: Functional Menu set

State::MainMenuState

public Class {leaf}

 Extends: MenuState. :

State::MainMenuState Methods

Method Type Notes

 enterFrom

(GameState*)

«Manager»

public abstract:

void

param: fromState [GameState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the main menu state, only accepting fromState

== 0. If fromState isn't zero, then an exception will be

thrown.

Pre-condition: Functional Argument fromState == 0

Pre-condition: Functional State not entered before

Post-condition: Functional Main menu state properly

initialized

State::MapChoiceMenuState

public Class {leaf}

 Extends: MenuState. : The map choice menu, containing one button for each

available map.

State::MapChoiceMenuState Methods

Method Type Notes

 getWorld () «Access»

public const:

World&

Returns the world instance that has been setup

according to the currently selected map.

Pre-condition: Functional A map has been selected

Post-condition: Functional A world is generated from

the map

 enterFrom

(MainMenuState*)

«Manager»

public abstract:

void

param: fromState [MainMenuState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the map choice menu state, specifying the

instance of the main menu state that it is being

entered from.

Pre-condition: Functional State not entered before

Post-condition: Functional Map choice menu state

properly initialized

Post-condition: Functional Parent state NOT stored

 handleFallback

(PlayState&)

«Manager»

public abstract:

void

param: childState [PlayState& - in]

Notifies the state about being "fallbacked" into, from

a playing state. Takes no action. (Could possibly

forward fallback to the main menu state.)

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

 generateWorld

(std::string&)

«Manager»

private: void

param: mapName [std::string& - in]

Generates a world instance from the map with the

specified name and stores it in the state. Should be

called by EnterSinglePlayerStateAction only.

Action:

 Uses WorldMapRegistry...

 MapChoiceMenuState

(PlayState&)

public: param: playingState [PlayState& - in]

Constructs a map choice menu state, specifying what

play state to enter when a map is selected.

State::MapChoiceMenuState::EnterPlayingStateAction

public Class

 Extends: EnterStateAction. :

State::MapChoiceMenuState::EnterPlayingStateAction Methods

Method Type Notes

EnterPlayingStateActio

n (PlayState&,

std::string&)

public: param: playState [PlayState& - in]

param: mapName [std::string& - in]

Constructs a new action for entering a single player

game state on the specified map.

 trigger () «Event»

public abstract:

void

Causes the map choice state to generate a world from

the chosen map and enters the specified game playing

state.

Post-condition: Functional A playing game state is

entered

Post-condition: Functional World generated in map

choice menu state

Action:

 Uses the Game singleton's enterState function.

State::ControlsMenuState

public Class {leaf}

 Extends: MenuState. :

State::ControlsMenuState Methods

Method Type Notes

 enterFrom

(GameState*)

«Manager»

public abstract:

void

param: fromState [GameState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the game controls configuration state from any

other state (except for this one, of course).

Pre-condition: Functional State not entered before

Post-condition: Functional Game controls menu state

properly initialized

Post-condition: Functional Parent state NOT stored

 handleFallback

(ControlsConfigMenuSt

ate&)

«Manager»

public abstract:

void

param: childState [ControlsConfigMenuState& - in]

Handles fallback from game controls config menu

state. Other states won't be supported to fallback

from.

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Action:

 Does nothing, except for restricting states to accept

fallback from.

State::ControlsConfigMenuState

public Class {leaf}

 Extends: MenuState. : The state of the controls configuration loop, i.e., where

each control for a single player is reconfigured on a step-by-step basis.

State::ControlsConfigMenuState Methods

Method Type Notes

ControlsConfigMenuSta

te ()

public:

 enterFrom

(GameState*)

«Manager»

public abstract:

void

param: fromState [GameState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the game state, and, when possible, lets it

know what state it was entered from (i.e., its parent

state). Takes a pointer because we need to be able to

accept 0 as value (when entering main menu, for

example).

Pre-condition: Functional State not entered before

Post-condition: Functional Game state is properly

initialized

Post-condition: Functional Parent state NOT stored

 handleFallback

(GameState&)

«Manager»

public abstract:

void

param: childState [GameState& - in]

Notifies this state about a fallback to it from a child

state, providing the child state instance. The child

game state will be checked, and, when required,

proper action will be taken (for example, if the child

game state was a pause menu, it may have ordered a

"quit", and we should realize it).

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Orders from child state

are realized - Any orders from the child state shall be

realized. For example, if the child state was a pause

menu, and it concluded that the game session should

quit, then we must realize that order.

Action:

 does nothing by default

 tick () «Event»

public abstract:

void

Makes the menu state to self-update according to the

status of the controller module.

Action:

 Polls controller and updates contained menu if

necessary.

State::HighScoreMenuState

public Class {leaf}

 Extends: MenuState. :

State::HighScoreMenuState Methods

Method Type Notes

 enterFrom

(MainMenuState*)

«Manager»

public abstract:

void

param: fromState [MainMenuState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the high score menu state, specifying the main

menu state from which it was entered.

Pre-condition: Functional State not entered before

Post-condition: Functional Back button name is

"Back" - Since we're going back to the main menu.

Post-condition: Functional High score menu state is

initialized properly - The game state was initialized.

Post-condition: Functional Parent state NOT stored

 enterFrom

(SinglePlayerPlayState*

)

«Manager»

public abstract:

void

param: fromState [SinglePlayerPlayState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the high score menu state, specifying the single

player play state from which it was entered.

Pre-condition: Functional State not entered before

Post-condition: Functional Back button name is

"Continue" - Since we're continuing, after game over

(without game over we wouldn't be here).

Post-condition: Functional High score menu state is

initialized properly - The game state was initialized.

Post-condition: Functional Parent state NOT stored

 handleFallback

(GameState&)

«Manager»

public abstract:

void

param: childState [GameState& - in]

Throws illegal fallback exception, as this state is a

leaf state.

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Illegal fallback exception

thrown

Action:

 Throws illegal fallback exception.

State::HelpMenuState

public Class {leaf}

 Extends: MenuState. :

State::HelpMenuState Methods

Method Type Notes

 enterFrom

(GameState*)

«Manager»

public abstract:

void

param: fromState [GameState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the help menu, specifying the game state from

which it was entered.

Pre-condition: Functional State not entered before

Post-condition: Functional Help menu state is

properly initialized

Post-condition: Functional Parent state NOT stored

 handleFallback

(GameState&)

«Manager»

public abstract:

void

param: childState [GameState& - in]

Throws an exception, as there is no valid fallback to

the help menu state.

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Illegal fallback exception

thrown

Action:

 Throws illegal falback exception.

State::PauseMenuState

public Class {leaf}

 Extends: MenuState. :

State::PauseMenuState Attributes

Attribute Type Notes

 m_quitGame private :

bool

Tells whether the pause menu button "quit game" was

pressed or not.

Initial Value: false;

State::PauseMenuState Methods

Method Type Notes

 doQuitGame () «Access»

public: bool

Tells whether the pause menu orders its parent play

state quit or not.

 enterFrom (PlayState*) «Manager»

public abstract:

void

param: fromState [PlayState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Enters the pause menu state, specifying the play state

from which it is being entered. Does nothing, except

for setting up restrictions for what states to accept

enter from.

Pre-condition: Functional State not entered before

Post-condition: Functional Parent state NOT stored

Post-condition: Functional Pause menu state is

properly initialized

 handleFallback

(GameState&)

«Manager»

public abstract:

void

param: childState [GameState& - in]

Throws illegal fallback, as this function overload

catches all unsupported child states. To support

fallback from a state, a corresponding function

overload can be added later.

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Illegal fallback exception

thrown

State::PauseMenuState::LeavePauseMenuStateAction

public Class

 Extends: LeaveStateAction. : Responsible for handling a press on the pause

menu's "Quit Game" button.

State::PauseMenuState::LeavePauseMenuStateAction Methods

Method Type Notes

 trigger () «Event»

public abstract:

void

Finishes the current game state.

Post-condition: Functional Current game state is set

to finished

Post-condition: Functional Pause menu state updated

about quit request

Action:

 Updates pause menu state, setting m_quitGame=true

and calls LeaveStateAction::trigger().

LeavePauseMenuStateA

ction

(PauseMenuState*)

public: param: pauseState [PauseMenuState* - in]

Constructs a quit action for the pause menu state's

menu "quit" button.

State::PlayState

public abstract Class

 Extends: GameState. : The game state to be in when a game session is active.

Responsible for setting up and managing the game engine.

State::PlayState Attributes

Attribute Type Notes

 m_awaitsFinish protected :

bool

Tells whether the play state is awaiting finish (i.e.,

"press any key to continue" when game was over) or

not.

Initial Value: false;

State::PlayState Methods

Method Type Notes

 getEngine () «Access»

public: Engine&

Returns the play state's game engine.

 isAwaitingFinish () «Access»

public: bool

Tells whether the play state is awaiting finish on

game over, i.e., the "press any key to continue" stuff,

or not.

 enterFrom «Manager»

public abstract:

param: fromState [GameState* - in]

 Takes a pointer because we need to be able to

(GameState*) void accept 0 as value.

Handles unsupported parent game states by throwing

an exception when called. The reason is that we have

to read a specific parent type in order to get the world

to play on, for example.

Pre-condition: Functional State not entered before

Post-condition: Functional Invalid parent state

exception thrown

Action:

 Throws invalid parent state exception.

 handleFallback

(GameState&)

«Manager»

public abstract:

void

param: childState [GameState& - in]

Notifies this state about a fallback to it from a child

state, providing the child state instance. The child

game state will be checked, and, when required,

proper action will be taken (for example, if the child

game state was a pause menu, it may have ordered a

"quit", and we should realize it).

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Illegal fallback exception

thrown

Action:

 Throws illegal fallback exception.

State::SinglePlayerPlayState

public Class {leaf}

 Extends: PlayState. : Responsible for starting a single player game and keeping

it going until game over rules are met, resulting in entering the high score menu.

State::SinglePlayerPlayState Methods

Method Type Notes

 tick () «Event»

public abstract:

void

Checks whether the game is over or not (by checking

the player and his ship) and forwards tick to engine. If

finish is awaited, then nothing happens here.

