
Strategic Web Based Management Game

Group 12

Per Eriksson

Per Strand

Simon Ragnar

Ingemar Markström

Max Walter

1

Design Document

2

1 Preface

1.1 Version history

Version Comment (reason for / summary of
changes)

Date Author(s)

1.0 First version 2008-03-09 Per Eriksson

Per Strand

Simon Ragnar

Ingemar Markström

Max Walter

1.2 Expected readership of the Design Document
The expected readership of this document are software developers.

Table of Contents
1 Preface...3

1.1 Version history...3

1.2 Expected readership of the Design Document...3

2 Introduction...6

2.1 Abbreviations and acronyms..6

2.2 Important terms..6

2.3 Abstract..9

3 System Overview..10

3.1 General Description...10

3.2 Overall Architecture..11

3.3 Detailed Architecture...12

4 Design Considerations:..15

5 General user interface information..16

3

5.1 Form 1: Side field, not logged in...16

5.2 Form 2: Create account..18

5.3 Form 3: Side fields, logged in...19

5.4 Form 4: The Ship...21

5.5 Form 5: All module forms...23

5.6 Form 6: Player Info..25

5.7 Form 7: Research page..26

5.8 Form 8: Escape Points-/Close To- High Score List...28

5.9 Form 9: Game Map..30

5.10 Form 10: About The Game..33

5.11 Form 11: Login..34

5.12 Form 12: Messages..35

6 Design Details...37

6.2 Class Diagram..46

6.3 State Charts..47

6.4 Interaction Diagrams..47

6.5 Detailed Design...54

6.6 Package diagram..78

7 Functional Test Cases..79

7.1 Create an account...79

7.2 Login to account..79

7.3 Enter the wormhole..80

7.4 Gather resources..80

7.5 Move the ship..81

7.6 (Auto) Repair the ship...81

7.7 Choose module..82

7.8 Build module...82

7.9 Upgrade module..82

4

7.10 Remove module...83

7.11 Build ammunition (missiles/shells)...83

7.12 Fire shells - Includes Hit with a shell..83

7.13 Fire missiles - Includes Hit with a missile...84

7.14 Teleport the ship..84

7.15 Search for player in high score list..85

7.16 Show player by rank..85

7.17 Create an alliance...86

7.18 Invite to an alliance..86

7.19 Disband an alliance..87

7.20 Leave alliance..87

7.21 Dismiss player from alliance...88

7.22 Send text message..88

7.23 Read text message...89

7.24 Delete text message...89

7.25 Start research...90

7.26 Stop research..90

7.27 Add star..91

7.28 Focus on the map...91

7.29 Search player on the map...92

7.30 Cancel movement..92

7.31 Pan map view...93

5

2 Introduction
This document provides a thorough basis for how the system of this web based game will
work (Requirements Document section 3) on all levels. This includes the presentation,
logic and data layers. Having that said, this document will take into account the technical
aspects of the system but only a rough design of the Graphical User Interface.

The document's intended audience is the developers of the system and their supervisor and
the purpose is to give them a clear picture of the system design for the implementation
phase.

Any reader of this document should have access to the Requirements Document to be able
to follow up on references in order to better understand this document.

2.1 Abbreviations and acronyms

RD Requirements Document, a document describing all functionality

GUI Graphical User Interface

PHP A web development language

Sec Secondary

Rec Resource

AKA Also Known As

2.2 Important terms

Term Description

Space ship, AKA The
Ship

This is the vessel that the game revolves around. Everything
you can do is done by using the Ship.

Wormhole The goal of the game. Enter the wormhole first and you are the
victor.

6

Term Description

Modules The only mean of gaining new abilities and bettering your old
ones is to build and upgrade your modules or research their
efficiency. There's a total of eight modules:

- Missile battery module

- Cannon module

- Teleportation module

- Missile decoys module

- Storage module

- Engine module

- Powerplant module

- Repair module

Web browser An application that has the ability to show web-pages e.g.
Firefox.

Web forms, AKA forms,
web-page, page

The GUI of the game. Can contain PHP code.

Game logic, AKA logic Pure PHP forms. Used to separate the game logic from the
GUI or the web forms.

Gameround A gameround starts when the developers choose to start it. A
gameround ends when a players reaches the Wormhole.

Game map The Game map is a part of the GUI and is also an own class in
the class structure of the game.

Session A session is determined and handled by the user's web-
browser. In essence it is variables saved by the the user's web-
browser for a specific period of time or for as long as they are
necessary.

Session data Data that are stored in the server memory about the user using
PHP objects.

Game object Game object data is data about the player or his/her
surroundings that can be altered by other players in the game
and thus always confers to the database for all data usages.

7

Term Description

User data User data is data that only the user can alter. User data confers
the database the first time the user logs in and when the user
changes his/her User data information.

Web-based Something that can be accessed through the internet using a
web-browser or similar program.

Server Is called through internet to return information to the caller
(client)

Client Calls a server to get and show information.

Database Stores information on hard drive.

Control flow Issues orders or calls to other parts of the application

Data flow Sends data to other parts of the application.

Massive multiplayer
game

A game that has the ability to serve more than 32-64 players at
a time (up to several thousand) in the same game, i.e. on one
and the same server and in one and the same game universe.

Strategy game Typically a strategy game is a game where there exists a map
of some sort where the player can change the content of the
map in some way.

Role-playing game Typically a role-playing game is a game where the player is in
control of a character that has the ability to evolve. The
character can take the shape of a person, monster or even a
space ship with crew and all.

Forum An application where players can post messages in order to
discuss various topics online.

Highscore A list sorted on the most successful participants in falling
order.

Escape points A point that all players get to give a rough estimate on their
ships abilities (or power).

Close-to-center In this case a list sorted on players closest to the wormhole in
ascending order.

Module slots A ship can not house an infinite amount of modules. When the
module slots are all occupied no more modules can be built.

Ship condition status,
AKA condition status

An indication on how damaged the ship is.

Stars A star is gained each time the player passes a pre determined
amount of Escape points. Stars can be used to boost research
on different modules.

8

Term Description

Ranks A rank consists of a number and a player name where the
number represents the players position in comparison to other
players in ascending order.

(Map) Focus Focusing means that the player has targeted another player in
the game with his/her weapons or teleport.

(Map) Search Searching on the map means that the player types in another
players name and that player is shown on the map.

(Weapon) Capacity
(Storage)

The storage capacity of different weapons munitions.

.logic Is a class containing code that decides the events in the game.

.presentation Is a class that has code that determines the GUI of the game.

.data Is a class that has code that sets and gets game information for
the game logic using a database.

Map objects Are objects that can be shown in the game map.

Map square The game map consists of squares called map squares.

(Map) Stackable If a square is stackable, the game can put a new object on that
square.

2.3 Abstract

Section Description

2. System Overview Provide an overall and detailed overview of the system
architecture

3. Design Considerations Describe issues which need to be addressed or resolved before
attempting to device a complete solution

4. Graphical User
Interface

Provide a rough Graphical User Interface of the system

5. Design Details Provide a detailed design of the system

6. Functional Test Case Provide Test Cases for the system

9

3 System Overview

3.1 General Description

3.1.1 General technical description

The strategic web based management game is as the name suggests, a game that you can
play on the web. This means that wherever you are, all you need to play this game is a
computer with an internet connection and a web browser (in our case Firefox). The system
uses a client-server architecture. All information about the participating players are stored
in a database.

3.1.2 General game description

The game is set in a futuristic world where players find themselves trapped in an other
dimension with a space ship, where the only means of escaping the dimension is by
entering a wormhole. All players will start in a circle and the wormhole will be located in
the center of the circle. The players will compete over who will reach the wormhole first,
and the first player to reach the wormhole is declared the winner. It is possible for new
players to enter the game even after the game has started. Once a winner is declared the
game restarts.

3.1.3 Detailed general game description

As mentioned, all players will be in control of a space ship. At the start of the game the
space ship has three basic properties, i.e. the ability to generate power, the ability to gather
resources from space and the ability to move. The ability to gather resources is a quality
that all ships have and can not be changed in any way, however the other two attributes are
directly a result of the ships corresponding “modules”. In this case the ship starts with an
Engine module, Powerplant module and a Storage module.

All ships have the capability to build and upgrade modules and to research module
efficiency. There are 8 modules in total. Also, all ships have a maximum amount of slots on
where to build modules.

10

3.2 Overall Architecture

The system will be a web-based game consisting of a server that clients can connect to
through a web-browser. Users will play the game by navigating through, and interacting
with, the web pages. In turn, the server will be connected to a database.

The Game logic section on the server creates, and/or changes Session data based on the
actions requested by the user. The Session data will be stored on the server and will contain
information regarding the user (User data) and other necessary game information (Game
objects). All Database inquiries will be handled by the Database handler, which consults the
Database. Eventual data needed for the inquiries will be fetched from the Session data.

