Settle And Destroy (SAD)

Group 13

Jonas Wikberg
Christofer Hjalmarsson
Daniel Westerberg
Saul Amram
André Sikborn Erixon

Abstract

The never ending need of entertainment and theorandss of how modern persons spend
their time in front of the computer create a wishthe perfect entertainment application. This
project, Settle and Destroy, seeks to fulfill thikich for persons with an interest in solving
strategical problems in a game situation. Not dalfflling this first wish Settle and Destroy,
also aims at giving the user an opportunity toradewith other users in a multiplayer mode
further extending the entertaining value for therus

This is the design document for project SAD whigfites and outlines the project structure.
The design documents is the preface to the implatien phase why thorough
considerations are made concerning every desigisidedrom top level package and class
structure down to low level design decisions conicey the graphical user interface.

TABLES OF CONTENTS

N |V I 30 1 LU T 1 [\ OSSPSR 5
1.1. PUIMPOSE BNA SCOPE .. eiiiiiieiee et ettt e e e e e e e e e e e e e s e e e e nanabbebbesseeeeeaeaaaas 5
1.2. [RY=TE= 1 C=To Mo [o ol U] =T o1 c= 1o TN OO PPRSO 5
1.2.1. Prerequisite & COMPAaNION OCUMENES.ieieeeeeeireiiniieieeerrrerrerteeeeeeeseesssssrnnnrrerrrrrrrereaaaeeaaaes 5
1.2.2. Context providing AOCUMENLSuuieiiiiiiieeeeeeiriiieeee e e erreeaeaeeseessesassssrarrrrrereaeaeeeeaaessesanasnannnnns 5
1.3. I 000 =T T T T I PP UUPUUPUR PR 6
1.3.1. Terms, abbreviations and ACrONYMS..........coummmmeerrrerreererrreereeeeeeeeeesiee it 6
1.4. Y o153 1 = (o TP TP TUPRUPPP &
2. SYSTEM OVERVIEW ...ttt ettt sttt ettt e e st e e s et e e e e st e e e e enbe e e e enreas 6
2.1 LCT=TaT=T = 1=] o] 1o T o P 6
P O S = - 1 To 0 1= oY1= PP SRPT 6
2.1.2. Functionality and design deSCrPLION.ccccaciiieiiee et e e 7
2.2, Overall architeCture deSCrIPLION...........iii i e e e e e e e e e e s e e e e s e e ran e neeees 7
2.2.0. HOSE et e et e e e e e e e o e e e r e e et e et aeaaeeeeeaas 8.
2.2, 2. S BIV I it ————— b ettt et e e e e e e e e e e E b e e e e e e e et e et e et eeeeaaeaae s 8..
P T O 1= o | ST PR PRPR 8.
2.3. Detailed architeCture deSCHIPLIONoc..ue ittt e s aaaaaes 8
220G T0 S O 1= o | SRR PRPR 9.
2.3 2. S BIV I ittt ————— et e et e et e e e e e e e e e e bbb e e et e e ettt e e et e e eaaaeaaaas 9..
PG TRC T o o 11 o] i [0 11 PP RRP T OTUUPRPT 9
PG B S B T - 1 { [0)PP RPPR 9
3. DESIGN CONSIDERATIONS ...ttt ettt et s it e e e ae e e s stae e e e st e e e e ssbe e e e s sntaeaessntaeeeennens 10
3.1 ASSUMPLIONS aNA DEPENUENCIESuuttetieeet sttt ettt et e et e e e aaaaaaa e s e s s aasnbaseeeeeeaeaaaaaaaaaaaasanas 10
3.1.1. Related SOftware or NAIAWAIE.............uiiiiiiiiiieiie e e e e ennbees 10
T @ o 1= = 1] 0 To [RS) V2) (= 0 1 R 10
3.1.3. ENC-USEr CRAraCLEIISHICSeiieiiiiiiiiiie e eeeeeee ettt ettt e e e e s et e e e e e s et e e e e e s nebeeas 10
314, Other ASSUMPLIONS. ..ciiiiiiiieee e e e i i e s i e s cmmmmmn et e e e e e e e e aeeeaeaesessassss s aanaaeeeeereaeaeaaeeaeaeessnsannnnnnnnnes 10
3.1.5. Anticipated changes in fUNCHONAIILY.........coommeeeriiiiiiii e 10
3.2. 1=t LT = I @0 g 151 -Vl] £ TP T TP STOTPPT 11
3.2.1. SMAll MAINTENANCE COSESutiiiiiiiiiiii e ettt e et e e e et b et e e sabae e e e e s abbeeeeeeessnbbeeeeeenans 11
3.2.2. Future development should be poSSIbIEcoieeiiiiie 11
3.2.3. Verification and validation requirements (tEStING).-......uuurrrririiiiirieeeeee e e 11
3.2.4. Interface/protOCOl FEQUITEIMENLSuur i ceeeerreererereetreeteeeeseasssssssssnsansrsrrrrrereeeeaeeeesessansnnnansnsnnes 11
4. GRAPHICAL USER INTERFACEccii ittt iiiitees ceittiteeantieee e ssttee e e staeeeesntaeeessntaeeessssaeeaesnsseeeeanes 12
4.1, HOSt NEW MUILIPIAYET GAIME......i e ceee et e e e s e e e e e neeee 12
4.1.1. Names of the controls and fIElASceeeeeeiee i 12
4.1.2. Events, methods, or procedures that cause thattfobra displayed.................ooooeieiicciinnnnns 12
4.1.3. Events, methods, or procedures triggered by eaatnao................cccccviviiiiiiiriniee e 12
4.2. JOIN @ MUILIPIAYET QAIMEttt ettt ettt et e e e e e e e e e e ea e e ab bbb bbbt e s e e e e e e aaaaaaaaaaaaeaaens 13
4.2.1. Names of the controls and fIEIASccuneiimiiiiiii e 13
4.2.2. Events, methods, or procedures that cause thattfoba displayed................ooooeieeiccciinnnnns 13
4.2.3. Events, methods, or procedures triggered by eaatnao................cccccvviviiiiiiirieice e 13
4.3. MUIIPIAYEE MOAE MENU ...t e ettt et e et e e e e e e e e e e e s e s s anae e se et e e aeaaeaaaaaaaaaaesaaaanns 13
4.3.1. Names of the controls and fIEIAScuueeiimiiiiii e 14
4.3.2. Events, methods, or procedures that cause thattfobra displayedccooooi i 14
4.3.3. Events, methods, or procedures triggered by eaatnada.cccuvviiiiiiiiiiii s 14
4.4. Y= L1 01=T o O TP TTTP PP 14
4.4.1. Names of the controls and fIEIASccueeiiiiiiiiii e 14
4.4.2. Events, methods, or procedures that cause thattfobra displayedccocoooi i, 14
4.4.3. Events, methods, or procedures triggered by eaatnada.ccuvviiiiiiiiiiii s 14
4.5, AVAY = U] o B o gl o] = 1YL= £ (0 15011 SRS 15
4.5.1. Names of the controls and fIEIASccuneiiiiiiiiii e 15
4.5.2. Events, methods, or procedures that cause thattfolbra displayedccocoooiiiiiiiiiininnnns 15
4.5.3. Events, methods, or procedures triggered by eaatnada.................cccuvviiiiiiiiiii s 15