Pre-condition: Functional The state was entered

Post-condition: Functional Engine received tick call

Post-condition: Functional Game play continuation

validated - Checked whether the game is over or not.

 enterFrom

(MapChoiceMenuState*

)

«Manager»

public abstract:

void

param: fromState [MapChoiceMenuState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Initializes the single player play state, fetching its

world instance from the provided map choice menu

state.

Pre-condition: Functional Parent state provides a

world instance

Pre-condition: Functional State not entered before

Post-condition: Functional Engine instance created

Post-condition: Functional Invalid parent state

exception thrown

Post-condition: Functional Parent state NOT stored

Post-condition: Functional World read and sent to

engine

Action:

 Reads world and self-initializes.

 handleFallback

(PauseMenuState&)

«Manager»

public abstract:

void

param: childState [PauseMenuState& - in]

Handles fallback from the pause menu state, checking

whether it ordered a game quit or not.

Pre-condition: Functional This game state has been

entered

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Input manager reset - The

input manager must be reset when falling back from a

child state. The reason for this is that otherwise all

controls that were active before entering the child

state would continue to be active when falling back to

this state, regardless of whether they *are* active (i.e.,

keys are pressed) or not.

Example: If pressing pause and at the same time a

ship throttle control is active, then in the pause menu

we release the key that activated the throttle control,

and then finally, when we go back to the playing

state, the ship throttles without the throttle key being

pressed.

Post-condition: Functional Orders from pause menu

realized - If the pause menu ordered a game quit, then

it should be realized here, if not, then the game should

continue.

Action:

 Handles fallback from the pause menu state,

checking whether it ordered a game quit or not.

 handleFallback

(HighScoreMenuState&

)

«Manager»

public abstract:

void

param: childState [HighScoreMenuState& - in]

Handles fallback from a high score menu. The

handling will always result in this state being

finished, as a preceding enter into the high score

menu state from *this* state, was a result of a game

over.

Pre-condition: Functional This game state has been

entered

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Single player state

finishes

Action:

 Finishes this state.

 triggerGameOver () «Manager»

private: void

Manages a game over by saving a high score (if any)

and entering the high score menu state. Called by tick

when game over rules are met.

Post-condition: Functional High score menu state

entered

Post-condition: Functional High score saved in

registry if high enough

Action:

 Saves high score and entes high score menu.

State::TwoPlayersPlayState

public Class {leaf}

 Extends: PlayState. : Responsible for starting a two player game and keeping it

going until game over rules are met.

State::TwoPlayersPlayState Methods

Method Type Notes

 tick () «Event»

public abstract:

void

Checks whether the game is over or not (by checking

the players and their ships) and forwards tick to

engine.

Pre-condition: Functional The state was entered

Post-condition: Functional Engine received tick call

Post-condition: Functional Game play continuation

validated - Checked whether the game is over or not.

 enterFrom

(MapChoiceMenuState*

)

«Manager»

public abstract:

void

param: fromState [MapChoiceMenuState* - in]

 Takes a pointer because we need to be able to

accept 0 as value.

Initializes the two players play state, fetching its

world instance from the provided map choice menu

state.

Pre-condition: Functional State not entered before

Post-condition: Functional Parent state NOT stored

Action:

 Reads world and self-initializes.

 handleFallback

(PauseMenuState&)

«Manager»

public abstract:

void

param: pauseState [PauseMenuState& - in]

Handles fallback from the pause menu state, checking

whether it ordered a game quit or not.

Pre-condition: Functional This game state has been

entered before

Post-condition: Functional Child state NOT stored -

The child state must not be stored in any way.

Post-condition: Functional Input manager reset - The

input manager must be reset when falling back from a

child state. The reason for this is that otherwise all

controls that were active before entering the child

state would continue to be active when falling back to

this state, regardless of whether they *are* active (i.e.,

keys are pressed) or not.

Post-condition: Functional Orders from child state

are realized - Any orders from the child state shall be

realized. For example, if the child state was a pause

menu, and it concluded that the game session should

quit, then we must realize that order.

Action:

 Handles fallback from the pause menu state,

checking whether it ordered a game quit or not.

 triggerGameOver () «Manager»

private: void

Requests user input to continue to the main menu.

Called by tick when game over rules are met.

World

Contains the class structure representing the game world and its objects, such as ships and

planets, for example.

World::Asteroid

public Class

 Extends: DestroyableObject, MovableObject. : Representation of an asteroid

flying around randomly in the game world.

World::Asteroid Attributes

Attribute Type Notes

 INIT_STRENGTH private const

static :

unsigned int

Initial strength of an asteroid.

 m_rotationSpeed private :

float

The speed at which the asteroid rotates. If positive, it

rotates clockwise, if negative, it rotates counter-

clockwise.

World::Asteroid Methods

Method Type Notes

 Asteroid (float) public: param: rotationSpeed [float - in]

Constructs an asteroid, specifying the rotation

direction as well as its speed.

 tick () «Event»

public abstract:

Updates position and orientation (i.e., rotation).

void Post-condition: Functional Time-Dependent State

Updated - The time-dependent state of the object is

updated.

Action:

 Updates position and orientation (i.e., rotation).

World::DestroyableObject

public abstract Class: World objects implementing this interface are considered destroyable,

i.e., it is possible to destroy them by causing enough damage to them. Note that destruction has

nothing to do with removal from the world.

World::DestroyableObject Attributes

Attribute Type Notes

 m_strength private :

unsigned int

The remaining strength of the object.

World::DestroyableObject Methods

Method Type Notes

 isDestroyed () «Access»

public abstract:

bool

Tells whether the world object is destroyed or not.

 reduceStrength

(unsigned int)

«Manager»

public abstract:

void

param: amount [unsigned int - in]

Reduces the world object's strength by the specified

amount.

 destroy () «Manager»

public abstract:

void

Destroys the world object, i.e., causes maximal

damage, resulting in the object being destroyed.

 DestroyableObject

(unsigned int)

public: param: strength [unsigned int - in]

Constructs a destroyable world object with the

specified strength.

World::FuelItem

public Class

 Extends: Item. : Representation of an item that contains a fuel powerup.

World::FuelItem Attributes

Attribute Type Notes

 m_fuelAmount private :

unsigned int

The fuel amount that the fuel item contains.

World::FuelItem Methods

Method Type Notes

 FuelItem (unsigned int) public: param: amount [unsigned int - in]

Constructs a new fuel item, specifying the fuel

amount it should contain.

 getFuelAmount () «Access»

public: unsigned

int

Returns the amount of fuel in this item.

World::Item

public abstract Class

 Extends: StaticObject. : Contains common behavior and properties of items

occuring in the game world.

World::Item Methods

Method Type Notes

 Item () public: Constructs an item with a pre-defined mass (i.e. 0, as

it shouldn't be affected by gravities) and shape (all

items have the same size).

Post-condition: Functional Parents setup properly -

Parent constructors called with correct values.

World::LaserProjectile

public Class

 Extends: Projectile. : Representation of a laser projectile, which is not affected

by gravities.

World::LaserProjectile Attributes

Attribute Type Notes

 SET_OFF_SPEED private const

static :

unsigned int

The movement speed (i.e., the magnitude of the

movement vector) at which the laser is set off, relative

to the ship firing it.

World::LaserProjectile Methods

Method Type Notes

 LaserProjectile (Ship) public: param: ship [Ship - in]

Constructs a laser projectile, specifying the ship from

which it originates.

Action:

 Laser movement is set relative to the speed and

direction of the ship.

getMaxDamageStrength

()

«Access»

public abstract:

unsigned int

Returns the maximal damage strength of the laser.

World::MissileItem

public Class

 Extends: Item. : Representation of an item that contains ship missiles.

World::MissileItem Attributes

Attribute Type Notes

 m_numMissiles private :

unsigned int

Numer of missiles in this weapon item.

World::MissileItem Methods

Method Type Notes

 MissileItem (unsigned

int)

public: void param: numMissiles [unsigned int - in]

Constructs a new missile item, specifying how many

missiles it should contain.

 getMissileCount () «Access»

public: unsigned

int

Returns the number of missiles in this item.

World::MissileProjectile

public Class

 Extends: DestroyableObject, Projectile. : Representation of a gravity-affectable

missile projectile.

World::MissileProjectile Attributes

Attribute Type Notes

 INIT_STRENGTH private const

static :

unsigned int

Initial strength of a missile.

 SET_OFF_SPEED private const

static :

unsigned int

The movement speed (i.e., the magnitude of the

movement vector) at which the missile is set off,

relative to the ship firing it.

World::MissileProjectile Methods

Method Type Notes

 MissileProjectile (Ship) public: param: ship [Ship - in]

Constructs a missile, specifying the ship from which

it originates.

Action:

 Missile movement is set relative to the speed and

direction of the ship.

getMaxDamageStrength

()

«Access»

public abstract:

unsigned int

Returns the maximal damage strength of the

projectile.

 tick () «Event»

public abstract:

void

Updates the position and maintains orientation so that

it follows the missile's movement.

Post-condition: Functional Position Updated - If the

ship is moving, then its position has been updated

according to the magnitude of the movement vector.

Action:

 Updates the position and maintains orientation so

that it follows the missile's movement.

World::MovableObject

public abstract Class

 Extends: WorldObject. : Contains common behavior and properties of movable

game world objects.

World::MovableObject Methods

Method Type Notes

 tick () «Event»

public abstract:

void

Updates the position of the movable object.

Post-condition: Functional Position Updated - If the

ship is moving, then its position has been updated

according to the magnitude of the movement vector.

Action:

 updates position

 setMovement

(Vector2d)

«Manager»

public abstract:

void

param: vector [Vector2d - in]

Changes the movement of the movable world object.

A change here may result in a change in the object's

orientation, depending on the object type.

Post-condition: Functional Movement Changed - The

object's movement vector has been replaced with a

new one.

 getMovement () «Access»

public: Vector2d

Returns the movement vector of the movable object.

The magnitude represents the speed and the angle

represents the direction of movement.

World::Planet

public Class

 Extends: StaticObject. : Representation of a planet.

World::Planet Attributes

Attribute Type Notes

 TYPE_RED public const

static :

unsigned short

A red planet.