Other than the graphical user interface (web-pages), each form will consist of Game logic.
The game logic governs all actions in the system, apart from the Client's actions and the
Database inquiries.

11

3.3 Detailed Architecture
This section will describe the control- and data- flow between the system's components
using Use case Gather Resource (Gather Resource: Requirements Document, page 43) as
an example. The Use case will be presented by an Activity Diagram defined in the Unified
Modeling Language (UML). The alphabetical letters in the picture relates to the
corresponding sections in the event description further down.

In this picture we've fused the Database handler with the session data objects. All database
queries will be handled through the Database handler, which consults the Database.

12

13

(Sec = Secondary, Res = Resource)

Now follows a detailed description of all Data transfers and Control flows in the Use case.

a

Control flow: The user sends a request through the web browser to the server that he/she
wants to gather the secondary resource (Secondary Resoure: Requirements Document,
page 23). The Game logic validates the amount of secondary resources that are available at
the resource Square (Resource Square: Requirements Document, page 23).

Data flow: None.

b

Conrol flow: The Game object loads and then stores the amount of secondary resources
available at the resource square from the database and returns the data to the Game logic.
The Game logic validates if there are resources to gather. We will assume that that is the
case.

Data flow: The Database sends data to the Game object of interest and in turn to the Game
logic.

c

Control flow: The Game logic loads the user's amount of main resources (Main Resource:
Requirements Document, page 23) from User data. This data will be independent from
everyone except for the user. Therefore no database enquiries are necessary. The Game
logic then validates if the user has enough resources. We will assume that that is the case.

Data flow: User data sends data to the Game logic.

d

Control flow:The Game logic deducts a specified amount of main resources from the user.
It also deducts a specified amount of secondary resources from the Resource square and
adds it to the User data. The Game object, User data and the Database performs the
operations described in b and c.

Data flow: Values that are to be deducted and added.

e

Control flow: The Game logic generates a web-page and sends it to the user's Web browser.

Data flow: The web-page.

14

4 Design Considerations:
– Works with the latest version of Firefox

– The system shall be implementable in PHP

Assumption on the main user:

– Likes to play web-based massive multi player, strategy and/or role-playing games on
PC or console

– Likes to play games that are played for short time intervals

– Is competitive

Possible and/or probable changes in functionality:

– Make it possible for a player to obtain several spaceships

– Add additional kinds of resources/weapons and so on

– Add more wormholes

– Have parallel game rounds

– Add map obstacles

– Make it possible for players to loot other player's ships

– Donate money

– Buy special features

– Write messages on missiles

– Add more modules

15

5 General user interface information
About the forum: The forum itself is outside our development scope, which means that we
will not develop a forum ourselves, but rather use a ready made forum. Therefore there are
no form sections or any other pictures describing the forum itself although there are lots of
references to it.

The user interface in this game is divided in two sections, logged in and not logged in.
When the user has not logged in, he/she can only use the forum, read about the game,
create a new account and login.

When in the Logged in state of the game the user has a multitude of choices. Many of the
choices are presented as links in the top and left areas that are always visible as long as the
user is logged in. There is also an area that always displays general information about the
player and his/her ship. Other than this there are many pages that can only be reached
through other pages. A few examples of such pages are the different module pages that can
only be reached by clicking on different areas of a picture on the Ship page.

5.1 Form 1: Side field, not logged in
This part only describes the left side frame of the picture.

List of references to RD:

Create an account, section 7.1.1.1

Log in, section 7.1.1.2

Game instructions, section 7.1.1.3

16

Form 1: Side field, not logged in.

Forum, section 7.1.1.4

The names of the controls and fields:

Links:

Login

Create account

About the game

Forum

The names of the events, methods, or procedures that cause this form to be displayed:

This form describes the side fields that are always displayed in all Forms
when not logged in.

The names of the events, methods, or procedures triggered by each control:

Login: Calls Hyperlink logIn

Create account: Calls Hyperlink createAccount

About the game: Calls Hyperlink aboutTheGame

Forum: Calls Hyperlink forum

17

5.2 Form 2: Create account

List of references to RD:

Create an account, section 7.1.1.1

The names of the controls and fields:

Text fields:

Username

Password

Confirm Password

Email

Buttons

 Create Account

The names of the events, methods, or procedures that cause this form to be displayed:

Click ”create new account” on the Form 1: Side field, not logged in.

18

Form 2: Create account

The names of the events, methods, or procedures triggered by each control:

Create Account: Calls function createAccount()

5.3 Form 3: Side fields, logged in
This part only describes the side and top frames of the picture

List of references to RD:

Game instructions, section 7.1.1.3

Forum, section 7.1.1.4

Game map, section 7.1.2

The ship, section 7.1.4

High-score list, section 7.1.6

Main resource, section 7.1.3.1

Secondary resource, section 7.1.3.2

Text messages, section 7.1.8.1

Names of controls and fields:

19

Form 3: Side fields, logged in

Links:

Log out

About the game

Forum

Game map

The Ship

Escape points Highscore list

Close-to-centre Highscore list

Player info

Information fields:

Main resource

Secondary resource

Remaining module slots

Ship condition status

Messages

The names of the events, methods, or procedures that cause this form to be displayed:

This form describes the side fields that are always displayed in all Forms when
logged in.

The names of the events, methods, or procedures triggered by each control:

Log out: Calls function logOut()

About the game: Calls Hyperlink aboutTheGame

Forum: Calls Hyperlink forum

Game map: Calls Hyperlink gameMap

The Ship: Calls Hyperlink theShip

Escape points Highscore list: Calls Hyperlink escapePointsHighScoreList

Close-to-centre Highscore list: Calls Hyperlink closeToHighScoreList

Player info: Calls Hyperlink playerInfo

Main resource: Calls function getMainResource()

Secondary resource: Calls function getSecondaryResource()

20

Remaining module slots: Calls function getRemainingModuleSlots()

Ship condition status: Calls function getConditionStatus()

Messages: Calls function getNewMessages()

5.4 Form 4: The Ship

List of references to RD:

Modules, section 7.1.5

Research, section 7.1.9

Names of the controls and fields:

Links:

Missile Batteries Module

Teleportation Module

Missile Decoys Module

Cannons Module

Storage Module

21

Form 4: The Ship

Engine Module

Power Plant Module

Repair Module

Research

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking on the playerShip Hyperlink located in the side field, logged in (form 3).

The names of the events, methods, or procedures triggered by each control:

Missile Batteries Module Calls Hyperlink missileBatteriesModule

Teleportation Module Calls Hyperlink teleportationModule

Missile Decoys Module Calls Hyperlink missileDecoysModule

Cannons Module Calls Hyperlink cannonsModule

Storage Module Calls Hyperlink storageModule

Engine Module Calls Hyperlink engineModule

Power Plant Module Calls Hyperlink powerPlantModule

Repair Module Calls Hyperlink repairModule

Research Calls Hyperlink research

22

5.5 Form 5: All module forms

List of references to RD:

Modules, section 7.1.5

Names of controls and fields:

Information fields:

List modules

Upgrade module cost

New module cost

Buttons:

Build new module

Upgrade module

Removemodule

Text fields:

(Missile module) Amount of missiles to be built

23

Form 5: All module forms.

(Cannon module) Amount of missiles to be built

(Missile decoy module) Amount of missiles to be built

Information fields:

(Missile module) Cost to build missiles

(Cannon module) Cost to build shells

(Missile decoy module) Cost to build missile decoys

Buttons:

(Missile module) Build missiles

(Cannon module) Build shells

(Missile decoy module) Build missile decoys

(Repair module) Auto repair ON/OFF

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking on the respective links inside the “The Ship” form (form nr 4) for each
module.

The names of the events, methods, or procedures triggered by each control:

List modules: Calls function listModules()

Upgrade module cost: Calls function getUpgradeModuleCost()

New module cost: Calls function getNewModuleCost()

Destruct module cost: Calls function getDestructModuleCost()

Build new module: Calls function buildNewModule()

Upgrade module: Calls function upgradeModule()

Destruct module: Calls function destructModule()

(Missile module):

Cost to build missiles: Calls function getBuildMissilesCost()

Build missiles: Calls function buildMissiles()

(Cannon module):

Cost to build shells: Calls function getBuildShellsCost()

Build shells: Calls function buildShells()

(Missile decoy module):

24

Cost to build missile decoys: Calls function getBuildMissilesDecoysCost()

Build missile decoys: Calls function buildMissilesDecoys()

(Repair module):

Auto repair ON/OFF: Calls function autoRepairONOFF()

5.6 Form 6: Player Info

List of references to RD:

None

The names of the controls and fields:

Information fields:

Player's Module Information

Player's Award Information

Player's Overall Information

25

 1.1 Form 6: Player Info

Player's Current Information

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking the playerInfo Hyperlink in form 3; “Side field, logged in”.