4.6. = VT I =T T IRV e o [0 PSRRI 16
4.6.1. Names of the controls and fIElASceereeeie i 16
4.6.2. Events, methods, or procedures that cause thattfoba displayedooooeieiicciinnnnns 16
4.6.3. Events, methods, or procedures triggered by eaatnado.................cccccvviiiiiiiiriiice e 16

5. DESIGN DETAILS ...ttt ittt ettt ottt ettt ettt e e st e ek et e sabe e e be e e sbee e sabbe e sabeeanbeeeabaeesnbeeanneens 17
5.1. Class Responsibility Collaborator (CRC) Cardsoooiiiiiiiiiiiiiiiiiee et 17
5.2. L0 Fo S B IT= Vo =Yoo PO PPPP PP

5.3. S 1 I O o= T £ PR TPRPR
Lo Tt Y o o o= 11T g I3 = L (=T AV =T VT ST
LR T Y o o] o= 11T o I 011 PSSR

5.4. INEErACLION DIAGIAMIS. ...ttt e e ettt ettt et e e e eeaaaaaaaaeeaasaaannnaseseeeeeaaeaaaaaaaaaaasasaaaaannnnnns
5.4.1. Launch game appliCAtiONuueeeiesimmmmmmeesesses sttt e e e e e e e e e eeeeeeeesaasnnresrrennreerrereeaaaaeeaes
5.4.2. Startatraining MOUE QAMEcoiii i cceeeee et e e s e e e e e e e e e e eeeeeeeeaaassn e nt e aanerrrereaeaaaeeaes
Lo T o (o 1o A= W 41017 0] PN V=T o = U = S SSS
5.4.4. JOIN @ MUIIPIAYET QAIME ...vveiiiiiiiiiieie e ee e et e e e e e e e e e e s e e s e s e e e e aaaaeaeeeeeeeesesannanans
5.4.5. Win a multiplayer game rOUNG............cooiieereee e e e e e e e e e e e e e e e e e s s eeeeeeeees
5.4.6. Leave a MUIIPIAYET QAMEuuuuuiiieeeees o s e e s e s st e e e e e e eeeaeeeeaeeaaassnneentbnannnneeeeeaaeaaeeees
5.4.7. ApPlication SNULAOWN ...t e aans

5.5. [1= = 11 L= N 1= T | o SO
Lo 00 R @ - 1T AV 4 0 2 SRR
5.5.2. INterface BUIlAINGccooiiiiii e e e e e e e e e e e e e e es et r e r e e e aeaaeeeeaes
5.5.3. Interface BUildabIEIemM.........uviiiii e
LI S O 1= 11 0o 1111 o - | PP PRR
5.5.5. Class COmMbBAtCAICUIALON.............uuuii e e e e e e e eeeeeeeeeatatat i eaaaeeaeeaeeseeseearassestnnnaeseeaaeeeeesssrenns
RN T O 1= 11 1Y - o F TP OUPUPTOPPPP
LTI R [0105 = Lo =TI = To - SRR
LT TR S T O - 11T =Y 1 o
R TR [01 1=] = Vot S I Ce o] o T T T T TP P TPRPPP
5.5.10. INterface TroOPINTO ...t e e e e e e e
5.5.11. Ta1e=Tu = o= W doTo] o] g1 0] =T (o] o V0SSR
5.5.12. (O F- TSIV 1 - Vo 1= PSSR