Initial Value: 1;

 TYPE_BLUE public const

static :

unsigned short

A blue planet.

Initial Value: 2;

 TYPE_GREEN public const

static :

unsigned short

A green planet.

Initial Value: 3;

 m_type private : The planet's type.

unsigned short

World::Planet Methods

Method Type Notes

 Planet (double, float,

unsigned short)

public: param: mass [double - in]

param: radius [float - in]

param: type [unsigned short - in]

 See TYPE_* constants.

Constructs a new planet specifying its mass and

radius.

Post-condition: Functional Circular shape created - A

circular shape of the planet is created and stored in the

instance.

Action:

 Creates and forwards a circular shape to the parent

constructor, out of the received arguments during

initialization.

 getType () «Access»

public: unsigned

short

Returns the planet's type, which will be one of the

public TYPE_* constants.

World::Projectile

public abstract Class

 Extends: MovableObject. : Contains common behavior and properties of weapon

projectiles fired by a ship.

World::Projectile Methods

Method Type Notes

 Projectile (Ship) public: param: ship [Ship - in]

Constructs a projectile, specifying the ship from

which it originates.

 getFiringShip () «Access»

public: Ship

Returns the ship that fired the projectile.

getMaxDamageStrength

()

«Access»

public abstract:

unsigned int

Returns the maximal damage strength of the

projectile.

World::Ship

public Class

 Extends: DestroyableObject, MovableObject. : Representation of the ship that a

game player will control.

World::Ship Attributes

Attribute Type Notes

 INIT_STRENGTH private const

static :

unsigned int

Initial strength of a ship.

 MAX_SPEED private const

static :

unsigned int

The maximum movement speed of a ship, i.e.,

maximum magnitude of the movement vector.

 m_limitFuel private :

int

Tells whether the ship's fuel is limited (true) or

unlimited (false).

Initial Value: true;

 m_limitLasers private :

bool

Tells whether the ship's lasers are limited (true) or

unlimited (false).

Initial Value: true;

 m_limitMissiles private :

bool

Tells whether the ship's missiles are limited (true) or

unlimited (false).

Initial Value: true;

 m_fuelAmount private :

float

The ship's current fuel amount percentage. This is

irrelevant if the fuel is unlimited.

 m_lasersCount private :

unsigned int

The ship's current number of lasers. This is irrelevant

if the lasers are unlimited.

 m_missilesCount private :

unsigned int

The ship's current number of missiles. This is

irrelevant if the missiles are unlimited.

m_laserGunChargeLeve

l

private :

float

Defines the laser gun charge level. When 1.0, the

laser gun is considered charged. Further, the values

must not go below 0 or over 1.0.

Initial Value: 1.0;

m_missileLauncherChar

geLevel

private :

float

Defines the missile launcher charge level. When 1.0,

the missile launcher is considered charged. Further,

the values must not go below 0 or over 1.0.

Initial Value: 1.0;

 m_isTurningLeft private :

bool

Tells whether the ship is turning left or not.

Initial Value: false;

 m_isTurningRight private :

bool

Tells whether the ship is turning right or not.

Initial Value: false;

 m_isThrottling private :

bool

Tells whether the ship is throttling or not.

Initial Value: false;

 m_laserGunOn private : Tells whether the ship's laser gun is on or off.

bool Initial Value: false;

 m_missileLauncherOn private :

bool

Tells whether the ship's missile launcher is on or off.

Initial Value: false;

World::Ship Methods

Method Type Notes

 getFuelLevel () «Access»

public: unsigned

int

Returns the ship's fuel level.

 getMissilesCount () «Access»

public: unsigned

int

Returns the ship's amount of missiles.

 getLasersCount () «Access»

public: unsigned

int

Returns the ship's amount of lasers.

 hasLimitedFuel () «Access»

public: bool

Tells whether the ship's fuel supply is limited.

 hasLimitedLasers () «Access»

public: bool

Tells whether the ship's laser supply is limited.

 hasLimitedMissiles () «Access»

public: bool

Tells whether the ship's missile supply is limited.

 tick () «Event»

public abstract:

void

Updates the position of the ship as well as charges its

weapons (so that there is a fire delay).

Post-condition: Functional Position Updated - If the

ship is moving, then its position has been updated

according to the magnitude of the movement vector.

Action:

 updates position and charges weapons

 setEventManager

(EventManager*)

«Manager»

public: void

param: eventManager [EventManager* - in]

Sets the ship's event manager.

 setLimitLasers (bool) «Manager»

public: void

param: doLimit [bool - in]

Sets the ship's laser limit on/off.

 toggleThrottle (bool) «Manager»

public: void

param: doThrottle [bool - in]

Toggles ship's throttle on or off.

 setLimitFuel (bool) «Manager»

public: void

param: doLimit [bool - in]

Sets the ship's fuel limit on/off.

 setLimitMissiles (bool) «Manager»

public: void

param: doLimit [bool - in]

Sets the ship's missile limit on/off.

 toggleTurnLeft (bool) «Manager»

public: void

param: doTurn [bool - in]

Toggles ship's left turning on or off.

Post-condition: Functional If toggled on, right

turning toggled off - If the ship is set to turn left, then

it can't turn right at the same time.

 toggleTurnRight (bool) «Manager»

public: void

param: doTurn [bool - in]

Toggles ship's right turning on or off.

Post-condition: Functional If toggled on, left turning

toggled off - If the ship is set to turn right, then it can't

turn left at the same time.

 toggleLaserGun (bool) «Manager»

public: void

param: doFire [bool - in]

Toggles the ship's laser gun on/off. If on, then a laser

is fired as soon as the laser gun has finished charging.

If no lasers are left, the none will be fired.

 toggleMissileLauncher

(bool)

«Manager»

public: void

param: doFire [bool - in]

Toggles the ship's missile launcher on/off. If on, then

a missile is fired as soon as the missile launcher has

finished charging. If no missiles are left, the none will

be fired.

 fireLaser () «Manager»

private: void

Fires a missile if finished charging.

Pre-condition: Functional Event manager is present

Pre-condition: Functional Laser charging complete

Post-condition: Functional Laser discharged - Once

fired, the laser gun must be charged again, therefore

we have to discharge it in order to enforce that.

Post-condition: Functional Laser fire event sent to

event manager - A laser with the same orientation as

the ship and with a movemet relative to the ship's

movement used as an argument to the event

constructor.

 chargeLaserGun (float) «Manager»

private: void

param: progress [float - in]

Charges the laser gun according to the specified

progress. When the charge level reaches 1.0, the laser

gun is considered charged.

Post-condition: Functional 0 <= Charge level <= 1.0

- Charge level must not go over 1.0, which can be

seen as 100%, nor below 0.

 fireMissile () «Manager»

private: void

Fires a missile if finished charging.

Pre-condition: Functional Event manager is present

Pre-condition: Functional Missile charging complete

Post-condition: Functional Missile discharged - Once

fired, the missile launcher must be charged again,

therefore we have to discharge it in order to enforce

that.

Post-condition: Functional Missile fire event sent to

event manager - A missile with the same orientation

as the ship and with a movemet relative to the ship's

movement used as an argument to the event

constructor.

 chargeMissileLauncher

(float)

«Manager»

private: void

param: progress [float - in]

Charges the missile launcher according to the

specified progress. When the charge level reaches 1.0,

the missile launcher is considered charged.

Post-condition: Functional 0 <= Charge level <= 1.0

- Charge level must not go over 1.0, which can be

seen as 100%, nor below 0.

World::SpawnPoint

public Class

 Extends: StaticObject. : Defines a point in which a world object may appear,

telling whether the area is free of obstacles or not.

World::SpawnPoint Attributes

Attribute Type Notes

 m_isFree private :

bool

Whether the spawn point is free or not.

World::SpawnPoint Methods

Method Type Notes

 SpawnPoint () public: Constructs a spawn point with a circular shape and

mass == 0.

Post-condition: Functional Spawn point has a circular

shape - A circular shape of the spawn point is created

and stored in the instance.

 isFree () «Access»

public: bool

Returns true if the spawn point is free to use, i.e., that

no other world object spawned in it for a certain

amount of time, otherways false is returned.

 toggleAvailability

(bool)

«Manager»

public: void

param: setFree [bool - in]

Toggles the availability of the spawn point by setting

free to false or true.

World::StaticObject

public abstract Class

 Extends: WorldObject. : Contains common behavior and properties of static

game world objects.

World::World

public Class

 Implements: GameEventListener, Tickable. : Representation of the whole game

world, containing all world objects that are supposed to exist at a certain moment during a game

session.

World::World Attributes

Attribute Type Notes

 m_time private :

unsigned int

The number of ticks received by the world - the

world's time.

Initial Value: 0;

World::World Methods

Method Type Notes

 World

(BoundaryStrategy&)

public: param: boundaryStrategy [BoundaryStrategy& - in]

Constructs a world with the specified boundary

strategy and an event manager to use for events

triggered in or by the world.

Post-condition: Functional Boundary strategy

inserted into m_strategies

Post-condition: Functional Boundary strategy pointer

stored in m_boundaryStrategy

 getTime () «Access»

public: unsigned

int

Returns the world's current time, i.e., amount of

received ticks.

 getBoundaryStrategy () «Access»

public const:

BoundaryStrate

gy&

Returns the boundary strategy used by the world.

 «Access» Returns an iterator of the world objects vector.

getWorldObjectsIterator

()

public:

std::vector<Wo

rldObject>::iter

ator

 getSpawnPointsIterator

()

«Access»

public:

std::vector<Spa

wnPoint*>::iter

ator

Returns an iterator of the spawn points vector.

 tick () «Event»

public abstract:

void

Calls tick() on all available world objects and applies

available strategies on self.

Post-condition: Functional m_time incremented with

1

Post-condition: Functional World objects have had

their tick() called - Each of the contained world

objects have received a call to their tick() function.

Post-condition: Functional World Strategies Applied

on World - Available strategies have been applied on

the world.

Action:

 runs tick() on all contained world objects and applies

available world strategies

 notifyEvent

(WorldEvent&)

«Event»

public abstract:

void

param: ev [WorldEvent& - in]

Notifies the world about an occuring event. Currently

does nothing for generic events.

 notifyEvent

(ProjectileFireEvent&)

«Event»

public abstract:

void

param: ev [ProjectileFireEvent& - in]

Handles a projectile fire event by inserting a copy of

the fired projectile into the world.