5.7 Form 7: Research page

List of references to RD:

Research, section 7.1.9

The names of the controls and fields:

Information fields:

Available Stars

Research Type

Progress bar

Level box

26

Form 7: Research page

Number of Stars

Buttons:

Research On

Research Off

Add Star

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking the research Hyperlink in form 3; “Side field, logged in”.

The names of the events, methods, or procedures triggered by each control:

Available Stars Calls function getAvailableStars()

Research Type Calls function getResearchType()

Progress bar Calls function getResearchProgressBar()

Level box Calls function getResearchLevel()

Number of Stars Calls function getNumberOfStars ()

Research On Calls function activateResearch()

Research Off Calls function deactivateResearch()

Add Star Calls function addStar()

27

5.8 Form 8: Escape Points-/Close To- High Score List

List of references to RD:

High-score list, section 7.1.6

We are here describing two different pages, the Escape Points High Score List and
the Close To High Score List, this due to that they will be almost identical.

The names of the controls and fields:

Information field:

Display ranks

Buttons:

Search

Show

The names of the events, methods, or procedures that cause this form to be displayed:

escapePointsHighScoreList or closeToHighScoreList Hyperlink located in form 3;
“Side field, logged in”.

28

Form 8: Escape Points-/Close To- High Score List

The names of the events, methods, or procedures triggered by each control:

(Escape List) Display ranks Calls function getEscapeList()

(Escape List) Search Calls function searchPlayerByEscape()

(Escape List) Show Calls function showRankByEscape()

(Close to List) Display ranks Calls function getCloseList()

(Close to List) Search Calls function searchPlayerByCloseTo()

(Close to List) Show Calls function showRankByCloseTo()

29

5.9 Form 9: Game Map

List of references to RD:

Game Map, section 7.1.2.1

Movement of Ship, section 7.1.4.5

Launch Missiles, section 7.1.5.1.1.3

Firing Cannons, section 7.1.5.1.2.3

The names of the controls and fields:

Buttons:

Move ship

Move ship cancel

Fire missiles

Fire cannons

30

Form 9: Game Map

Move View of Map North: Short(displayed by a single arrow)

Move View of Map North: Far(displayed by a double arrow)

Move View of Map South: Short(displayed by a single arrow)

Move View of Map South: Far(displayed by a double arrow)

Move View of Map East: Short(displayed by a single arrow)

Move View of Map East: Far(displayed by a double arrow)

Move View of Map West: Short(displayed by a single arrow)

Move View of Map West: Far(displayed by a double arrow)

map Focus

map Search

Information fields:

Focused Player

Amount of Missiles

Fire CapacityMissiles

Amount of Shells

Fire CapacityShells

Effective RangeCannon

Incoming Attacks

Outgoing Attacks

Text fields:

Missiles to fire

Shells to fire

Map X coordinate

Map Y coordinate

Map focus on player

Complex Type:

Map frame

The names of the events, methods, or procedures that cause this form to be displayed:

31

Pushing the ”Game Map” Hyperlink in form 3; “Side field, logged in”

The names of the events, methods, or procedures triggered by each control:

Move ship Calls function triggerMoveShip()

Move ship cancel Calls function stopMovingShip()

Fire missiles Calls function fireMissiles()

Fire cannons Calls function fireShells()

Move View of Map North: Short Calls function moveMapViewNorthShort()

Move View of Map North: Far Calls function moveMapViewNorthFar()

Move View of Map South: Short Calls function moveMapViewSouthShort()

Move View of Map South: Far Calls function moveMapViewSouthFar()

Move View of Map East: Short Calls function moveMapViewEastShort()

Move View of Map East: Far Calls function moveMapViewEastFar()

Move View of Map West: Short Calls function moveMapViewWestShort()

Move View of Map West: Far Calls function moveMapViewWestFar()

map Focus Calls function mapFocus()

map Search Calls function mapSearch()

Focused Player Calls function getFocusedPlayer()

Amount of Missiles Calls function getAmountOfMissiles()

Fire CapacityMissiles Calls function getMissileFireCapacity()

Amount of Shells Calls function getAmountOfMissiles()

Fire CapacityShells Calls function getShellFireCapacity()

Effective RangeCannon Calls function getEffectiveCannonRange()

Incoming Attacks Calls function getIncomingAttacks()

Outgoing Attacks Calls function getOutgoingAttacks()

Map frame if triggerMoveShip() has been called, call
moveShip(), else call focusCoordinates()

32

5.10 Form 10: About The Game

List of references to RD:

Game instructions, section 7.1.1.3

The names of the controls and fields:

Information field:

About The Game

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking the aboutTheGame Hyperlink in form 3; “Side field, logged in” or

clicking on the aboutTheGame Hyperlink in form 1; “Side field, not logged in”.

33

Form 10: About The Game

5.11 Form 11: Login

List of references to RD:

Log in, section 7.1.1.2

The names of the controls and fields:

Buttons:

Login

Text fields:

Username

Password

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking the logIn Hyperlink in form 1; “Side field, not logged in”.

The names of the events, methods, or procedures triggered by each control:

Login Calls function logIn()

34

 Form 11: Login

5.12 Form 12: Messages

List of references to RD:

Messages, section 7.1.8.1

The names of the controls and fields:

Links:

Topic

Buttons:

Delete

Send

Information fields:

From

To

Time

Message

35

Form 12: Messages

Text fields:

Send message

To

The names of the events, methods, or procedures that cause this form to be displayed:

Clicking the Messages Hyperlink in form 1; “Side field, not logged in”.

The names of the events, methods, or procedures triggered by each control:

Topic Calls function showMessage()

Delete Calls function deleteMessage()

Send Calls function sendMessage()

36

6 Design Details

6.1.1 Class Responsibility Collaborator (CRC)cards

GameRound.logic

Responsibilities Collaborators

Create new map

Create map objects

AddNewPlayer

Place map objects

End game round

Player.logic

Map.logic

Highscore.logic

Responsibilities Collaborators

Create escape point list

Create close-to list

Highscore.data

Player.logic

Highscore.data

Responsibilities Collaborators

Store escape point list

Store close-to list

Alliance.logic

Responsibilities Collaborators

Create new alliance

Remove player from alliance

Add player to alliance

Alliance.data

Player.logic

Alliance.data

Responsibilities Collaborators

37

Represent name of alliance

Represent all players of the alliance

Map.logic

Responsibilities Collaborators

Draw map objects

Create map object

Validates if a square is stackable.

Perform add incoming missiles.

Perform add incoming shells.

Ship.logic

ResourceSquare.logic

Wormhole.logic

Map.data

Map.data

Responsibilities Collaborators

Knows the location of all ships on the map

Knows the location of all resource squares
on the map

Knows the location of all wormhole on the
map

Knows the time of impact of all incoming
missiles

Knows the time of impact of all incoming
shells

Ship.logic

Responsibilities Collaborators

Perform update main resource

Perform update secondary resource

Perform get coordinates.

Perform change coordinates.

Perform calculate damage

Perform gather resource.

Modules.logic

Ship.data

38

Ship.data

Responsibilities Collaborators

Represent amount of main resource

Represent amount of secondary resource

Knows condition status

Knows its set of coordinates on the map

Boolean isStackable

ResourceSquare.logic

Responsibilities Collaborators

Subtract resource from square ResourceSquare.data

ResourceSquare.data

Responsibilities Collaborators

Represent amount of resource

Knows its set of coordinates on the map

Boolean isStackable

Wormhole.logic

Responsibilities Collaborators

Notify the system about a winner GameRound.logic

Wormhole.data

Wormhole.data

Responsibilities Collaborators

Knows its set of coordinates on the map

Boolean isStackable

39

Player.logic

Responsibilities Collaborators

Calculate Escape Points

Be able to create a new account

Be able to login

Perform get all messages for a player.

Perform send message.

Perform remove message.

Player.data

Ship.logic

Alliance.logic

Player.data

Responsibilities Collaborators

Knows the player's closest distance to the
wormhole

Knows the highest escape point gained by
the player

Knows which alliance the player belongs to
(if any)

Knows all sent and received text messages

Knows player Id

Knows player user name

Knows player password

Knows player e-mail

Knows the Id of the ship the player owns

Knows all awards given to the player

Knows how many kills the player has
throughout the current game round

Knows the overall total amount of kills the
player has

Knows how many game rounds the player
has won

40

Module.logic

Responsibilities Collaborators

Perform ship movement.

Perform cannon attack.

Perform missile attack.

Perform build shells.

Perform build missile decoys.

Perform build missile.

Perform toggle auto repair.

Perform teleportation.

Perform update resources.

Perform build module.

Perform calculation of all storages.

Perform validate enough resources.

Perform toggle research on/off for a specific
module.

Perform upgrade module.

Perform remove module.

Module.data

Ship.logic

Map.logic

ResourceSquare.logic

Module.data

Responsibilities Collaborators

Knows the quantity of each module

Knows the level of each module

Knows the build, upgrade and research cost
for each module.