5.6. Cross-referenced index..........c.cooueeee.
5.6.1. User Functional Requirements
5.6.2. System Functional reqUIFEMENTSoiiiiiiiiie et e e e e e e e e e e e 37

5.7. 1ol = (o [l BT = T | = U o PSPPI 38

6. FUNCTIONAL TEST CASES.ottt ettt ettt sttt e e et e e e s snbbe e e s anbae e e e nneeas 39
6.1. DiffErent tYPES Of Tr00PS . vvveeeieiiiiiii e i e ettt e e e et e e e e e e s e e es e e e rarrereeeaaaaaaeeaes 39
6.2. TrAIN MIlIEAIY TrOOPS ..ttt bttt ettt et e e e aa e e e e e e s e et o anbeebe e e e e e eeaaaaaaaaaaaaaesasaaaannnn 39
6.3. RESOUICES ...ttt e ettt e e s e e e e e e e e e e e e e e e e s e e n e e e e e e s e e e e e e e 93
6.4. Different KiNds Of DUIAINGS.ceiiiiiii e e e 40
6.5. Y = o TP TP PPPPPPPPPPUPPPTRRt 40
6.6. (0fe] gl al=Tor B o J= W o g 101117 o] FoNVZ=T o F= L L= RPN 40
6.7. MUItIDIAYEr GAME SEIIINGS ...ttt ettt et e e e e e e e e s e et b bbbt e e e e e e eeaaaaaaaaaaaaaaaanas 41
6.8. [Fo YT] o= Tl o o] (o] =P 41
6.9. Assign each player a unique player NAME..... ..o e e 41
L0 O TR N o = =T g F= TSR U - Vo= OO 42
6.11. A player shall have 0N VIlIage........oiuviiiiceeeiiiii e 42
6.12. Move armies around the MAPoooiiiiiiii et e e e e e e e e e e e e e e e aaaaaaaaeaaas 42
6.13. JOIN tWO BITNIES ...ttt re ettt e ekt e e s s et e s s et e s ne e e ean e e e as et e e snr e e e s an e e e e nr e e e s nnnee s
6.14. Armies never separate..........cceeveeeeeen.

6.15. Attack village with armies
6.16. CONFlICE Of @IMIES ... oottt e e e e e e e e et e e s e et e e et eeeeaaaaaaaeaaeaesaaaannnnnnrenes

DESIGN DOCUMENT

1. Introduction

1.1. Purpose and Scope

We believe that the need for entertainment is grealpthat will never change. The latest
fashion and trends may change with the wind, bupjee will always need something
entertaining to do in their spare time. In thisgpective computer gaming has come to stay.
Settle and Destroy (SAD) is a real-time strategy-game with opportunities to play both
multiplayer and a special training ground. The afnour game and the incentive for a user to
play our game is that the game offers entertainnfimnta shorter time period than general
entertainment and other computer game.

The scope of this document is to provide an oveguillance to the future architecture of the
software project SAD. This document will work ag timderlying resource of documentation
for estimating time consumption of the implememiagphase of the software. Further on, this
document establishes the total software outlindudiog architectural, design and detailed
design descriptions and assumptions. The desigandeat will also include high detailed
specifications provided in diagrams and charts. g&aly the document should give a
complete design description meanwhile maintainihgga-level view of the software.

The expected readership of the design documerdnesentrated to the group developing the
software. This group could consist of project leadad supervisors but also by programmers
and design personnel. The document will also bd Bafuture developing teams if a new
version is planned or if the product is sold.

This development project is originally, as mentwrabove, called Settle and Destroy. In
abbreviated form SAD. The project will also, dueetmsier readership, be referred tattas
project, project SAD or the application.

1.2. Related documentation

1.2.1. Prerequisite & Companion documents
Requirement Document (Version 1.0)

1.2.2. Context providing documents

Design Document Templdte

Design Document Guidelings

Overall Architecture Descriptidn

An Example Of Object-Oriented Design: An ATM Simtita*
Practical UML: A Hands-On Introduction for Develoge

! R. Waltzman (2007-2008), fetched: 2008-01-20
http://www.csc.kth.se/utbildning/kth/kurser/DD13B&signDocument.html
2 Waltzman(2007-2008)

3 Waltzman(2007-2008)

* Russell C. Bjork (2004), fetched: 2008-01-25
http://www.math-cs.gordon.edu/local/courses/cs2 TME&xample/

® R. Miller (2003) fetched: 2008-02-12 http://dn.egear.com/article/31863

1.3. Term definitions

1.3.1. Terms, abbreviations and acronyms

SAD The application and game nafedtle And Destroy as acronyn

Real-time strategy war-A game that is strategic game played live wherepkdlyers

game experiences simultaneous movement and actions.