Action:

 Inserts projectile into the world.

 addStrategy

(WorldStrategy&)

«Manager»

public: void

param: strategy [WorldStrategy& - in]

Adds a world strategy to apply on the world on each

tick.

Post-condition: Functional Strategy inserted into

m_strategies

 addStrategy

(BoundaryStrategy&)

«Manager»

public: void

param: strategy [BoundaryStrategy& - in]

Adds a world boundary strategy to apply on the world

on each tick.

Post-condition: Functional Strategy inserted into

m_strategies

Post-condition: Functional The boundary strategy's

reference stored separately - Boundary strategy stored

in a "shortcut pointer", so that it can be quickly

retrieved.

getMovableObjectsIterat

or ()

«Access»

public:

std::vector<Mo

vableObject*>::

iterator

Returns an iterator of the movable world objects

vector.

 queueInsert (Ship*) «Manager»

public: void

param: ship [Ship* - in]

 Having a pointer, we let the caller have a way to

access the ship. However, the caller is then

responsible for listening for ship removal events.

Queues an insert of a ship into the world, waiting for

an available spawn point.

Pre-condition: Functional The ship is not present in

the world

 queueInsert

(Asteroid&)

«Manager»

public: void

param: asteroid [Asteroid& - in]

Queues an insert of an asteroid into the world, waiting

for an available spawn point.

Pre-condition: Functional The asteroid is not present

in the world

 tryInsertShips () «Manager»

private: void

Searches for free spawn points and, if found, inserts

as many of the the queued ship(s) as there are

available spawn points. Each ship will have its event

manager (the same as the world uses) set just before

being inserted.

Post-condition: Functional Insertion event(s)

cascaded in the event manager - For each successful

insertion, an insertion event shall be cascaded through

the event manager.

Post-condition: Functional Ship's event manager is

set to the world's

 tryInsertAsteroids () «Manager»

private: void

Searches for free spawn points and, if found, inserts

as many of the the queued asteroid(s) as there are

available spawn points.

Post-condition: Functional Insertion event(s)

cascaded in the event manager - For each successful

insertion, an insertion event shall be cascaded through

the event manager.

 insert (WorldObject&,

Coord2d&)

«Manager»

private: void

param: wo [WorldObject& - in]

param: position [Coord2d& - in]

Inserts a world object into the world, specifying the

position that it should initially appear at.

Pre-condition: Functional Specified position is within

boundaries - The specified coordinate must be within

the boundaries of the world.

Pre-condition: Functional The object is not present in

the world - The object must not be present in the

world already.

Post-condition: Functional The object is placed at the

specified coordinate - The object is inserted into the

world at the specified position and the world object's

internal position is updated.

Post-condition: Functional World object inserted into

m_worldObjects

 insert

(MovableObject&,

Coord2d&)

«Manager»

private: void

param: wo [MovableObject& - in]

param: position [Coord2d& - in]

Inserts a movable world object into the world,

specifying the position that it should initially appear

at.

Pre-condition: Functional Specified position is within

boundaries - The specified coordinate must be within

the boundaries of the world.

Pre-condition: Functional The object is not present in

the world - The object must not be present in the

world already.

Post-condition: Functional Movable object inserted

into m_movableObjects

Post-condition: Functional Movable object inserted

into m_worldObjects

Post-condition: Functional The object is placed at the

specified coordinate - The object is inserted into the

world at the specified position and the world object's

internal position is updated.

Action:

 Inserts a pointer to the movable object into

m_movableObjects.

 insert (SpawnPoint&,

Coord2d&)

«Manager»

private: void

param: wo [SpawnPoint& - in]

param: position [Coord2d& - in]

Inserts a spawn point object into the world, specifying

the position that it should appear at.

Pre-condition: Functional Specified position is within

boundaries - The specified coordinate must be within

the boundaries of the world.

Pre-condition: Functional The object is not present in

the world - The object must not be present in the

world already.

Post-condition: Functional Spawn point inserted into

m_spawnPoints

Post-condition: Functional Spawn point inserted into

m_worldObjects

Post-condition: Functional The object is placed at the

specified coordinate - The object is inserted into the

world at the specified position and the world object's

internal position is updated.

Action:

 Inserts a pointer to the spawn point object into

m_spawnPoints.

 insert (Item&) «Manager»

private: void

param: item [Item& - in]

Inserts an item on a random spawn point in the world,

not caring whether the spawn point is free of

obstacles or not.

Post-condition: Functional Insertion event cascaded -

Insertion event cascaded through the world's event

manager.

 queueRemoval

(WorldObject&)

«Manager»

public: void

param: wo [WorldObject& - in]

Queues removal of a world object, deferring the

actual removal to the final step of the currently ran

tick(). Further, it sends out a RemovalEvent to the

event manager.

Pre-condition: Functional The object is present in the

world - The object must be present in the world in

order to be removed.

Post-condition: Functional Removal event sent out to

event manager

Post-condition: Functional World object pointer

inserted into m_removeQueue

Action:

 Cascades a removal event through the event

manager.

 performRemovals () «Manager»

private: void

Performs the queued removals, if any.

 remove

(WorldObject&)

«Manager»

private: void

param: wo [WorldObject& - in]

Removes a world object from the world.

Pre-condition: Functional The object is present in the

world - The object must be present in the world in

order to be removed.

Post-condition: Functional The object is removed

from m_worldObjects

 remove (SpawnPoint&) «Manager»

private: void

param: wo [SpawnPoint& - in]

Removes the spawn point object from the world,

together with its shortcut in the m_spawnPoints

vector.

Pre-condition: Functional The object is present in the

world - The object must be present in the world in

order to be removed.

Post-condition: Functional The spawn point is

removed from m_spawnPoints

Post-condition: Functional The spawn point is

removed from m_worldObjects

Action:

 Removes pointer from m_spawnPoints.

 remove

(MovableObject&)

«Manager»

private: void

param: wo [MovableObject& - in]

Removes the movable object from the world, together

with its shortcut in the m_movableObjects vector.

Pre-condition: Functional The object is present in the

world - The object must be present in the world in

order to be removed.

Post-condition: Functional The movable object is

removed from m_movableObjects

Post-condition: Functional The movable object is

removed from m_worldObjects

Action:

 Removes pointer from m_movableObjects.

World::WorldObject

public abstract Class

 Implements: Tickable. : Contains common behavior and properties of game

world objects.

World::WorldObject Attributes

Attribute Type Notes

 m_mass protected :

double

The mass of the world object. This may be used for

gravity calculations. In order to have an object that is

not affected by gravities, it's mass should be zero.

World::WorldObject Methods

Method Type Notes

 WorldObject (double,

Shape)

public: param: mass [double - in]

param: shape [Shape - in]

Constructs a world object, specifying its shape.

 tick () «Event»

public abstract:

void

Notifies the object about that the time is being

incremented with one time unit.

Pre-condition: Functional Registered as Tickable -

The object must be registered as a tickable object in

the game engine in order to have its tick() function

called.

Post-condition: Functional Time-Dependent State

Updated - The time-dependent state of the object is

updated.

Action:

 do nothing by default

 setPosition (Coord2d&) «Manager»

public abstract:

void

param: coord [Coord2d& - in]

Set the position of the object in the world, according

to the object's centre.

 getPosition () «Access»

public const:

Coord2d&

Returns the position of the object in the world,

according to the object's centre.

 getOrientation () «Access»

public const:

Vector2d&

Returns the vector of the object's orientation, i.e., the

direction in which it's "pointing", as well as its

boundary "circle". The vector's magnitude represents

the radius of the boundary circle, and the angle

represents the direction in which the object is

"pointing".

 getShape () «Access»

public const:

Shape&

Returns the shape of the object, i.e., a representation

of its spacial form and size, for example a circular

shape with a radius.

 getMass () «Access»

public: double

Returns the mass of the world object.

World::WorldStrategy

public abstract «interface» Interface: Interface implemented by classes that need to manage the

world by applying self-defined strategies on it.

World::WorldStrategy Interfaces

Method Type Notes

 applyWorldStrategy

(World)

«Manager»

public abstract:

void

param: world [World - in]

Applies a world strategy on a world instance.

Post-condition: Functional World state changed

according to strategy

Registry

Responsible for holding, managing persistence for and providing global data to other modules.

Registry::ConfigRegistry

public «singleton» Class

 Extends: Registry. : Responsible to provide and handle persistence for the game

configuration.

Registry::ConfigRegistry Attributes

Attribute Type Notes

 m_singleton private static :

ConfigRegistry

The singleton instance.

 m_controls private :

std::map<unsig

ned short,

unsigned short>

Maps static control aliases to keyboard key codes.

m_localPlayer1Controls

private :

std::map<unsig

ned short,

unsigned short>

Maps configurable control aliases for the first local

player to keyboard key codes.

m_localPlayer2Controls

private :

std::map<unsig

ned short,

unsigned short>

Maps configurable control aliases for the second local

player to keyboard key codes.

 m_gfxRoot private :

std::string

Path to the directory that contains all graphics.

 m_sfxRoot private :

std::string

Path to the directory that contains all sounds.

Registry::ConfigRegistry Methods

Method Type Notes

 ConfigRegistry () private: Constructs a config registry instance.

 instance () «Helper»

public static:

ConfigRegistry

&

Returns the singleton instance of the config registry.

 getControlKey

(unsigned short)

«Access»

public: unsigned

short

param: controlAlias [unsigned short - in]

 One of the CTRL_* constants defined in

Controller::InputListener.

Returns the corresponding keyboard key for the

provided control alias.

Action:

 Reads m_controls

getLocalPlayer1Control

Key (unsigned short)

«Access»

public: unsigned

short

param: controlAlias [unsigned short - in]

 One of the CTRL_* constants defined in

Controller::InputListener.

Returns the corresponding keyboard key for the

provided control alias.

Action:

 Reads m_primaryLocalPlayerControls

getLocalPlayer2Control

Key (unsigned short)

«Access»

public: unsigned

short

param: controlAlias [unsigned short - in]

 One of the CTRL_* constants defined in

Controller::InputListener.