Knows the maximum amount of storage.

41

CreateAccount.presentation

Responsibilities Collaborators

Present the GUI for the create account web-
page.

Handle data input from the user.

Player.logic

Login.presentation

Responsibilities Collaborators

Present the GUI for the login web-page

Handle data input form the user

Player.logic

TheShip.presentation

Responsibilities Collaborators

Present the GUI for the the ship web-page

Handle data input form the user

PlayerInfo.presentation

Responsibilities Collaborators

Present the GUI for the player info web-
page

Handle data input form the user

Player.logic

Module.logic

EscapePointsHighscore.presentation

Responsibilities Collaborators

Present the GUI for the escape points
highscore web-page

Handle data input form the user

Player.logic

CloseToHighscoreList.presentation

Responsibilities Collaborators

42

Present the GUI for the high score list over
the players that are closest to the wormhole,
web-page

Handle data input form the user

Player.logic

GameMap.presentation

Responsibilities Collaborators

Present the GUI for the game map web-page

Handle data input form the user

Map.logic

Module.logic

Player.logic

AboutTheGame.presentation

Responsibilities Collaborators

Present the GUI for the about the game
web-page

Handle data input form the user

Messages.presentation

Responsibilities Collaborators

Present the GUI for the messages web-page

Handle data input form the user

Player.logic

MissileBatteryModule.presentation

Responsibilities Collaborators

Present the GUI for the missile battery
module web-page

Handle data input form the user

Module.logic

43

Teleportation.presentation

Responsibilities Collaborators

Present the GUI for the teleportation module
web-page

Handle data input form the user

Module.logic

MissileDecoyModule.presentation

Responsibilities Collaborators

Present the GUI for the missile decoy
module web-page

Handle data input form the user

Module.logic

Cannons.presentation

Responsibilities Collaborators

Present the GUI for the cannons module
web-page

Handle data input form the user

Module.logic

StorageModule.presentation

Responsibilities Collaborators

Present the GUI for the storage module
web-page

Handle data input form the user

Module.logic

EngineModule.presentation

Responsibilities Collaborators

Present the GUI for the engines module
web-page

Handle data input form the user

Module.logic

44

PowerplantModule.presentation

Responsibilities Collaborators

Present the GUI for the login web-page

Handle data input form the user

Module.logic

RepairModule.presentation

Responsibilities Collaborators

Present the GUI for the repair module web-
page

Handle data input form the user

Module.logic

Research.presentation

Responsibilities Collaborators

Present the GUI for the research web-page

Handle data input form the user

Module.logic

45

6.2 Class Diagram

46

6.3 State Charts
The states of the system are very simple. Once the system is turned on there are no specific
states it can enter.

6.4 Interaction Diagrams

6.4.1 Build a module

47

6.4.2 Build ammunition

6.4.3 Create Alliance

48

6.4.4 Fire missile/shell

6.4.5 Join an alliance

49

6.4.6 Gather secondary resource

50

6.4.7 Move ship

6.4.8 Produce main resource

51

6.4.9 Send message

6.4.10 Start new round

52

6.4.11 Teleport ship

6.4.12 Upgrade module

53

6.5 Detailed Design

Table of Contents
6 Design Details...37

6.1.1 Class Responsibility Collaborator (CRC)cards..37

6.2 Class Diagram..46

6.3 State Charts..47

6.4 Interaction Diagrams..47

6.4.1 Build a module...47

6.4.2 Build ammunition..48

6.4.3 Create Alliance..48

6.4.4 Fire missile/shell..49

6.4.5 Join an alliance...49

6.4.6 Gather secondary resource...50

6.4.7 Move ship..51

6.4.8 Produce main resource...51

6.4.9 Send message...52

6.4.10 Start new round..52

6.4.11 Teleport ship..53

6.4.12 Upgrade module...53

6.5 Detailed Design...54

6.5.1 Database...56

6.5.2 General Detailed Design information:...57

6.5.2.1 Highscore.data...57

6.5.2.2 Alliance.data..57

6.5.2.3 Map.data..58

6.5.2.4 Ship.data...58

6.5.2.5 Resource.data...59

6.5.2.6 Wormhole.data...59

54

6.5.2.7 Player.data..59

6.5.2.8 Module.data...61

6.5.2.9 ResourceSquare.logic...62

6.5.2.10 Module.logic..62

6.5.2.11 Player.logic..67

6.5.2.12 GameRound.logic..69

6.5.2.13 Highscore.logic..70

6.5.2.14 Wormhole.logic..71

6.5.2.15 Map.logic...71

6.5.2.16 Alliance.logic...72

6.5.2.17 Ship.logic...74

6.5.3 Requrements document cross referencing table...76

6.6 Package diagram..78

55

6.5.1 Database

Structure:

Tabels:
GameRound
 RoundID
 MapID

TextMessage
 PlayerID(from)
 Date
 Subject
 Message

Player
 PlayerID
 PlayerName
 PlayerPass
 PlayerEmail
 ShipID
 AllianceID
 RoundID
 BestEscapePoint

 Kills
 Wins

Ship
 ShipID
 ModuleMatrix
 Coordinates
 MainResource
 SecondaryResource
 ConditionStatus
 MapID

ResourceSquare
 Coordinates
 Amount
 MapID

Map

 MapID
 SizeOfMap
 WormholeCoordinates
 AmountOfPlayers

TextMessageToPlayerList
 TextID
 PlayerID (to)

HighScoreEscapePoints
 Rank
 PlayerID
 Points

HighScoreCloseToCenter
 Rank
 PlayerID
 Distance

56

6.5.2 General Detailed Design information:

To ensure that the variables in our project are capsuled in a consistent and clear way, each
logic-class will only be able to get data from it's corresponding data-class. This means that
if A.logic needs data from B.data, it has to go through B.logic to get that information.

Due to this, every logic and data-class will have “getters” and “setters” for all the variables
stored in the data-class. A “getter” is a method that picks a variable up from a data-class
and returns it, and in the same way a “setter” is a method that changes the value of a
variable in a data-class.

The presentation layer in our project consists of several presentation-classes. The purpose
of these presentation-classes is to generate HTML code for the corresponding page which
is to be sent to the user. These classes will only contain one method each, buildPage, which
consults the logic-classes if needed, in order to construct the HTML code and present the
page for the user.

With the explanations of “getters”, “setters” and presentation-classes above they will not be
described further in this section. The reason for this is that it'd be very redundant to explain
the same thing over and over.

6.5.2.1 Highscore.data

Fields

Attribute: escapePointList
Type: String[][]
Usage: This is used to keep track of the escape point highscore list. The matrix shall be
sorted by points. It shall be filled with playerID's and points.

Attribute: closeToList
Type: String[][]
Usage: This is used to keep track of the close to center highscore list. The matrix shall be
sorted by points. It shall be filled with playerID's and points.

6.5.2.2 Alliance.data

Fields
Attribute: allianceName
Type: String
Usage: Every alliance has a unique name.

Attribute: allianeceMembers
Type: String[]

57

Usage: This is used to keep track of all members in an alliance. The array shall be filled
with playerID's.

6.5.2.3 Map.data

Fields

Attribute: allShipsLocation
Type: String[][]
Usage: This is used to know the location of all ships on the map. The matrix shall be filled
with shipID's and coordinates.

Attribute: allResourceSquaresLocation
Type: int[][]
Usage: This is used to know the location of all resource squares on the map. The matrix
shall be filled with x and y coordinates.

Attribute: wormholeLocation
Type: int[]
Usage: This is used to know the location of the wormhole on the map. The array will have
two elements, x and y coordinates for the wormhole.

Attribute: incomingMissiles
Type: String[][]
Usage: This is used to keep track of all incoming missiles and when they will reach their
targets. The matrix shall be filled with playerID's (both attacker and receiver), amount of
missiles, time until impact and accuracy.

Attribute: incomingShells
Type: String[][]
Usage: This is used to keep track of all incoming shells and when they will reach their
targets. The matrix shall be filled with playerID's (both attacker and receiver), amount of
shells, time until impact and damage.

6.5.2.4 Ship.data

Fields

Attribute: mainResource
Type: int
Usage: Every user has an amount of the main resource at his/her disposal.

58

Attribute: secondaryResource
Type: int
Usage: Every user has an amount of main resource at his/her disposal.

Attribute: conditionStatus
Type: int
Usage: This is used to keep track of the ships condition status.

Attribute: mapCoordinates
Type: float[]
Usage: This is used to keep track of the ships location. The array will have two elements, x
and y coordinates for the ship.

6.5.2.5 Resource.data

Fields

Attribute: amountOfResource
Type: int
Usage: This is used to keep track of the amount of resources existing in the resource
square.

Attribute: mapCoordinates
Type: int[]
Usage: This is used to know the resource squares location on the map. The array will have
two elements, x and y coordinates for the resource square.