Tooltip text The tooltip is a common graphical usgerface element. It is

used in conjunction with a cursor, usually a mopsiater. The
user hovers the cursor over an item, without atigkit, and &
small box appears with supplementary informatiogarding
the item being hovered over.

Player The word “player” most often refers to thieygical persor]
playing the game.

Team The word “team” refers to the team in the gamethe player’s
race, village and all his/hers armies.

Map The map in this application refers to an ovamwbpf the game|,
built of square cells in which actions and graphaants can
occur.

Race The word race is used to distinguish diffeceralities of playe

teams that will be due to the race factor. Two etagould have
the same race and there for troops with the saraktiqs etc.

1.4. Abstract

The never ending need of entertainment and theorandss of how modern persons spend
their time in front of the computer create a wishthe perfect entertainment application. This
project, Settle and Destroy, seeks to fulfill thikich for persons with an interest in solving
strategical problems in a game situation. Not dulfjlling this first wish SAD, also aims at
giving the user an opportunity to interact with ethusers in a multiplayer mode further
extending the entertaining value for the user.

This is the design document for project SAD whiefies and outlines the project structure.
The design documents is the preface to the implatien phase why thorough
considerations are made concerning everything ftopnlevel package and class structure
down to low level design decisions concerning treggical user interface.

2. System Overview
2.1. General Description

2.1.1. Basic overview

Settle and Destroy is a real-time strategy war-gamin opportunities to play both
multiplayer and a special training ground. A playas to do is to choose an alias to play
with. Then you can choose to start your own gamegpio another player's game that’s
waiting for more players. The first thing you hawedo when you start your own game is to
enter the number of players that will participdtetheory the number of players in a game is
unlimited, but since all the slots have to be dilie maximum of eight is a rule of thumb. A
player that chooses to join an already existingeaias to enter the ip-address of the host to
be able to connect to the game. When players jganae they must press the "ready" button
to inform the host that they are ready to stare Tbst can not start the game until everyone

6

joined are ready. The game starts, and due tattge players will die as time passes. When
this happens you can either choose to stay in dineegand observe, or simply leave and join
another game. The game ends when all players exceptare dead. This one survivor is
therefore named the winner. As soon as the game hasner, people will disconnect and

then either decide whether they want to play mar@erhaps get back to things they did
before they started playing.

2.1.2. Functionality and design description

The emerging and most prominent functionality thigsb impacts the software design is the
multiplayer functionality. The game is further reéiahe based which will have further distinct
implications for the system design. These two fiomst will impact the software design
process the most.

In comparison to the requirements stated in theirements document, referenced above,
some small changed has been made in function®&gow the principal functionality is
displayed:

Multiplayer mode for both local area network (LAANd internet X

X

Save functionality
Turn based X

The game is played in real time (buildings, troops) X

Training mode (Single player) X

Atrtificial Intelligence (Al), Computer that join asplayer X

X

2D graphical view

X

Build and expand village

More than one village per player X

Build and expand troops

Move and attack using troops

Map that describe the game field

| x| x| x

More then one race to play (Different races to cledoom)
Sound effects X
Mouse and keyboard to play the game X

Simple game chat X

Interface when creating and joining a game X

Tutorial that describe how to play the game X

Observer mode for multiplayer when a player is dead X

Pause the game X

2.2. Overall architecture description
When playing a multi player game, the applicatitihzes a client-server model.

(1) Host

(2) Client A

A
v

<
(1 1) Server (2) Client C

A

h 4

(z) Client B

Data
—— Control

Figure 1. Application network overview.

2.2.1. Host

The host is the computer hosting a multiplayer game is decomposed into a server and a
client. The server is started as a standalonegbaine host and the client of the host connects
to the server as any other client. This way thdihg<lient doesn’t have to be distinguished
from the other clients.

2.2.2. Server

The server handles all connected clients, inconsimgnections and other events associated
with the network layer of the game. All communiocatiamong the clients are sent through,
handled by, and forwarded from the server.

2.2.3. Client
The client is the game application running on exemynected computer.

2.3. Detailed architecture description

Client
Map Java Swing
A A
Server

Connectior | o GUI renderer

AmanagerA A A Keyboard
TCP/IF TCPI/IF Input manager '«

v v TCPIIF

Client 2 Client 3 -
Data
—— Contro

Figure 2. Data and control flow.

2.3.1. Client
The client is composed of an input manager, a @Wdlerer and the game logic section.

The input manager handles and reads all the imput both the keyboard and mouse and
forwards it to the game logic and the GUI renderer.

The GUI renderer visualizes the game state ondngegmap and in other visible components
(Java Swing). It also handles some input from tipeii manager.

The game logic handles all input data and uses iefiect changes in the game state. The
updated game state is forwarded to the GUI sothieatiser sees the current game state. Some
information is also sent through the network to ¢banected server (if playing a multiplayer
game).

2.3.2. Server

The server’s responsibilities are to establishimiog connections and to broadcast messages
received from a client to every other client.