Returns the corresponding keyboard key for the

provided control alias.

Action:

 Reads m_secondaryLocalPlayerControls

 getGfxRoot () «Access»

public const:

std::string&

Returns the path to the directory where all graphics

reside.

 getSfxRoot () «Access»

public const:

std::string&

Returns the path to the directory where all sounds

reside.

Registry::HighScoreRegistry

public «singleton» Class

 Extends: Registry. : Responsible for storing high scores in a file, as well as

deciding what scores should be considered being high scores.

Registry::HighScoreRegistry Attributes

Attribute Type Notes

 m_singleton private static :

HighScoreRegis

try

The singleton instance.

Initial Value: 0;

 m_highScores private :

std::multimap<s

td::string,

unsigned int>

Contains the names of the players achieving a high

score together with the high score they achieved.

Registry::HighScoreRegistry Methods

Method Type Notes

 instance () «Helper»

public static:

Returns the singleton instance of the high score

HighScoreRegis

try&

registry.

 getHighScores () «Access»

public:

std::multimap<s

td::string,

unsigned int>

Returns a multimap containing the top ten high scores

and the players that achieved them.

 trySetHighScore

(std::name&, unsigned

int)

«Manager»

public: bool

param: playerName [std::name& - in]

param: score [unsigned int - in]

Tries to set the specified score as a high score and

will do so if the score is high enough (top 10),

returning true. If the high score is not high enough,

false will be returned.

 HighScoreRegistry () private: Constructs a high score registry.

Action:

 Loads data from high score file.

Registry::Registry

public abstract Class: Abstract registry class, holding file management functions.

Registry::Registry Methods

Method Type Notes

 saveToFile

(std::string&,

std::string&)

«Manager»

protected: void

param: text [std::string& - in]

param: fileName [std::string& - in]

Saves a text string to a file with the specified file

name. If the file doesn't exist, then it will be created.

 readFromFile

(std::string&)

«Manager»

protected:

std::string*

param: fileName [std::string& - in]

Reads the content of a file and returns every row of it

in a string array.

Registry::WorldMapRegistry

public «singleton» Class

 Extends: Registry. : Responsible for generating game worlds while being

provided a map name.

Registry::WorldMapRegistry Attributes

Attribute Type Notes

 m_singleton private static :

WorldMapRegis

try

The singleton instance.

Initial Value: 0;

 m_maps private :

std::vector<std:

:string>

Contains the names of all available maps.

Registry::WorldMapRegistry Methods

Method Type Notes

 instance () «Helper»

public static:

WorldMapRegis

try&

Returns the singleton instance of the world map

registry.

 getMaps () «Access»

public:

std::vector<std:

Returns an iterator of strings containing the names of

all available maps.

:string>::iterato

r

 generateFromMap

(std::string)

«Manager»

public: World

param: mapName [std::string - in]

Generates a game world instance from a given map

name.

Pre-condition: Functional Map exists

Post-condition: Functional World created according

to specified map

 WorldMapRegistry () private: Constructs a world map registry instance.

Util

Contains common utilities, such as coordinate representations etc.

CircularShape

public Class

 Extends: Shape. : A circular shape.

CircularShape Attributes

Attribute Type Notes

 m_radius private :

float

The radius of the circular shape.

CircularShape Methods

Method Type Notes

 CircularShape (float) public: param: radius [float - in]

Constructs a circular shape, defining its radius.

 getRadius () «Access»

public: float

Returns the radius of the circular shape.

Coord2d

public Class: Represents a coordinate in the absolute 2D-space.

Coord2d Attributes

Attribute Type Notes

 m_x private :

float

The x coordinate.

 m_y private :

float

The y coordinate.

Coord2d Methods

Method Type Notes

 Coord2d (float, float) public: param: x [float - in]

param: y [float - in]

Constructs a new coordinate in 2D-space.

 getX () «Access»

public: float

Returns the X coordinate.

 getY () «Access»

public: float

Returns the Y coordinate.

Shape

public abstract Class: An abstrac geometric shape.

Vector2d

public Class: Defines a vector in 2D space by combining a coordinate and a length.

Vector2d Attributes

Attribute Type Notes

 m_magnitude private :

float

The magnitude/length of the vector.

 m_angle private :

float

The angle of the vector.

Vector2d Methods

Method Type Notes

 Vector2d (float, float) public: param: magnitude [float - in]

param: angle [float - in]

Constructs a 2D vector of a certain magnitude and a

certain angle.

 getMagnitude () «Access»

public: float

Returns the magnitude of the vector. i.e., its "length".

 getAngle () «Access»

public: float

Returns the angle of the vector.

Tickable

public abstract «interface» Interface: When a class object need to receive a tick, it has to

implement this interface.

Tickable Interfaces

Method Type Notes

 tick () «Event»

public abstract:

Notifies the object about that the time is being

incremented with one time unit.

void

Post-condition: Functional Time-Dependent State

Updated - The time-dependent state of the object is

updated.

View

Responsible for drawing graphics for the game. Does so by monitoring the Game module and

associating elements in it with own graphical objects, which then will be painted.

View::OpenGLRenderer

public Class

 Implements: Renderer, Tickable. : Responsible for rendering graphics by using

OpenGL.

View::OpenGLRenderer Methods

Method Type Notes

 tick () «Event»

public abstract:

void

Ticks all contained *and current* sprite managers and

triggers graphics rendering for the current game state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

Post-condition: Functional Sprite managers have

received a tick

 init () «Manager»

public abstract:

void

Initializes OpenGL.

Pre-condition: Functional Game singleton initialized

 render () «Manager»

public abstract:

void

Renders graphics for the current game state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

 renderState

(ControlsMenuState&)

«Manager»

private abstract:

void

param: state [ControlsMenuState& - in]

Renders graphics for the controls menu state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Current controls are

displayed on screen

Post-condition: Functional Graphics for current state

displayed on screen

 renderState

(MenuState&)

«Manager»

private abstract:

void

param: state [MenuState& - in]

Renders graphics for a generic menu state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

 renderState

(ControlsConfigMenuSt

ate&)

«Manager»

private abstract:

void

param: state [ControlsConfigMenuState& - in]

Renders graphics for the controls config menu state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Configuration instructions

are displayed on screen

Post-condition: Functional Graphics for current state

displayed on screen

 renderState

(HighScoreMenuState&

)

«Manager»

private abstract:

void

param: state [HighScoreMenuState& - in]

Renders graphics for the high score menu state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

Post-condition: Functional High scores displayed on

screen

 renderState

(HelpMenuState&)

«Manager»

private abstract:

void

param: state [HelpMenuState& - in]

Renders graphics for the help menu state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

Post-condition: Functional Help text is displayed on

screen

 renderState

(SinglePlayerPlayState

&)

«Manager»

private abstract:

void

param: state [SinglePlayerPlayState& - in]

Renders graphics for the single player play state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

 renderState

(TwoPlayerPlayState&)

«Manager»

private abstract:

void

param: state [TwoPlayerPlayState& - in]

Renders graphics for the two players play state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

 renderSpriteManager

(TextSpriteManager&)

«Manager»

private abstract:

void

param: manager [TextSpriteManager& - in]

Renders graphics for a single text sprite manager.

Pre-condition: Functional Coordinate system moved

to the desired position

Pre-condition: Functional Modelview matrix pushed

View::Renderer

public abstract «interface» Interface: Interface for a graphics renderer.

View::Renderer Interfaces

Method Type Notes

 render () «Manager»

public abstract:

void

Renders graphics for the current game state.

Pre-condition: Functional A valid game state is

entered in Game

Post-condition: Functional Graphics for current state

displayed on screen

 init () «Manager»

public abstract:

void

Initializes the renderer.

Pre-condition: Functional Game singleton initialized

Sprite

Sprite::AnimationSprite

public Class

 Extends: Sprite. Implements: Tickable. :

Sprite::AnimationSprite Attributes

Attribute Type Notes

ANIM_SHIP_DESTRO

Y

public const

static :

unsigned short

Ship destruction animation.

Initial Value: 1;

ANIM_ASTEROID_D

ESTROY

public const

static :

unsigned short

Asteroid destruction animation.

Initial Value: 2;

ANIM_SHIP_THROTT

LE

public const

static :

unsigned short

Animates a throttling ship.

Initial Value: 5;

 m_animMap private static :

std::map<unsig

ned short,

std::vector<unsi

gned short> >

Maps animation aliases to a vector of image aliases

(see ANIM_* and IMG_* constants).

 m_frames private :

std::vector<unsi

gned short>

Pointer to a vector of image frames. The vector is one

of those residing in the m_animMap.

 m_tickInterval private :

unsigned short

The number of ticks to wait between two image

frames.

 m_tickCountdown private :

unsigned short

Ticks left to next frame swap.

 m_animsTotal private :

unsigned short

The total number of times that the animation is

requested to be played. If 0, the animation will

continue forever (i.e., until its host removes it).

 m_animsLeft private :

unsigned short

The remaining number of times that the animation

can be played.

Initial Value: 0;

Sprite::AnimationSprite Methods

Method Type Notes

 AnimationSprite

(unsigned short,

unsigned short)

public: param: animation [unsigned short - in]

 The animation to represent.

param: frameInterval [unsigned short - in]

 Ticks between two frames.

Constructs a always-repeating animation sprite,

specifying the animation it should represent and the

desired time interval (ticks) between two frames.

Action:

 Calls parent constructor with the first frame in the

animation.

 AnimationSprite

(unsigned short,

unsigned short,

unsigned short)

public: param: animation [unsigned short - in]

 The animation to represent.

param: frameInterval [unsigned short - in]

 Ticks between two frames.

param: repeat [unsigned short - in]

 Number of times to repeat the animation.

Constructs an animation sprite, specifying the

animation it should represent, the desired time

interval (ticks) between two frames, and the number

of times it should be repeated (0 means played once).

Action:

 Calls parent constructor with the first frame in the

animation.

 isFinished () «Access»

public: bool

Tells whether the animation has finished playing as

well as repeating or not. If the animation is set to

always repeat, then this function will always return

false.

 tick () «Event»

public abstract:

void

Counts down to next frame change.