6.5.2.6 Wormhole.data

Fields

Attribute: mapCoordinates
Type: int[]
Usage: This is used to know the wromholes location on the map. The array will have two
elements, x and y coordinates for the wormhole.

6.5.2.7 Player.data

Fields

Attribute: playerID

59

Type: int
Usage: Every player has an unique player id which is used to get and set information about
the player, the player's ship etc.

Attribute: userName
Type: String
Usage: This is used for a player to log in.

Attribute: password
Type: String
Usage: This is used for a player to log in.

Attribute: email
Type: String
Usage: This is used for the ability to send information about the game to the players.

Attribute: shipID
Type: int
Usage: This is used to connect a player to his/her personal ship.

Attribute: playerAwards
Type: String[]
Usage: This is used to keep track of all awards a player has obtained throughout all game
rounds.

Attribute: nrKillsCurrentGameRound
Type: int
Usage: This is used to keep track of how many kills a player has scored during the current
game round.

Attribute: nrKillsAllGameRounds
Type: int
Usage: This is used to keep track of how many kills a player has scored throughout all
game rounds.

Attribute: gameRoundsWon
Type: int
Usage: This is used to keep track of how many game rounds a player has won.

Attribute: closestDistance
Type: float
Usage: This is used to keep track of how close a player has come to the wormhole

60

throughout all game rounds

Attribute: highestEscapePoints
Type: int
Usage: This is used to keep track of the highest escape point a player has obtained
throughout all game rounds.

Attribute: alliance
Type: String
Usage: This is used to keep track of which alliance a player belongs to.

Attribute: sentMessages
Type: String[][]
Usage: This is used to keep track of all messages that a player has sent to other players.
The matrix shall be filled with playerID's and text messages.

Attribute: recivedMessages
Type: String[][]
Usage: This is used to keep track of all messages that a player has received from other
players. The matrix shall be filled with playerID's and text messages.

6.5.2.8 Module.data

Fields

Attribute: moduleInformation
Type: int[][]
Usage: This is used to keep track of all module information for a player, including how
many modules of each type the player has, what level they are, how much they can store
and any other eventually needed information.

Attribute: buildCost
Type: int[][]
Usage: This is used to keep track of the build cost for all different kinds of modules.

Attribute: upgradeCost
Type: int[][]
Usage: This is used to keep track of the upgrade cost for all different kinds of modules.

Attribute: researchCost
Type: int[][]
Usage: This is used to keep track of the research cost for all different kinds of modules.

61

6.5.2.9 ResourceSquare.logic

6.5.2.9.1subtractResources

Parameters: int ResourcesToSubtract
Return value: boolean resourceSubtracted
Description: the function subtracts the drawn resources from the total resource of the
square and returns true. If it is not enough resources to withdraw it returns false.
Database: select the old value of ResourceSquare and update with the new value.
Pre-condition: none
Validity checks: enough resources have to exist in the resource square.
Post-condition: the function will return whether or not the resources was drawn from the
square.
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.3.3 Resource squares, Use Case 8.3.2 Gather resources

6.5.2.10 Module.logic

6.5.2.10.1 moveShip

Parameters: int endX, int endY
Return value: boolean startMoving
Description: moves the ship from the current position to the coordinates given as
parameters and returns true. If it is not possible to move the ship to the given coordinates,
return false.
Database: update the coordinates of Ship
Pre-condition: none
Validity checks: Check if it is enough resources to move the ship and that the square the
ship is moving to is not occupied buy something
Post-condition: the function will return whether or not the movement has started.
Calls: “getters” and “setters”, updateResources, validateEnoughResources
Called by: the presentation layer
RD: Functional Requirement 7.1.4.5 Movement of ship, Use Case 8.4.1 Move ship

6.5.2.10.2 cannonAttack

Parameters: Ship attackShip
Return value: boolean attackStarted
Description: starts the attack on the ship and returns true. If it is not possible to attack the
ship return false. If the attack is possible draw ammunition from the ship.
Database: update the ammunition shells of the ship.

62

Pre-condition: none
Validity checks: check if it is enough resources to perform the attack.
Post-condition: the function will return whether or not the attack was started.
Calls: “getters” and “setters”,
Called by: the presentation layer
RD: Functional Requirement 7.1.5.1.2 Cannons module, Use Case 8.5.3 Fire shells

6.5.2.10.3 missileAttack

Parameters: Ship attackShip
Return value: boolean attackStarted
Description: starts the attack on the ship and returns true. If it is not possible to attack the
ship return false. If the attack is possible draw ammunition from the ship.
Database: update the ammunition missiles of the Ship.
Pre-condition: none
Validity checks: check if it is enough resources to perform the attack.
Post-condition: the function will return whether or not the resources was drawn from the
square.
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.5.1.1 Missile module, Use Case 8.5.2 Fire missiles

6.5.2.10.4 buildShells

Parameters: int numberOfShells
Return value: boolean shellsBuilt
Description: If it is not possible to build a new shell it will return true. If is not possible to
build the shell it will return false.
Database: update the ammunition of shells of the Ship.
Pre-condition: none
Validity checks: -
Post-condition: the function will return whether or not the shells was built.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.5.1.2 Cannons module, Use Case 8.5.1 Build ammunition
(missiles/shells)

6.5.2.10.5 buildMissileDecoys

Parameters: int numberOfDecoys
Return value: Boolean decoysBuilt
Description: If it is not possible to build a new missile decoys it will return true. If is not

63

possible to build the missile decoys it will return false.
Database: update the ammunition of missile decoys of the Ship.
Pre-condition: none
Validity checks: -
Post-condition: the function will return whether or not the missile decoys was built.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.5.2.2 Missile decoys module, Use Case 8.5.1 Build
ammunition (missiles/shells)

6.5.2.10.6 buildMissile

Parameters: int numberOfMissiles
Return value: Boolean MissileBuilt
Description: If it is not possible to build a new missiles it will return true. If is not possible
to build the missiles it will return false.
Database: update the ammunition of missiles of the ship.
Pre-condition: none
Validity checks: -
Post-condition: the function will return whether or not the missiles was built.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.5.1.1 Missile module, Use Case 8.5.1 Build ammunition
(missiles/shells)

6.5.2.10.7 toggleAutoRepair

Parameters: -
Return value: Boolean toggleTo
Description: start and stop repairing the ship returns what the research is toggled to.
Database: update ModuleMatrix in Ship
Pre-condition: none
Validity checks: enough resources
Post-condition: the function will return the state that auto repair has been toggled to.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.4.4 Repair ship, Use Case 8.4.3 Repair the ship

6.5.2.10.8 teleport

Parameters: int distance

64

Return value: Boolean teleported
Description: If the ship has enough resources the teleportation will be done depending on
the distance.
Database: update position of the Ship
Pre-condition: none
Validity checks: enough resources
Post-condition: the function will return if or if not the teleportation has been done.
Calls: “getters” and “setters”, validateEnoughResources, updateResource
Called by: the presentation layer
RD: Functional Requirement 7.1.5.2.1 Teleportation module, Use Case 8.5.5 Teleport the
ship

6.5.2.10.9 updateResources

Parameters: int resource
Return value: -
Description: Update the primary resources for the ship.
Database: update resources for ship
Pre-condition: none
Validity checks: -
Post-condition: new value for the resources of the ship
Calls: “getters” and “setters”
Called by: the presentation layer
RD: -

6.5.2.10.10 buildModule

Parameters: int type
Return value: boolean built
Description: If the ship has enough resources the module will be built. In other case, the
method will return false.
Database: update ModuleMatrix in Ship
Pre-condition: none
Validity checks: enough resources
Post-condition: the function will return if or if not the module has been built.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.5 Modules, Use Case 8.4.5 Build a module

6.5.2.10.11 calculateAllStorages

Parameters: -

65

Return value: int totalStorage
Description: Return the total storage for the primary and secondary resources.
Database: select MainResource and SecondaryResource
Pre-condition: none
Validity checks: -
Post-condition: the function will return
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.5.3 Storage module

6.5.2.10.12 validateEnoughResources

Parameters: int resource
Return value: Boolean enough
Description: Validate if the given number of resources is enough, then return true.
Otherwise, false.
Database: select MainResource and SecondaryResource
Pre-condition: none
Validity checks: enough resources
Post-condition: the function will return if or if not it is enough resources.
Calls: “getters” and “setters”,
Called by: the presentation layer
RD: -

6.5.2.10.13 toggleResearch

Parameters: int type
Return value: Boolean toggleTo
Description: start and stop research for a module and returns what the research is toggled
to.
Database: update ModuleMatrix in Ship
Pre-condition: none
Validity checks: -
Post-condition: the function will return what the module has been toggled to.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirements 7.1.9 Research, Use Case 8.9.1 Research a research field