2.3.3. Control flow

123
v

Server Client

?—"4567g

4

Figure 3. Control flow between server and client.

Accepting/Refusing connections
Message checking and forwarding
Handling network events

Creating a multiplayer game

Joining a multiplayer game
Connecting/Disconnecting to a server
Handling incoming data from server

NoakwnNpE

2.3.4. Data flow

v

Server Client

t :

Figure 4. Data flow between server and client.

1. Reflecting game state through network

3. Design Considerations

3.1. Assumptions and Dependencies

3.1.1. Related software or hardware

The game could be played in most environments conaputer where you have access to
either an internet connection or a local network dgample in school, at home or at your
work. If the game host has an internet connectioth) players within and outside the host’s
local network can participate in the game. It isgble to use training mode without network
connection at all.

3.1.2. Operating systems

The application will depend on that JRE 1.5 (Jawmtine Environment) is installed. JRE
can be downloaded for free.

The game shall be able to run on all the major apey systems (Windows , Mac OSX,
Linux, Unix) since it's will be based on java. Hovee no testing will occur on other
operating system than Windows and it will be assiteerun correctly on the others as it
should thanks to JRE.

3.1.3. End-user characteristics

The end-users are likely to consist of young peoplestly guys with computer experience
and more or less experience of computer games.

3.1.4. Other assumptions

The user can find other users to play against eir ttwn. (The game will not provide any
functionality to find other players)

3.1.5. Anticipated changes in functionality

Due to hardware evolution

Computer games are primarily affected by hardweaodugion in the way that people want
their games to support and give them benefit afteggr new graphics card. This won't affect
this game since it's completely without focus osuiss that rely on hardware performance.
However one important factor can still be idendtfie

Screen resolution — If users screen resolutionsngehigher it will make the games user
interface look very small since the game will rarthe operating systems fixed resolution.

Due to changing user need

The changes in user needs in computer game in @eisethat users want more playable
options as new characters, new levels and so amalmy commercial games changes in user
needs are not considered during the life-time efgame. In other word you don’t upgrade or
maintains it (except errors etc.) because it wilbase the possibility to release a sequel, e.g.
SAD 2. However there are some exceptions, for exampline games where you pay per
month and never actually buy the game. This isthetcase for this game but that might
change in the future and some anticipated chamgaser need are:

10

1. Being able to play multiplayer games with mdrart 6 players.

2. More variety in playable options; resourcesppsy buildings, etc.

3. A larger game map (playing field)

4. Users want to play the game in the web browsstead of downloading it.

Software Evolution

If the JRE version 1.5 is not available any londe to a later versions and that version isn’t
backward compatible it will demand a new versiothef game that rely on the either the new
JRE version or that is completely independent d&.JRnce the game depends on JRE any
future incompatibility between JRE and Windows oy ather operating would demand a
version of the game that runs independently of iiR&éder to work on those operating
systems.

3.2. General Constraints

3.2.1. Small maintenance costs

Expensive maintenance can be devastating to comg@omnomics. The game we supply will
have low maintenance costs because of severalngaso

Impacts:

- The game shall support multiplayer network ganoelenwithout need for any online servers
handling it.

- Documented and structured code to make it as@&appssible to maintain.

- Functional test cases

3.2.2. Future development should be possible

A possible business solution would be to open umeetnet portal where players meet, chat
and have a graphical view of possible games to jois would also mean supplying servers
that can support this multiplayer interaction. Arfeament ranking system where people can
gain/lose rank points depending on their achieveseauld be implemented. This would
make it easier to make the users spend money orsytsiem by giving some kind of
advantage, extra game functions or members oniyxémoents which require real money.
Commercial could then be introduced both in-gamé an the Internet portal to increase
profits.

Design Impact:

- Well documented and structured code.

- Functionalities that create openings for busirsedgtion as those mentioned above.

3.2.3. \Verification and validation requirements (te sting)

Verification and validation of the applications Mile done with test cases. In order to speed
up testing of softer (non-functional) requiremeassthe feeling of the game a training mode
will be implemented without need for setting upeswork connection with other players. The
training mode will also function as single playeod® in the final product. You will only be
able to play against yourself in training mode.

3.2.4. |Interface/protocol requirements

The application will be accompanied by a manual ¢hall still be able to learn and use
without it. This will have impact on the interfa@guirement in order to be self explanatory.

11

4. Graphical user interface

4.1. Host new multiplayer game

X

Host new multiplayer game

‘four host IR 192.168.10.255
Mumbier of playets:
\
z 3 4 5 &
N_arﬁ@i:
| Create-game ” Back.]
Refers to
System requirements 6.1.5.1,6.1.5.3
User requirements 44.1.1,4.45.3

4.1.1. Names of the controls and fields

. labelYourHostIP

. labellP

. labelNumberOfPlayers
. sliderNumberOfPlayers
. labelName

. textFieldName

. buttonAction

. buttonBack

4.1.2. Events, methods, or procedures that cause th at form to be displayed
. new HostGameDialog(JDialog).setVisible(true);

4.1.3. Events, methods, or procedures triggered by each control

None are predetermined. Events are added fromrettactors (through listeners) such as the
window that opens this window.