Post-condition: Functional Countdown decremented -

m_tickCountdown should be decremented with 1.

Action:

 Decrements m_tickCountdown and if it reaches 0,

advances to next image frame, changing m_image, or,

if repeat is requested and the last element was

reached, falls back to the first frame.

Sprite::Sprite

public Class:

Sprite::Sprite Attributes

Attribute Type Notes

 IMG_SHIP public const

static :

unsigned short

Ship image ID.

Initial Value: 1;

IMG_SHIP_DESTROY

public const

static :

Image ID of the first frame in a ship's destruction

animation.

_F1 unsigned short Initial Value: 2;

IMG_SHIP_DESTROY

_F2

public const

static :

unsigned short

Image ID of the second frame in a ship's destruction

animation.

Initial Value: 3;

IMG_SHIP_DESTROY

_F3

public const

static :

unsigned short

Image ID of the third frame in a ship's destruction

animation.

Initial Value: 4;

IMG_ASTEROID_DES

TROY_F1

public const

static :

unsigned short

Image ID of the first frame in an asteroid's destruction

animation.

Initial Value: 5;

IMG_ASTEROID_DES

TROY_F2

public const

static :

unsigned short

Image ID of the second frame in an asteroid's

destruction animation.

Initial Value: 6;

IMG_ASTEROID_DES

TROY_F3

public const

static :

unsigned short

Image ID of the third frame in an asteroid's

destruction animation.

Initial Value: 7;

IMG_SHIP_THROTTL

E_F1

public const

static :

unsigned short

Image ID of the first frame in a ship's throttling

animation.

Initial Value: 8;

IMG_SHIP_THROTTL

E_F2

public const

static :

unsigned short

Image ID of the second frame in a ship's throttling

animation.

Initial Value: 9;

 IMG_ASTEROID public const

static :

unsigned short

Asteroid image ID.

Initial Value: 10;

IMG_SHIP_THROTTL

E_F3

public const

static :

unsigned short

Image ID of the third frame in a ship's throttling

animation.

Initial Value: 11;

 IMG_FUEL_ITEM public const

static :

unsigned short

Fuel item image ID.

Initial Value: 12;

 IMG_MISSILE_ITEM public const

static :

unsigned short

Missile item image ID.

Initial Value: 13;

 IMG_MISSILE public const

static :

unsigned short

Missile image ID.

Initial Value: 14;

 IMG_LASER public const

static :

unsigned short

Laser image ID.

Initial Value: 15;

 IMG_SPAWN_POINT public const

static :

unsigned short

Spawn point image ID.

Initial Value: 16;

IMG_BACKGROUND

_1

public const

static :

unsigned short

World background 1 tile image ID.

Initial Value: 17;

 IMG_PLANET_1 public const

static :

unsigned short

Planet 1 image ID.

Initial Value: 18;

 IMG_PLANET_2 public const

static :

unsigned short

Planet 2 image ID.

Initial Value: 19;

 IMG_PLANET_3 public const

static :

unsigned short

Planet 3 image ID.

Initial Value: 20;

 IMG_CHAR_UC_A public const

static :

unsigned short

Image ID of the capital letter A.

Initial Value: 21;

 IMG_CHAR_UC_B public const

static :

unsigned short

Image ID of the capital letter B.

Initial Value: 22;

 IMG_CHAR_UC_C public const

static :

unsigned short

Image ID of the capital letter C.

Initial Value: 23;

 IMG_CHAR_UC_D public const

static :

unsigned short

Image ID of the capital letter D.

Initial Value: 24;

 IMG_CHAR_UC_E public const

static :

unsigned short

Image ID of the capital letter E.

Initial Value: 25;

 IMG_CHAR_UC_F public const

static :

unsigned short

Image ID of the capital letter F.

Initial Value: 26;

 IMG_CHAR_UC_G public const

static :

unsigned short

Image ID of the capital letter G.

Initial Value: 27;

 IMG_CHAR_UC_H public const

static :

unsigned short

Image ID of the capital letter H.

Initial Value: 28;

 IMG_CHAR_UC_I public const

static :

unsigned short

Image ID of the capital letter I.

Initial Value: 29;

 IMG_CHAR_UC_J public const

static :

unsigned short

Image ID of the capital letter J.

Initial Value: 30;

 IMG_CHAR_UC_K public const

static :

unsigned short

Image ID of the capital letter K.

Initial Value: 31;

 IMG_CHAR_UC_L public const

static :

unsigned short

Image ID of the capital letter L.

Initial Value: 32;

 IMG_CHAR_UC_M public const

static :

unsigned short

Image ID of the capital letter M.

Initial Value: 33;

 IMG_CHAR_UC_N public const

static :

unsigned short

Image ID of the capital letter N.

Initial Value: 34;

 IMG_CHAR_UC_O public const

static :

unsigned short

Image ID of the capital letter O.

Initial Value: 35;

 IMG_CHAR_UC_P public const

static :

unsigned short

Image ID of the capital letter P.

Initial Value: 36;

 IMG_CHAR_UC_Q public const

static :

unsigned short

Image ID of the capital letter Q.

Initial Value: 37;

 IMG_CHAR_UC_R public const

static :

unsigned short

Image ID of the capital letter R.

Initial Value: 38;

 IMG_CHAR_UC_S public const

static :

unsigned short

Image ID of the capital letter S.

Initial Value: 39;

 IMG_CHAR_UC_T public const

static :

unsigned short

Image ID of the capital letter T.

Initial Value: 40;

 IMG_CHAR_UC_U public const

static :

unsigned short

Image ID of the capital letter U.

Initial Value: 41;

 IMG_CHAR_UC_V public const

static :

unsigned short

Image ID of the capital letter V.

Initial Value: 42;

 IMG_CHAR_UC_W public const

static :

unsigned short

Image ID of the capital letter W.

Initial Value: 43;

 IMG_CHAR_UC_X public const

static :

unsigned short

Image ID of the capital letter X.

Initial Value: 44;

 IMG_CHAR_UC_Y public const

static :

unsigned short

Image ID of the capital letter Y.

Initial Value: 45;

 IMG_CHAR_UC_Z public const

static :

unsigned short

Image ID of the capital letter Z.

Initial Value: 46;

 IMG_CHAR_SPACE public const

static :

unsigned short

Image ID of the space character.

Initial Value: 47;

 IMG_CHAR_COMMA public const

static :

unsigned short

Image ID of the comma character.

Initial Value: 48;

 IMG_CHAR_COLON public const

static :

unsigned short

Image ID of the colon character.

Initial Value: 481;

 IMG_CHAR_POINT public const

static :

unsigned short

Image ID of the point character.

Initial Value: 49;

IMG_CHAR_QUESTI

ON

public const

static :

unsigned short

Image ID of the question mark character.

Initial Value: 50;

IMG_CHAR_EXCLA

MATION

public const

static :

unsigned short

Image ID of the exclamation mark character.

Initial Value: 51;

 IMG_CHAR_0 public const

static :

unsigned short

Image ID of the 0 character.

Initial Value: 52;

 IMG_CHAR_1 public const

static :

unsigned short

Image ID of the 1 character.

Initial Value: 53;

 IMG_CHAR_2 public const

static :

unsigned short

Image ID of the 2 character.

Initial Value: 54;

 IMG_CHAR_3 public const

static :

unsigned short

Image ID of the 3 character.

Initial Value: 55;

 IMG_CHAR_4 public const

static :

unsigned short

Image ID of the 4 character.

Initial Value: 56;

 IMG_CHAR_5 public const

static :

unsigned short

Image ID of the 5 character.

Initial Value: 57;

 IMG_CHAR_6 public const

static :

unsigned short

Image ID of the 6 character.

Initial Value: 58;

 IMG_CHAR_7 public const

static :

unsigned short

Image ID of the 7 character.

Initial Value: 59;

 IMG_CHAR_8 public const

static :

unsigned short

Image ID of the 8 character.

Initial Value: 60;

 IMG_CHAR_9 public const

static :

unsigned short

Image ID of the 9 character.

Initial Value: 61;

IMG_HUD_SHIP_ENE

RGY_0

public const

static :

unsigned short

Image ID of the ship's energy percentage bar in the

heads-up display (0%).

Initial Value: 62;

IMG_HUD_SHIP_ENE

RGY_20

public const

static :

unsigned short

Image ID of the ship's energy percentage bar in the

heads-up display (20%).

Initial Value: 63;

IMG_HUD_SHIP_ENE

RGY_40

public const

static :

unsigned short

Image ID of the ship's energy percentage bar in the

heads-up display (40%).

Initial Value: 64;

IMG_HUD_SHIP_ENE

public const

static :

Image ID of the ship's energy percentage bar in the

RGY_60 unsigned short heads-up display (60%).

Initial Value: 65;

IMG_HUD_SHIP_ENE

RGY_80

public const

static :

unsigned short

Image ID of the ship's energy percentage bar in the

heads-up display (80%).

Initial Value: 66;

IMG_HUD_SHIP_ENE

RGY_100

public const

static :

unsigned short

Image ID of the ship's energy percentage bar in the

heads-up display (100%).

Initial Value: 67;

IMG_HUD_LIVES_LE

FT

public const

static :

unsigned short

Image ID of the "lives left" container in the heads-up

display.

Initial Value: 68;

IMG_HUD_SHIP_FUE

L_0

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (0%).

Initial Value: 69;

IMG_HUD_SHIP_FUE

L_10

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (10%).

Initial Value: 70;

IMG_HUD_SHIP_FUE

L_20

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (20%).

Initial Value: 71;

IMG_HUD_SHIP_FUE

L_30

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (30%).

Initial Value: 72;

IMG_HUD_SHIP_FUE

L_40

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (40%).

Initial Value: 73;

IMG_HUD_SHIP_FUE

public const

static :

Image ID of the ship's fuel percentage bar in the

heads-up display (50%).

L_50 unsigned short Initial Value: 74;

IMG_HUD_SHIP_FUE

L_60

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (60%).

Initial Value: 75;

IMG_HUD_SHIP_FUE

L_70

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (70%).

Initial Value: 76;

IMG_HUD_SHIP_FUE

L_80

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (80%).

Initial Value: 77;

IMG_HUD_SHIP_FUE

L_90

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (90%).