6.5.2.10.14 upgradeModule

Parameters: int type
Return value: boolean upgraded

66

Description: If the ship has enough resources the module will be upgraded. In other case,
the method will return false.
Database: update ModuleMatrix in Ship
Pre-condition: none
Validity checks: enough resources
Post-condition: the function will return if or if not the module has been built.
Calls: “getters” and “setters”, validateEnoughResources, updateResources
Called by: the presentation layer
RD: Functional Requirement 7.1.5 Modules, Use Case 8.5.6 Upgrade a module

6.5.2.10.15 removeModule

Parameters: int type
Return value: -
Description: Remove the module from the ship.
Database: - update ModuleMatrix in Ship
Pre-condition: none
Validity checks: -
Post-condition: -
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.5 Modules, -

6.5.2.11 Player.logic

6.5.2.11.1 calculateEscapePoints

Parameters: int playerID
Return value: int amountOfEscapePoints
Description: the function calculates the amount of escape points that the user has based on
his/her modules on the ship and his/her level of research on each module
Database: returns all information regarding the modules on the player's ship
Pre-condition: none
Validity checks: the amount of escape points cannot be negative
Post-condition: the function will return the amount of escape points that the user has
Calls: “getters” and “setters”
Called by: the presentation layer, createEscapePointList()
RD: Use Case 8.6.1 Calculate Escape Points

6.5.2.11.2 createNewAccount

Parameters: String userName, String password, String email

67

Return value: boolean accountCreated
Description: the function validates if an account with the desired user name already exists.
If not, a new account gets created given the desired user name, password and email
Database: selects all players given the desired user name. If there are no results from this
database query, the function stores the player account in the database
Pre-condition: none
Validity checks: user name and password must be between 3-12 characters. Email must
contain an '@' and '.' character.
Post-condition: the function will return whether or not the account was created
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.1.1 Create An Account, Use Case 8.1.1 Create An
Account

6.5.2.11.3 login

Parameters: String userName, String password
Return value: boolean login
Description: the function validates if the given password corresponds to the password
associated with the given user name in the database.
Database: selects the user name in the database where the user name and password
corresponds to the given parameters
Pre-condition: none
Validity checks: none
Post-condition: the function will return whether or not the login was successful
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.1.2 Login, Use Case 8.1.2 Login to an account

6.5.2.11.4 sendMessage

Parameters: int fromPlayerID, String toPlayer, String subject, String message
Return value: boolean messageSent
Description: the function looks up if a player with a user name called toPlayer exists. If it
does it sends the given message with the given subject to the given player and returns true.
Database: selects the playerID for the String toPlayer, if there are no database results from
this query the function stores the message as sent from the fromPlayerID in the database
and the message as sent to playerID for toPlayer.
Pre-condition: none
Validity checks: none
Post-condition: returns whether or not the message could be sent
Calls: “getters” and “setters”
Called by: the presentation layer

68

RD: Functional Requirement 7.1.8.1 Text messages, Use Case 8.8.1 Sending a short text
message

6.5.2.11.5 removeMessage

Parameters: int messageID, boolean isSent (if true, the message has been sent by the
player)
Return value: none
Description: the function removes the message with the messageID
Database: removes the selected message
Pre-condition: none
Validity checks: none
Post-condition: removes the selected message
Calls: “getters” and “setters”
Called by: the presentation layer

6.5.2.12 GameRound.logic

6.5.2.12.1 createNewMap

Parameters: int amountOfPlayers
Return value: none
Description: the function creates the game map in regard to the amount of players.
Database: stores all information regarding the created map and its content in the database
Pre-condition: none
Validity checks: none
Post-condition: creates a game map based on the amount of players
Calls: “setters”
Called by: the presentation layer
RD: Use case 8.2.3 Create a game map

6.5.2.12.2 createAndPlaceMapObjects

Parameters: int mapID
Return value: none
Description: the function extracts the size of the map and the amount of players on the
map from the database and creates and places all objects on the map
Database: returns the amount of players on the map and the size of the map, then stores
information regarding all content on the game map.
Pre-condition: a map has been created
Validity checks: none
Post-condition: creates map objects and places them on the map

69

Calls: “getters” and “setters”
Called by: the presentation layer

6.5.2.12.3 addNewPlayer

Parameters: int playerID
Return value: none
Description: the function adds a new player to the current game round and places his/her
ship on the map.
Database: stores that the new player has been added to the map and the location of his/her
ship
Pre-condition: a game round exists
Validity checks: none
Post-condition: adds a new player to the game round
Calls: “getters” and “setters”
Called by: the presentation layer

6.5.2.12.4 endGameRound

Parameters: int roundID
Return value: none
Description: ends the current game round
Database: deletes all information that won't be needed in future game rounds
Pre-condition: there is a winner to the game round
Validity checks: none
Post-condition: ends current game round
Calls: none
Called by: the presentation layer

6.5.2.13 Highscore.logic

6.5.2.13.1 createEscapePointsList

Parameters: none
Return value: none
Description: the function calculates and updates the Escape points highscore list in the
database.
Database: This function completely recalculates the entire HighScoreEscapePoints table in
the database.
Pre-condition: none
Validity checks: The list must represent the players in the game exactly.
Post-condition: none

70

Calls: “getters” and “setters” in Highscore.data
Called by: the presentation layer
Requirements document: Functional requirements 7.1.6, Use case 8.6.1

6.5.2.13.2 createCloseToList

Parameters: none
Return value: none
Description: the function calculates and updates the Close to highscore list in the database.
Database: This function completely recalculates the entire HighScoreCloseToCenter table
in the database.
Pre-condition: none
Validity checks: The list must represent the players in the game exactly.
Post-condition: none
Calls: “getters” and “setters” in Highscore.data
Called by: the presentation layer
Requirements document: Functional requirements 7.1.6

6.5.2.14 Wormhole.logic

6.5.2.14.1 notifyWin

Parameters: none
Return value: boolean hasWon, Player winningPlayer
Description: the function is run to control of anyone has won the game. This happends if
anyone is inside the wormhole square.
Database: Controls if the wormhole square is occupied.
Pre-condition: none
Validity checks: none
Post-condition: the function will return whether or not the wormhole square was occupied.
Calls: “getters” and “setters” in Wormhole.data
Called by: the presentation layer
Requirements document: Functional requirements 7.1.2.2

6.5.2.15 Map.logic

6.5.2.15.1 returnMapObjects

Parameters: int x, int y
Return value: float[][] mapObjects
Description: the function takes the posistion on the map that shall be displayed and returns
all the objects in that area and their coordinates. For example, if the function returns one

71

ship then it will return a one column and 3 rows matrix with type, x and y as values.
Database: This function gets all values from ResourceSquare and Ship tables.
Pre-condition: The map must have been created.
Validity checks: The returned objects must be correct in terms of type and location.
Post-condition: enough information is returned to create a map pane.
Calls: “getters” and “setters” in Map.data
Called by: the presentation layer
Requirements document: Functional requirements 7.1.2.1

6.5.2.15.2 addIncomingMissiles

Parameters: int amount, int level, Date timeToArrival
Return value: none
Description: the function uses insert sorting to place all attacks in the game in a array
sorted on timeToArrival. A thread is used to handle this array.
Database: none
Pre-condition: none
Validity checks: none
Post-condition: the missileAttack is placed in the array
Calls: none
Called by: the presentation layer
Requirements document: Functional requirements 7.1.5.1.1, Use case 8.5.2, 8.5.6

6.5.2.15.3 addIncomingShells

Parameters: int amount, int level, Date timeToArrival
Return value: none
Description: the function uses insert sorting to place all attacks in the game in a array
sorted on timeToArrival. A thread is used to handle this array.
Database: none
Pre-condition: none
Validity checks: none
Post-condition: the shellAttack is placed in the array
Calls: none
Called by: the presentation layer
Requirements document: Functional requirements 7.1.5.1.2, Use case 8.5.3, 8.5.7

6.5.2.16 Alliance.logic

6.5.2.16.1 Create new alliance

Parameters: String nameOfAlliance
Return value: boolean allianceCreated

72

Description: the function takes the wanted name of the
Database: searches for the wanted name of the alliance, and adds the new alliance if it
don't already exist
Pre-condition: none
Validity checks: name of the alliance must be at least 3 characters long.
Post-condition: the function will return whether or not the alliance was created
Calls: “getters” and “setters”
Called by: The presentation layer
RD: Functional Requirement 7.1.7, Use Case 8.7.1

6.5.2.16.2 Remove player from alliance

Parameters: String playerName
Return value: boolean playerRemoved
Description: Takes the name of the player that should be removed, and removes him from
the alliance
Database: Searches for the name of the player, and removes him from the alliance
Pre-condition: none
Validity checks: none
Post-condition: the function will return whether or not the player was deleted
Calls: “getters” and “setters”
Called by: The presentation layer
RD: Functional Requirement 7.1.7, Use Case 8.7.5