12

4.2. Join a multiplayer game

Join.a multiplayer pame [E
Hosk:
[
Marme!
| |
l Join game -] [Biack]
Refers to
System requirements 6.1.5.1,6.1.5.2,6.1.5.3
User requirements 445.1,4.45.2

4.2.1. Names of the controls and fields

. labelHost

. textFieldHost

. labelName

. textFieldName

. buttonJoinGame
. buttonBack

4.2.2. Events, methods, or procedures that cause th at form to be displayed
. new JoinGameDialog(JDialog).setVisible(true);

4.2.3. Events, methods, or procedures triggered by each control

None are predetermined. Events are added fromrattactors (through listeners) such as the
window that opens this window.

4.3. Multiplayer mode menu
5AD - Multiplayer mode [E

Host a new game

Joirra game

Back

Refers to

13

System requirements 6.1.5.1,6.1.5.2,6.1.5.3
User requirements 445.1,4.45.2

4.3.1. Names of the controls and fields

. buttonHost
. buttonJoin
. buttonBack

4.3.2. Events, methods, or procedures that cause th at form to be displayed

. new MultiplayerModeDialog(JDialog).setVisible(trye)
4.3.3. Events, methods, or procedures triggered by each control

. buttonHost - buttonHostActionPerformed(ActionEvent)

. buttonJoin - buttonJoinActionPerformed(ActionEvent)

. buttonBack - buttonBackActionPerformed(ActionEvet)

4.4, Start menu
SAD - Menu X

Training mode

Multiplayer mode

Exit

Refers to
System requirements 6.2.1.4
User requirements 45.1.4

4.4.1. Names of the controls and fields

. buttonTrainingMode
. buttonMultiplayerMode
. buttonExit

4.4.2. Events, methods, or procedures that cause th at form to be displayed
. new StartMenuDialog().setVisible(true);

4.4.3. Events, methods, or procedures triggered by each control

. buttonTrainingMode - buttonExitActionPerformed(AmtEvent evt)

. buttonMultiplayerMode-Button.MultiplayerModeActioeFormed(ActionEvent
evt)

. buttonExit - buttonExitActionPerformed(ActionEvenit)

14

4.5. Waiting for players to join

Waiting for players to join

Player 1 MEmE

Player 2 name

Flayer 3 names

Player 4 name
Refers to
System requirements 6.1.5.2
User requirements 4.4.5.2

45.1. Names of the controls and fields

. labelPlayer

. labelName

. buttonToggleReady
. buttonLeaveGame

4.5.2. Events, methods, or procedures that cause th at form to be displayed
. new MultiplayerWaitingReadyDialog(JDialog, int).¥&ible(true);

4.5.3. Events, methods, or procedures triggered by each control
None are predetermined. Events are added fromrattactors (through listeners).

15

4.6. Main game window

Barne

Money: 2500 Description Time left

Training 2 Pike man, 0 Archer; 1 Mercenary in Batracks 00:12
T

Stahle

I Stable ‘ Stable

Upgrade building to kevel 9
Cost: 16200

4%

Pike man bt

Costy 100 (Total: 200

Archer

=
|t

Costy 400 (Total; 03

Mercenary 1

Cogti 1000 (Total: 1000)

Total cost: 1200

Refers to
System requirements 6.1.1.2,6.1.3.2,6.1.1.426,56.1.4.1
User requirements 4.4.1.1,4.4.1.2,4.4.2.*, &4%Acept Fog of war

4.6.1. Names of the controls and fields

. menu
. menuGame

. jSplitPanel

. jSplitPane2

. jSplitPane3

. jSplitPane4

. panelBuilding
. panelSelection
. panelinfo

. panelMap

4.6.2. Events, methods, or procedures that cause th at form to be displayed
. new MainWindow().setVisible(true);

4.6.3. Events, methods, or procedures triggered by each control

None are predetermined. Events are added fromrmattactors (through listeners) such as the
window that opens this window.

16

5. Design Details

5.1. Class Responsibility Collaborator (CRC) Cards

Class Army

Responsabilities: Collaborators:
Know the home village of the army Village
Keeping troops together as one unit Troop
Knowing the army troop amounts TroopType
To merge different armies from the same

team

Interface Building

Responsabilities: Collaborators:
Keeps track of building name, level, costs dfillage
upgrading

Keeps track of its own building panel wherBuildableltem
the buildings actions are display such as

different building options

Decides which buildable items that are

available

Interface Buildableltem

Responsabilities: Collaborators:
Describes an item that can be built in a

arbitrary building

Checks required building level to build

building

Building cost, name and building time

Interface Combat

Responsabilities: Collaborators:

Defines the combat inputs CombatCalculator
Army

Interface CombatCalculator

Responsabilities: Collaborators:

Calculates the outcome of a combat Combat

Class Map

Responsabilities: Collaborators:

Keeps track of and displays the game terraArmy
villages and armies
Provides possibility to move Village

Interface Race

Responsabilities: Collaborators:
Creates and stores a Troopinfofactory that BeooplnfoFactory
used by the team

Race name

17

Class Team

Responsabilities: Collaborators:
Keeps track of team information such d&3ace

team name, team race etc.