Initial Value: 78;

IMG_HUD_SHIP_FUE

L_100

public const

static :

unsigned short

Image ID of the ship's fuel percentage bar in the

heads-up display (100%).

Initial Value: 79;

IMG_MENU_SELECT

ED_PREFIX

public const

static :

unsigned short

Selected menu item prefix image ID.

Initial Value: 80;

 m_image protected :

unsigned short

The sprite alias (see IMG_* constants).

Sprite::Sprite Methods

Method Type Notes

 Sprite (unsigned short) public: param: image [unsigned short - in]

Constructs a sprite, specifying the image it should

represent.

Pre-condition: Functional Image is a constant defined

in Sprite

 getImage () «Access»

public const:

unsigned short

Returns the sprite's image constant value.

SpriteManager

SpriteManager::AsteroidSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for an asteroid.

SpriteManager::FuelItemSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a fuel item.

SpriteManager::LaserSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a laser.

SpriteManager::MenuButtonSpriteManager

public Class

 Extends: TextSpriteManager. :

SpriteManager::MenuButtonSpriteManager Methods

Method Type Notes

MenuButtonSpriteMana

ger (std::string&)

public: param: name [std::string& - in]

Constructs a menu button sprite manager, being

provided its name.

Action:

 Calls parent constructor with SIZE_LARGE, for

example.

SpriteManager::MissileItemSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a missile item.

SpriteManager::MissileSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a missile.

SpriteManager::PlanetSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a planet.

SpriteManager::PlanetSpriteManager Methods

Method Type Notes

 PlanetSpriteManager

(unsigned short)

public: param: planetType [unsigned short - in]

 The planet type according to what

Planet::getType() returns.

Constructs a sprite manager for a planet, specifying

its type and therefore its sprite.

SpriteManager::ShipSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a ship.

SpriteManager::SpawnPointSpriteManager

public Class

 Extends: SpriteManager. : Responsible for managing sprites for a spawn point.

SpriteManager::SpriteManager

public abstract Class

 Implements: GameEventListener, Tickable. : Abstract sprite manager.

SpriteManager::SpriteManager Methods

Method Type Notes

 getSpriteIterator () «Access»

public const:

map<Sprite*,

Coord2d>::iter

ator

Returns an iterator of active sprites (those that are

meant to be displayed) mapped into their offset

coordinate to the previous sprite. Example: if we have

a text, then the first sprite will have coordinate (0,0),

while the other will have, say, (20,0), and so on.

 tick () «Event»

public abstract:

void

Ticks the contained animation sprites.

Post-condition: Functional Contained animation

sprites received a tick

Action:

 Ticks active animation sprites.

 notifyEvent

(GameEvent&)

«Event»

public abstract:

void

param: ev [GameEvent& - in]

Notifies the listener about an occuring game event.

 addActiveSprite

(Sprite&, Coord2d&)

«Manager»

protected: void

param: sprite [Sprite& - in]

param: offsetCoord [Coord2d& - in]

Adds an active sprite, specifying its offset coordinate

to the previously added sprite.

Post-condition: Functional If tickable then stored in

tickable sprites

Action:

 Adds a sprite to m_avtiveSprites and, if tickable, to

m_tickableActiveSprites.

 clearActiveSprites () «Manager»

protected: void

Clears all currently active sprites.

Post-condition: Functional All active sprites are

cleared - Both the active and tickable active sprites

are cleared.

SpriteManager::TextSpriteManager

public abstract Class

 Extends: SpriteManager. : Abstract sprite manager that will manage texts.

SpriteManager::TextSpriteManager Attributes

Attribute Type Notes

 SIZE_SMALL public const

static :

unsigned short

Small text size.

Initial Value: 1;

 SIZE_LARGE public const

static :

unsigned short

Large text size.

Initial Value: 2;

 m_size private :

unsigned short

The size that the contained text should have.

 m_textLines private :

std::vector<std:

:vector<Sprite*

Vector of text lines, each of which is a vector

consisting of sprite pointers.

> >

 m_charToSpriteMap private const

static :

std::map<char,

unsigned short>

Maps single characters to the IMG_CHAR_*

constants in Sprite.

SpriteManager::TextSpriteManager Methods

Method Type Notes

 TextSpriteManager

(std::string&, unsigned

short)

public: param: text [std::string& - in]

param: size [unsigned short - in]

 See SIZE_* constants.

Constructs a text sprite specifying the text to

represent as well as the size it should have.

Action:

 Translates string into line-by-line sprite vectors. See

m_textLines. Uses m_charToSpriteMap for mapping.

 getSize () «Access»

public: unsigned

short

Returns the desired size of the text. See SIZE_*

constants.

5.6 Package Diagram

Diagram: Controller - Package Diagram

 Diagram: Game - Package Diagram

pkg Controller - Package Diagram

Controller

(from Grav ity)

GameControlManager
InputListener

InputManager
KeyboardListener

«instantiate»

Updates control on/off switch

«manipulate»

 Diagram: Game Engine - Package Diagram

pkg Game - Package Diagram

Game

(from Gravity)

Control

+ GameControl

+ MenuControl

+ PrevMenuBu ttonControl

+ NextMenuBu ttonControl

+ PressMenuButtonControl

+ GamePlayControl

+ PauseGameControl

+ PlayerControl

+ ShipThrottleControl

+ ShipLeftControl

+ ShipRightControl

+ ShipLaser FireControl

+ ShipMissileFireControl

+ FinishStateControl

+ ConfigKeyboardMapControl

Engine

+ Engine

+ WorldEvent

+ WorldLife

+ World Physics

Event

+ GameEvent

+ GameEventManager

+ GameEventListener

+ Each GameEventListener is r...

Menu

+ EnterStateAction

+ LeaveStateAction

+ Menu

+ MenuButton

+ MenuAction

Player

+ Player

State

+ GameState

+ MenuState

+ MainMenuState

+ MapChoiceMenuState

+ ControlsMenuState

+ ControlsCon figMenuState

+ HighScoreMenuState

+ HelpMenuState

+ PauseMenuState

+ Play State

+ SinglePlay erPlayState

+ TwoPlayersPlayState

World

+ Status Bar Renderer(s)

+ Asteroid

+ DestroyableObject

+ FuelItem

+ Item

+ LaserProjectile

+ MissileItem

+ MissileProjectile

+ MovableObject

+ Planet

+ Projectile

+ Ship

+ SpawnPoint

+ StaticObject

+ World

+ WorldObject

+ WorldStrategy

«singleton»

Game

«instantiate»

Players become listeners

«use»

«manage»

Insert ships

«manipulate»

«use»

«manage»

«manage»

«manage»

Manages game states

«manage»

 Diagram: Audio - Package Diagram

 Diagram: View - Package Diagram

pkg Game Engine - Package Diagram

Engine

(from Game)

WorldEvent

+ CollisionEvent

+ DamageEvent

+ Destruc tionEvent

+ InsertionEvent

+ ItemPickupEvent

+ ProjectileFireEvent

+ RemovalO rderEvent

+ WorldEvent

WorldLife

+ AsteroidStrategy

+ ExpirationStrategy

+ ItemStrategy

WorldPhysics

+ BoundaryStrategy

+ Collisio nStrategy

+ Grav ity Strategy

+ RectangularBoundaryStrategy

pkg Audio - Package Diagram

Audio

(from Gravity)

SoundManager

 Diagram: Registry - Package Diagram

pkg View - Package Diagram

View

(from Gravity)

OpenGLRenderer

Sprite

+ AnimationSprite

+ Sp rite

SpriteManager

+ AsteroidSp riteManager

+ FuelItemSp riteManager

+ LaserSpr iteManager

+ MenuButtonSpriteManager

+ MissileItemSpriteManager

+ MissileSp riteManager

+ PlanetSpr iteManager

+ ShipSpriteManager

+ SpawnPointSpriteManager

+ SpriteManager

+ TextSpriteManager

«interface»
Renderer

«Manager»
+ render() : void
+ init() : void

«use»

«use»

 Diagram: Util - Package Diagram

pkg Registry - Package Diagram

Registry

(from Gravity)

«singleton»
ConfigRegistry

«singleton»
HighScoreRegistry

Registry

«singleton»
WorldMapRegistry

pkg Util - Package Diagram

«framework»
Util

+ CircularShape

+ Coo rd2d

+ Shape

+ Vec tor2d

+ Tickable

(from Gravity)

6. Functional Test Cases

6.1 Quick Start Help

Description of functionality being tested

A user who doesn't know what the game is about and/or what the controls are, shall

be able to get a short summary on these points before starting a game session. The

summary shall contain the goals of the game play, together with the currently set controls.

Reference to requirement document

Section 4.1.1.

Expected behavior

A help screen is shown with information about how to play the game and the controls of the

game are explained.

Steps to reproduce test

1. Start the game.

2. Select the quick start help in the main menu.

3. Read the quick start help and verify content.

6.2 Map Choice

Description of functionality being tested

Before starting a game session, the user shall be able to choose the map that that session should

be played on. If no active map choice is made, the game system shall choose one of the available

maps. Each map shall be a definition of the world/environment the player finds herself in while

playing a game session.

Reference to requirement document

Section 4.1.2.

Expected behavior

When a game is started after choosing a new map the new map is shown.

Steps to reproduce test

1. Start the game.

2. Select the “start the single player game” menu option.

3. Choose a map.

6.3 Controls Configuration

Description of functionality being tested

Before starting a game session, the user(s) shall be able (but not required) to configure

the game controls, i.e., what keyboard keys to use for what action in the game. The

game shall provide default controls, allowing the user(s) to change them at any time.

Reference to requirement document

Section 4.1.3.

Expected behavior

If you can choose keys for the controls and after that the chosen keys is used to control the

ship(s) in the game.

Steps to reproduce test

1. Start the game.

2. Choose “setup controls” in the menu.

3. Setup keys to control the ships.

4. Return to main menu.

5. Choose “start multiplayer game”.

6. Choose “start game” in the multiplayer game rule choice menu.

7. Test that you can control the ship with the keys chosen in step 3.

6.4 Single Player or Two Players Choice

Description of functionality being tested

Before starting a game session, the user shall be requested to choose whether she

wants to play in single player mode or multiplayer mode.