6.5.2.16.3 Add player to alliance

Parameters: String nameOfPlayer
Return value: boolean playerAdded
Description: The function adds a not already existing player to the given alliance
Database: Searches for the players name in the alliance, and if it not already exists, adds
him to the alliance
Pre-condition: none
Validity checks: the player is not in more alliances
Post-condition: the function returns whether or not the player is added.
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.7, Use Case 8.7.2

73

6.5.2.17 Ship.logic

6.5.2.17.1 Perform update main resource

Parameters: Int ammountOfMRes
Return value: none
Description: Adds upp the main resources.
Database: store new value for main resource
Pre-condition: none
Validity checks: there is enough storagemodules for the add up.
Post-condition: the function returns whether or not the player is added.
Calls: “getters” and “setters”
Called by: the logic layer
RD: Functional Requirement 7.1.3.1

6.5.2.17.2 Perform update secondary resource

Parameters: Int ammountOfSRes
Return value: none
Description: Adds upp the secondary resources.
Database: store new value for secondary resource
Pre-condition: none
Validity checks: there is enough storagemodules for the add up.
Post-condition: the function returns whether or not the player is added.
Calls: “getters” and “setters”
Called by: the logic layer
RD: Functional Requirement 7.1.3.2, Use Case 8.3.2

6.5.2.17.3 Perform change coordinates

Parameters: Vector Coordinates
Return value: none
Description: the function changes the location of the ship by updating the coordinates.
Database: searches for the ship, then updates the coordinates vector for the ship.
Pre-condition: none
Validity checks: the coordinate is inside the boundaries of the map.
Post-condition: none
Calls: “getters” and “setters”
Called by: the logic layer
RD: Functional Requirement 7.1.4.5, Use Case 8.4.1

74

6.5.2.17.4 Perform calculate damage

Parameters: String typeOfWeaponHit, String shipID
Return value: float damageDone
Description: the function calculates the damage another ship has done to the actual ship
Database: searches the ship in the database, then updates the energy of the ship
Pre-condition: none
Validity checks: none
Post-condition: none
Calls: “getters” and “setters”
Called by: the logic layer
RD: Functional Requirement 7.1.4.3 Use Case 8.5.7, 8.5.7, 8.4.2

6.5.2.17.5 Perform gather resources

Parameters: none
Return value: boolean gathering
Description: the function sets the ship to start gather resources from a field.
Database: none
Pre-condition: the ship is in a resource square
Validity checks: none
Post-condition: the function returns whether or not the ship starts gathering resources
Calls: “getters” and “setters”
Called by: the presentation layer
RD: Functional Requirement 7.1.3.3, 7.1.3.2 Use Case 8.3.2

75

6.5.3 Requrements document cross referencing table

Functional requirements Methods

7.1.1 Web page Presentation layer

7.1.1.1 Create an account DD 5.5.11.2

7.1.1.2 Log in with an existing account DD 5.5.11.3

7.1.1.3 Read about the game Presentation layer

7.1.1.4 Visit the forum Presentation layer

7.1.2 Game map DD 5.5.15

7.1.2.1 Function of the map DD 5.5.15.1

7.1.2.2 The wormhole DD 5.5.14

7.1.2.3 Startup placement of players DD 5.5.12.2

7.1.2.4 Viewing the map DD 5.5.15.1

7.1.3 Resources DD 5.5.17.1, 5.5.17.2

7.1.3.1 Main resource DD 5.5.17.1, 5.5.17.2

7.1.3.2 Secondary resource DD 5.5.17.1, 5.5.17.2

7.1.3.3 Resource squares DD 5.5.9

7.1.4 The ship DD 5.5.17

7.1.4.1 Default ship DD 5.5.12.2

7.1.4.2 Destroying ship DD 5.5.17.4

7.1.4.3 Damage ship DD 5.5.17.4

7.1.4.4 Repair ship DD 5.5.10.7

7.1.4.5 Movements of ship DD 5.5.10.1

7.1.5 Modules DD 5.5.10

7.1.5.1 Offensive Weapons Presentation layer

7.1.5.1.1 Missile batteries module DD 5.5.10.3, 5.5.10.6

7.1.5.1.2 Cannons module DD 5.5.10.2, 5.5.10.4

7.1.5.2 Defensive Weapons Presentation layer

7.1.5.2.1 Teleportation module DD 5.5.10.8

7.1.5.2.2 Missile decoys module DD 5.5.10.5

7.1.5.3 Storage module DD 5.5.10.11, 5.5.10.12

7.1.5.4 Engine module DD 5.5.10.1

76

7.1.5.5 Power Plant DD 5.5.10.9

7.1.5.6 Repair module DD 5.5.10.7

7.1.6 High-score list DD 5.5.13.1, 5.5.13.2

7.1.6.1 Escape points DD 5.5.13.1

7.1.6.2 Skills star awards. Presentation layer

7.1.7 Alliances DD 5.5.16

7.1.7.1 Players in an alliance Presentation layer

7.1.7.2 Benefits from being in an alliance Presentation layer

7.1.8 Communication Presentation layer

7.1.8.1 Text messages DD 5.5.11.4, 5.5.11.5

7.1.9 Research DD 5.5.10.13

7.1.9.1 Researching missiles DD 5.5.10.13

7.1.9.2 Researching cannons DD 5.5.10.13

7.1.9.3 Researching missile decoys DD 5.5.10.13

7.1.9.4 Researching teleportation DD 5.5.10.13

7.1.9.5 Researching engines DD 5.5.10.13

7.1.9.6 Researching repair DD 5.5.10.13

77

6.6 Package diagram

78

7 Functional Test Cases

7.1 Create an account

Description Create an account

Reference Functional requirement: 7.1.1.1 Create an account

Precondition User name does not exist.

Input User name, password, and email address

Expected
Output

A new account is created

Instructions 1. Go to the games web page

2. Input the user name, password and email address in the specified
text boxes

3. Click the button Create Account.

4. The text Account created is shown

7.2 Login to account

Description Log in to account

Reference Functional requirement: 7.1.1.2 Log in

Precondition The account already exist

Input The user name and the password to the account

Expected
Output

The user will be logged in

Instructions 1. Go to the games web page

2. Input the user name and the password for the account

3. Click the button Login

79

7.3 Enter the wormhole

Description Enter the wormhole and win the game

Reference Use case: 8.2.1 Win a game round

Functional requirement: 7.1.2.2 The wormhole

Precondition Enough main resources to move into the wormhole

Input The coordinates for the wormhole

Expected
Output

The player wins the game round

Instructions 1. Be the first one to enter the wormhole

2. A text displaying the message You Have Won is shown

7.4 Gather resources

Description Gather resources from resource square

Reference Use case: 8.3.2 Gather resource

Functional requirement: 7.1.3 Resources

Precondition The ship has moved to a resource square and has enough main resources.

Input -

Expected
Output

The player will have more secondary resources.

Instructions 1. Click on the link Game map

2. Click the button Gather

3. A text displaying Gathering resources is displayed

80

7.5 Move the ship

Description Move the ship from one location to another

Reference Functional requirement: 7.1.4.5 Movement of ship

Precondition Enough main resources.

Input The location wanted to move to.

Expected
Output

The ship starts to move to the location specified

Instructions 1. Click on the link Game map

2. Click the button Move

3. Click on the location on the map

4. A text Movement is initialized is displayed

7.6 (Auto) Repair the ship

Description Automatically repair the ship

Reference Use case: 8.4.3 Repair the ship

Functional requirement: 7.1.4.4 Repair ship

Precondition The ship is damaged

Input -

Expected
Output

The ship starts to repair

Instructions 1. Click on link Module

2. Click on the On/Off button on the repair module

5. A text Repair is initialized is displayed

81

7.7 Choose module

Description Choose a module to adjust

Reference Functional requirement: 7.1.5 Modules

Precondition The module is built

Input

Expected
Output

The module page is displayed.

Instructions 1. Click on link Module

2. Click on the link in the wanted module

7.8 Build module

Description Build a certain module

Reference Functional requirement: 7.1.5 Modules

Precondition Enough resources and module slots.

Input

Expected
Output

Module is built.

Instructions 1. Click on link Module

2. Click on the Build new module button

3. The text Module is built is displayed

7.9 Upgrade module

Description Upgrade a certain Module

Reference Functional requirement: 7.1.9 Research

Precondition The module has been built.

Input

Expected
Output

The module is upgraded.

Instructions 1. Click on the link Module

2. Click the Upgrade button on the module line

3. The text Upgrade is complete is displayed

82

7.10 Remove module

Description Remove module

Reference Functional requirement: 7.1.5 Module

Precondition The module has been built.

Input

Expected
Output

The module is removed.

Instructions 1. Click on the link Module

2. Click the remove button on the module line

3. The text Module removed is displayed

7.11 Build ammunition (missiles/shells)

Description Build ammunition

Reference Use case: 8.5.1 Build ammunition

Functional requirement: 7.1.5.1 Offensive Weapons

Precondition The weapon is built, there is enough room for the produced ammunition
and enough resources.