Keeps track of team resources

Class Troop
Responsabilities: Collaborators:
Keeping track of troop characteristics such @&sooplinfo
amount, attack points and defence points

TroopType

Interface Trooplinfo

Responsabilities: Collaborators:
Keeps track of attributes for a specific kind

of troop

Interface TrooplnfoFactory

Responsabilities: Collaborators:
Defines different attributes for different type3roopinfo

of troops

Enum TroopType

Responsabilities: Collaborators:

Classifies different troops TrooplnfoFactory
Troop
Army

Class Village

Responsabilities: Collaborators:

Keeps track of the village owner Army

Keeps track of the village current army Team

Host buildings

18

5.2. Class Diagram

«interfaces
BuildableItem

int getRequiredlevell);
Stiing getMarmel);

int getCozt();

int getBuild Tirne(1;

sinterfacer
Building

Village getVillagel);

String getMarnel);

int getlevell);

IPanel getPanal():

BuildableItem|] getBuildableIterns()
void upgrade(l;

Team

Steing getMarne();
Color getColar();
Race getRacel);
Session getSession(];
int getManey(l;

Fooe

Yillage

[Team getTeami):
| Amvy getHorneAmnyl)

Map(int x, int k)
baolean isPazsablefint x, int w);
MapCell getCelllnt x, int vl

Map :
= Aty Wil age horneillage);
Em e

Army

addiArrry armny)s

add{TroopType type, int amount);
Troop getTroop(TroopType bypel:
Village getHomeVillagel);

Combat

int size(l:
Arry getarrny(int inde);

CornbatCalculator getCambatC aloulaton();

winterface:
CombatCalculator

Arrny calculate(Cormbat combat):

winterfaces
Race

Sting getMama();

TroopInfoF actory getTroopInfoF actany();

winterfaces
TroopInfoFactory

winterfaces
TroopInfo

TraopInfa getInfa(TroopType typel:

1
1
1
1
y
HEnum
TroopType

Typed
Typel
Typel

enee2y

String getMarmel();

int getAttackPoints(TroopType against);
int getDefensePaints(TraopType against);
Aoat getSpeedi);

winterfaces
Troop

Troop(TroopType type, TroopInfoF actary Factory):

TraopType getTypel);
TroopInfo getInfol);
int getArnount();

Figur 5. Class Diagram

19

5.3. State Charts

5.3.1. Application state overview

OFF
Application Mot Running

Application is started 5 perfarm startupj

Application Exited ! perform shutdown
Exit Application

"Exit to main menu" chosen fram in-game.

WAITIMNG
for game stant

RUMNMING GAME

. . Fame mode and settings chosen. "Start game" chasen.
The garme is up and running

Figur 6. State Chart 1 - Overview

5.3.2.Application flow

Application started j

./x[hnain Menu is displayed

Autormatically guits the game

Game started
Game initialized
-
Game End

Showing game winner

mMutliplayer Mode chosen j

multiplayer Mode Screen displayed
VWaiting far other players

Host aharts game j

B Game Running

All players except one have left f heen eliminated j

Figur 7. State Chart 2 — Staring, running and endig a game

20

5.4. Interaction Diagrams

5.4.1.Launch game application

INFLT
Kevbhoard [
house

Application

application started j

|
performStantup |

Figur 8. Launch game

5.4.2.Start a training mode game

NPT

Keyhoard [
house

T tradning mode chosen j

Application

franingmode Dptiunsj

openTraningmodeSettino s j

start game

==y

Seting optionsg |

gamestarti

¥
S N

Figur 9. Training mode

21

5.4.3.Host a multiplayer game

INPUT

kKevhoard
ause

mutliplayer mode chosen j

Application

1 npenMuItipIaverGameoj
T

apencannectionsd
|-

Hetwork to
Other Players

(:_: ___________________________________
J_ playerConnected()

sendCammandsd

5.4.4.Join a multiplayer game

INPUT

Kevbaoard J
ause

start game

game options

1

T receiveCommands(
1
1

Figur 10. Multiplayer game hosting

join multiplayer with [P o j

Application

set name

: — cannectta PO
T

e |
A

A

Metwork ta
Other Players

opencCannections(
™.

.;':‘ _________________________________
Ll getCaonnectiond

L

1 receiveCommandsg

Figur 11. Join a multiplayer game

1
: sendCommands()

22

5.4.5.Win a multiplayer game round

INFUT

Kevboard /
Mouse

Application

train Troops

1
: trainTroops

Metwaork to
Dther Plavers

|-

J infarmAboutTroopsTrainedd j

move Army

Uit

Il_| IO eArTIY

1

infarmaAboutirmyhd overment) j

garmedyong

1
1
armyMovementDoneoj L T :
confirmArmyExistence 1
villageContainanArmies(}b] J
destroyvillage(:
|
T checkAlivevillages) :
|
1
1
= |
|
| |
gameiwver)

J

Figur 12. Win multiplayer game

5.4.6.Leave a multiplayer game

ause

—_—
requestGameExit)

Application

.::_:____

requestConfirmationg j J initializeShuthwnoj

confirmg

closeZonnectionsd

destroyVillaged

Metwiark to
IDther Players

Figur 13. Leave a multiplayer game

exitTaMenud cohnectionsClosed) j
|
|
|

23

5.4.7. Application shutdown

WFLIT Metwark to
Kevbaoard r Application —

Diber Players
ause
T Reguest shut down T o T
1 1 initialize Shutdown ()

cluseCDnnectinnst

connectionClosed()
J closeppplication
i
1
1

Figur 14. Game shutdown

5.5. Detailed Design

Provided below are the detailed descriptions oheaass of the logical part of the game
application.