Reference to requirement document

Section 4.1.4.

Expected behavior

When choosing single player mode you get to play by yourself. When selecting multiplayer

mode you get to play against one human opponent both using the keyboard to control their ships.

Steps to reproduce test

1. Start the game.

2. Select “start single player game”.

3. See if you're playing in single player mode.

4. End the game.

5. From the main menu select “start multiplayer game”.

6.5 Two Players Game Rule Choice

Description of functionality being tested

Before starting a game session in two player mode, the users shall be able to set a

points limit, defining when the game is going to end.

Reference to requirement document

Section 4.1.5.

Expected behavior

You should be able to choose the number of lives before starting a two player game. The game

shall end when the set point limit is reached by any of the two players.

Steps to reproduce test

1. Start the game.

2. Choose “Start multiplayer game”.

3. Choose number of lives.

4. Play the game until out of lives.

6.6 Single Player High Score List

Description of functionality being tested

Exiting the game, either as a result of losing all ships (game over) or by exiting the

game deliberately, shall let the player know about the current high score list and, if

she had qualified for a placement on it, request her name. Only exit options provided

by the game shall follow this requirement.

Reference to requirement document

Section 4.1.6.

Expected behavior

If the player has reached a number of points enough for the high score list, the player

should be prompted for her name. Also the high score list should be shown after a game

ends.

Steps to reproduce test

1. Start the game.

2. Choose “Start single player game”.

3. Achieve more points than the last entry in the high score list.

4. Lose all ships.

5. Enter name into high score list.

6.7 Exiting The Game

Description of functionality being tested

It shall be possible to exit the game at any stage. While not playing the game, the user

shall be able to quit to the operating system. The user shall be prompted if she is sure she

wants to quit, when any exit function is chosen. While playing, the user shall be able to

choose whether to exit to setup or exit to the operating system.

Reference to requirement document

Section 4.1.7.

Expected behavior

If it's possible to exit to setup and to operating system while playing the game and

also to exit to operating system while in setup this requirement is met.

Steps to reproduce test

1. Start the game.

2. Test exit button while in main menu and also when a game is started.

6.8 World Boundary Wrapping

Description of functionality being tested

When a player makes her ship to go beyond one of the world boundaries, it shall be

“teleported” to the opposite side of the world. For example, going out on the left side

shall result in appearing on the right side.

Reference to requirement document

Section 4.1.8.

Expected behavior

When a ship is at the border of the game world it is teleported to the opposite vertical and

horizontal border, maintaining its movement.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Move the ship to a border of the game world.

6.9 Player's World View

Description of functionality being tested

The player shall see her ship from above, at a distance that depends on the ship's

movement speed. When the speed is increasing, the viewing distance shall increase too.

Conversely, when the speed is decreasing, the viewing distance shall decrease too.

Reference to requirement document

Section 4.1.9.

Expected behavior

The the zoom-level is proportional to the speed of the ship (more zoomed out the faster

the ship moves).

Steps to reproduce test

1. Start the game.

2. Choose “Start single player game”.

3. Accelerate the ship.

6.10 Game Play Information

Description of functionality being tested

The player shall be able to see information about her ship's health and fuel amount

during the game play. If the game rules say that there should not be any fuel restrictions

(i.e., unlimited fuel supply), then information about the fuel amount should be left out.

Reference to requirement document

Section 4.1.10.

Expected behavior

The ship information is visible while playing the game.

Steps to reproduce test

1. Start the game.

2. Choose “Start single player game”.

6.11 Scoring in Single Player Mode

Description of functionality being tested

Scores shall be gained partly by shooting at asteroids and partly by the time the

player managed to stay alive, having three ships (and therefore chances) at her

disposal.

Reference to requirement document

Section 4.1.11.

Expected behavior

The points are gained slowly while traveling around, and faster when shooting an

asteroid.

Steps to reproduce test

1. Start the game.

2. Choose “Start single player game”.

3. Shoot down an asteroid.

6.12 Scoring in Two Players Mode

Description of functionality being tested

A player shall get rewarded when destroying his opponent's ship with any weapon. A

player shall be punished when his ship is destroyed by crashing into some obstacle in

the world (including the opponent's ship).

Reference to requirement document

Section 4.1.12.

Expected behavior

The player get points when destroying an opponent, and gets lower score when

being killed.

Steps to reproduce test

1. Start the game.

2. Choose “Start Multi player game”.

3. Shoot down the opponent.

6.13 Single Player Ship Disposal (Lives)

Description of functionality being tested

The player shall start having three ships at her disposal. Gaining a certain amount of

points shall give another ship. The ships shall not be used simultaneously, but once one is

crashed it shall be replaced with a new one if available, otherwise the game ends and the

achieved points shall be displayed together with a high score list.

Reference to requirement document

Section 4.1.13.

Expected behavior

If the game information displays three ships when the game starts, and if one ship is

removed when the players ship is destroyed, and if one ship is added when a preset amount

of points are collected this requirement is met.

Steps to reproduce test

1. Start the game.

2. Choose “Start single player game”.

3. Run the ship into a planet.

6.14 Ship Speed Restriction

Description of functionality being tested

A ship's movement shall be restricted in speed. When the speed reaches a set limit,

throttling shall not be able to increase it.

Reference to requirement document

Section 4.1.14.

Expected behavior

The player accelerates and reaches this speed no further thrust will accelerate the ship.

Steps to reproduce test

1. Start the game.

2. Choose “Start single player game”.

3. Accelerate the ship.

6.15 Ship Fuel Restriction

Description of functionality being tested

A ship shall either have a fuel restriction (when in single player mode) or have an

infinite fuel supply (when in two players mode). When there is a fuel restriction, it shall

also be a restriction on how much fuel the ship can have at once.

Reference to requirement document

Section 4.1.15.

Expected behavior

If the fuel amount reaches zero no further thrust will be possible. In two player mode

no amount of thrust will decrease the amount of fuel available.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Accelerate the ship until fuel meter is empty.

6.16 Ship Damage

Description of functionality being tested

A ship shall be completely damaged when colliding with other ships, a planet or an

asteroid. A ship's damage resulting from a weapon projectile hit shall be defined by

the destructive power of that projectile. Complete damage results in ship destruction.

Reference to requirement document

Section 4.1.16.

Expected behavior

The ship shall be destroyed after colliding with a ship, planet or asteroid and the ship

shall also resist one shot without being completely damaged.

Steps to reproduce test

1. Start the game.

2. Choose “Start multiplayer game”.

3. Move the ship into another ship, a planet or an asteroid.

6.17 Operating a Ship

Description of functionality being tested

A ship shall be controllable by throttling (i.e., gaining speed in the direction of the

ship) and steering right and left respectively. Once a ship's movement and speed is

achieved it shall remain constant until its destruction, unless affected by a gravity or its

throttling.

Reference to requirement document

Section 4.1.17.

Expected behavior

The ship shall be maneuverable.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Use the configured controls to maneuver.

6.18 Ship Laser Gun

Description of functionality being tested

A ship shall be able to fire laser projectiles. The laser projectiles shall not be affected by

planetary gravities. The damage caused by a laser shall be partial. Lasers shall travel fast

(in relation to missiles).

Reference to requirement document

Section 4.1.18.

Expected behavior

The ship shall fire a laser.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Press the control associated with firing laser weapon.

6.19 Ship Missile Launcher

Description of functionality being tested

A ship shall be able to fire missile projectiles. The missile projectiles shall be affected by

planetary gravities. The damage caused by a missile shall be complete. Missiles shall be

slower than a laser projectile, but faster than a ship.

Reference to requirement document

Section 4.1.19.

Expected behavior

The ship shall fire a missile

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Press the control associated with firing missile weapon.

6.20 Operating a Ship's Weapons

Description of functionality being tested

The player shall be able to choose which weapon to use before firing it off. The

projectile resulting from firing a ship's weapon shall be set off from the ship's current

position and in the current direction of the ship (i.e., not ship movement, but where the ship

will strive to go when/if throttling).

Reference to requirement document

Section 4.1.20.

Expected behavior

The player shall be able to choose a weapon before firing it. Upon firing the chosen weapon shall

be ired.

Steps to reproduce test

1. Start the game.

2. Choose the “start singe player mode”.

3. Press the button associated with changing weapons.

4. Fire the weapon.

6.21 Planets

Description of functionality being tested

A planet shall have a gravity which shall affect ships, missiles and asteroids

exclusively. A planet shall not move in any way. An object being affected by a planet's

gravity shall be pulled towards that planet with a certain strength. Asteroids hitting a planet

shall, if that is the rule of the game mode or the map, increase the planet's gravitation.

Reference to requirement document

Section 4.1.21.

Expected behavior

The planet shall attract the players, asteroids and missiles.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Move the ship around the planets.

4. Fire missile.

6.22 Asteroids

Description of functionality being tested

In single player mode, asteroids shall be sent in to the world at an adequate

frequency, making the game play challenging enough. In two players mode, asteroids

may be sent in at a deliberate frequency. Asteroids shall be destructible, both partially

and completely. Partial destruction means that an asteroid is split into two smaller

asteroids, while complete destruction means that the whole asteroid is destroyed.

Reference to requirement document

Section 4.1.22.

Expected behavior

Asteroids shall appear in single player mode.

Steps to reproduce test

1. Start the game.

2. Choose the “start single player game”.

3. Move around the game world.

6.23 Items

Description of functionality being tested

In single player mode, items containing fuel shall occur randomly in both place and

time in the world, and frequently enough to guarantee that the player has a fair

chance to pick them up before running out of fuel. In two players mode, items shall

not contain fuel, but instead they shall contain weaponry and ship health upgrades.

Items shall appear in free space in the world, allowing a player to pick them up.

Reference to requirement document

Section 4.1.23.

Expected behavior

Items shall appear.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Move around the world.

6.24 Sound Effects

Description of functionality being tested

Sound effects shall be played for each of the following events: collisions, fired

weapons, ship throttle and item pickups.

Reference to requirement document

Section 4.1.24.

Expected behavior

When the event occurs the sound shall be heard.

Steps to reproduce test

1. Start the game.

2. Choose “start single player game”.

3. Fire a laser.