Input Number of shells

Expected
Output

The given amount of shells is built

Instructions 1. Click on the link Map

2. Write the number of shells wanted in the text box named Shells

3. Click the Build button

4. The text Shells built is displayed

7.12 Fire shells - Includes Hit with a shell

Description Fire shell

Reference Use case: 8.5.3 Fire shells, 8.5.7 Hit with a shell

Functional requirement: 7.1.5.1.2 Cannons module

Precondition The shells exist

Input Number of shells to attack with

83

Description Fire shell

Expected
Output

The focused player is attacked

Instructions 1. Click on the Game map button

2. Click on your targeted ship in the map

3. Specify how many shells wanted to attack him with by entering
the wanted number of shells

4. Click the Fire button.

5. A text Attack initialized is displayed

7.13 Fire missiles - Includes Hit with a missile

Description Fire missile

Reference Use case: 8.5.2 Fire missile, 8.5.6 Hit with a missile

Functional requirement: 7.1.5.1.1 Missile batteries module

Precondition The missiles exist

Input Number of missiles

Expected
Output

The focused player is attacked

Instructions 1. Click on the Game map button

2. Click on your targeted ship in the map

3. Specify how many missiles wanted to attack him with by entering
the wanted number of missiles

4. Click the Fire button.

5. A text Attack initialized is displayed

7.14 Teleport the ship

Description Teleport the ship to another position

Reference Functional requirement: 7.1.5.2.1 Teleportation module

Precondition The teleport module is built

Input

Expected
Output

The ship is teleported

84

Description Teleport the ship to another position

Instructions 1. Click on the Game map button

2. Hit the Teleport button

3. The ship changes coordinates on the map

7.15 Search for player in high score list

Description Find a certain player in the high score list.

Reference Functional requirement: 7.1.6 High-score list

Precondition Player created.

Input Name of the player

Expected
Output

The position in the high score list.

Instructions 1. Click on the link Escape-points or Close-to-center to go to the
high score lists.

2. Enter the player name in the text field Search player.

3. Click on Search.

4. The position on the high score list is shown.

7.16 Show player by rank

Description Find players with a certain rank.

Reference Functional requirement: 7.1.6 High-score list

Precondition Player created.

Input The rank.

Expected
Output

All players with the certain rank.

Instructions 1. Click on the link Escape-points or Close-to-center to go to the
high score lists.

2. Enter the rank in the text field Show Rank.

3. Click on Search.

4. The players with the certain rank is shown.

85

7.17 Create an alliance

Description Create a new alliance and show a confirming message.

Reference Use case: 8.7.1 Create an alliance

Precondition Player created and not in an alliance.

Input Name of alliance.

Expected
Output

That the alliance has been created.

Instructions 1. Click on the link Alliance.

2. Enter the name of the alliance in the text field Name of alliance.

3. Click on Create.

4. The text The alliance has been created is shown.

7.18 Invite to an alliance

Description Invite a player to join the alliance and show a confirmingmessage.

Reference Use case: 8.7.2 Join an alliance

Functional requirement: 7.1.7.1 Players in an alliance

Precondition Alliance created and the player is not in an alliance.

Input The name of the player to be invited.

Expected
Output

The player has joined the alliance.

Instructions 1. Click on the link Alliance.

2. Enter the name of the player to invite in the text field Name of
player.

3. Click on Invite.

4. Wait on the response.

5. The message Player has joined the alliance is shown.

86

7.19 Disband an alliance

Description Disband an alliance and inform all players in alliance about it.

Reference Use case: 8.7.3 Disband an alliance

Functional requirement: 7.1.7.1 Players in an alliance

Precondition Alliance created.

Input -

Expected
Output

A message is sent to all players in the alliance about the disbanding of the
alliance and the alliance is disbanded.

Instructions 1. Click on the link Alliance.

2. Click on Disband alliance.

3. The message sent to players is shown.

7.20 Leave alliance

Description The player wants to leave the alliance.

Reference Use case: 8.7.4 Leave alliance

Functional requirement: 7.1.7.1 Players in an alliance

Precondition Player has joined the alliance.

Input -

Expected
Output

A message is sent to all players in the alliance that the player has left the
alliance and the player is not in the alliance any more.

Instructions 1. Click on the link Alliance.

2. Click on leave Alliance.

3. The message sent to all players in the alliance is shown.

87

7.21 Dismiss player from alliance

Description A players is dismissed from an alliance by the leader of the alliance.

Reference Use case: 8.7.5 Dismiss player

Functional requirement: 7.1.7.1 Players in an alliance

Precondition Player has joined the alliance.

Input Name of the player.

Expected
Output

A message is sent to all players in the alliance that the player has been
dismissed from the alliance and the player is kicked.

Instructions 1. Click on the link Alliance.

2. Enter the name of the player in the text field Player to dismiss.

3. Click on Dismiss.

4. The message sent to all players in the alliance will be shown.

7.22 Send text message

Description Send text message to another player

Reference Use case: 8.8.1 Sending a short text message

Functional requirement: 7.1.8.1 Text messages

Precondition Player created.

Input Name of player, subject and text message.

Expected
Output

Message is added to the player's message list.

Instructions 1. Click on link Messages.

2. Enter the name of the player to send a text message to in the text
field To.

3. Enter the subject of the text message in the text field Subject.

4. Enter the message in the text field Message.

5. Click on Send.

6. The text The message has been sent is shown.

88

7.23 Read text message

Description Read a new incoming message

Reference Use case: 8.8.1 Sending a short text message

Functional requirement: 7.1.8.1 Text messages

Precondition A message is sent to the player.

Input -

Expected
Output

The text message is displayed.

Instructions 1. Click on the link 1 unread message.

2. The message will be shown.

7.24 Delete text message

Description Delete a text message.

Reference Use case: 8.8.1 Sending a short text message

Functional requirement: 7.1.8.1 Text messages

Precondition Text message exists.

Input -

Expected
Output

The message will disappear from the list of text messages.

Instructions 1. Click on link Messages.

2. Click on x for the message you want to delete.

3. The text The message has been deleted is shown that the
message has been deleted.

89

7.25 Start research

Description Start research for a module.

Reference Use case: 8.9.1 Research a research field.

Functional Requirement: 7.1.9 Research

Precondition Enough resources.

Input -

Expected
Output

The research for the module will be on.

Instructions 1. Click on the link Research.

2. Click On for the module to do research on.

1. The button is showing the text Off instead.

7.26 Stop research

Description Stop research for a module.

Reference Use case: 8.9.1 Research a research field

Functional Requirement: 7.1.9 Research

Precondition The module must be under research.

Input -

Expected
Output

The research for the module will be off.

Instructions 2. Click on the link Research.

3. Click Off for the module to stop research.

4. The button is showing the text On instead.

90

7.27 Add star

Description Add a star for a certain research field.

Reference Functional requirement: 7.1.6.2 Skills star awards.

Precondition The maximum number of stars has not been reached for the research field.

Input -

Expected
Output

A star will be added for the research field in the column Stars.

Instructions 1. Click on the link Research.

2. Click on Add star for the module.

3. A star will be added for the module in the column Stars.

7.28 Focus on the map

Description Focus on a set of coordinates on the map.

Reference Functional requirement: 7.1.2.1 Game map

Precondition Game round started.

Input Coordinates on the map.

Expected
Output

The map is centered on the input coordinates.

Instructions 1. Click on the link Game map.

2. Enter the x coordinate in the text field X.

3. Enter the y coordinate in the text field Y.

4. Click on Focus.

5. The map is centered on the specified coordinates.

91

7.29 Search player on the map

Description Find a player on the map and center the map where the player is.

Reference Functional requirement: 7.1.2.1 Game map

Precondition Player is created.

Input Player's name

Expected
Output

Map that is centered on the player.

Instructions 1. Click on the link Game map.

2. Enter the name of the player in the text field Player.

3. Click on Search.

4. The map is centered on the player.

7.30 Cancel movement

Description Cancel the movement of the ship and change the map view.

Reference Use case: 8.4.1 Move the ship

Functional requirement: 7.1.4.5 Movements of ship

Precondition The ship is moving.

Input -

Expected
Output

The ship has stopped.

Instructions 1. Click on the link Game map.

2. Click on Cancel movement.

3. The movement is now shown on the map anymore.

92

7.31 Pan map view

Description Pan the map in any direction.

Reference Functional requirement: 7.1.2.1 Game map

Precondition -

Input -

Expected
Output

The map will pan in the chosen direction.

Instructions 1. Click on the link Game map.

2. Click on the link Go left>, Go right>, Go south>, Go north> to
pan the map view.

3. Click on the link >> for any direction to pan more than with >.

4. A different part of the map will be panned.

93