5.5.1. Class Army
References: Functional Requirements
Army consists of troops 4.4.3.3.
Conflict of armies 4.4.3.6
Move armies around the map 4.4.3.7
Armies consists of troops 6.1.3.3.
Perform movement of player armies 6.1.3.6.

Field:

Attribute: unitA
Type: int
Usage: Is used to know how many troops of the typtA this army consist of.

Attribute: unitB
Type: int
Usage: Is used to know how many troops of the typtB this army consist of.

Attribute: unitC
Type: int
Usage: Is used to know how many troops of the typtB this army consist of.

Attribute: speed

Type: float

Usage: Is used to know the speed of the army, gbedsis equal to the slowest troop in the
army.

24

Methods:
getSpeed()

Method Name: getSpeed()

Parameters: -

Return Value: int speedValue

Description: This method is used to get the spdede army

Data structures: -

Pre-condition: The army consists of at least 1 ahény kind.

Validity Checks, Errors, and other Anomalous Situa: -
Post-condition: The team has the speed of the slowet in the army.
Called by: Pathfinder.findPath()

Calls: -

setSpeed(int unitA, int unitB, int unitC)

Method Name: setSpeed(int unitA, int unitB, intt@)i
Parameters: unitA — how many troops of the unitA

unitB — how many troops of the unitB

unitC — how many troops of the unitC
Return Value: -
Description: This method is used to set the spééaecarmy.
Pre-condition: The speed of the army is set testheest unit in this army.
Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: -
Called by: Building.trainTroops(), Map.formMergeAym
Calls: Army.addArmy(int unitA, int unitB, int UnitC

initializeCombat(Army1, Army 2)

Method Name: initializeCombat(Army1, Army2)
Parameters: Two Armies

Return Value: One winning army

Description: This method starts a combat

Pre-condition: Two armies move to same cell ofrtag..
Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: One Army is destroyed

Called by: -

Calls: CombatCalculator.calcuateCombat(Army1, Arjny2

5.5.2. Interface Building

References: Functional Requirements
Building slots 4.4.2.1.
Differnet types of buildings 4.4.2.2.
Construct Buildings 4.4.2..3.
Upgrade Buildings 4.4.2.4
Upgrade Buildings 6.1.2.3.

25

Fields:
Methods:
getVillage()

Method Name: getVillage()

Parameters: -

Return Value: Village

Description: The method returns the village a bogdoelongs to
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The village is returned

Called by: TotalCostPanel.builditemNumberChanged()
Calls: Team.addMoney()

getName()

Method Name: getName()

Parameters: -

Return Value: String name

Description: The method returns the building name
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The name of the building is re¢airn
Called by: UpgradeBuildingPanel.buttonUpgradeAdderformed(), BuildingPanel.update(),
BuildingButton()

Calls:

getLevel()

Method Name: getLevel()

Parameters: -

Return Value: int

Description: The method returns the building level

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -

Post-conditions: The level of the building is reted

Called by:
UpgradeBuildingPanel.updateButton(),UpgradeBuil&agel.buttonUpgradeActionPerforme
d(),BuildingPanel.update()

Calls: -

isUpgradable()

26

Method Name: isUpgradable()

Parameters: -

Return Value: boolean

Description: The method checks if the building pgradable
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: A true or false is returned

Called by: BuildingPanel.update()

Calls: -

getUpgradeCost()

Method Name: getUpgradeCost()

Parameters: -

Return Value: int

Description: The method checks the upgrade casteobuilding
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The cost of upgrade is returned

Called by: UpgradeBuildingPanel.updateButton()

Calls: -

getUpgradeTime()

Method Name: getUpgradeTime()

Parameters: -

Return Value: int

Description: The method checks the upgrade timeebuilding
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The time of upgrade is returned

Called by: UpgradeBuildingPanel.buttonUpgrade AdBerformed()
Calls: -

getBuildableltems()

Method Name: getBuildableltems()

Parameters: -

Return Value: Buildableltem]]

Description: The returns all buildable buildings &éospecified village
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The buildable buildings are redgrn

Called by: BuildingPanel.update()

27

Calls: -

5.5.3. Interface Buildableltem

References: Functional Requirements
Different types of buildings 4.4.2.2.
Construct different kinds of buildings 6.1.2.2.

Methods:
getRequiredLevel()

Method Name: getRequiredLevel

Parameters: -

Return Value: int - The minimum level of a buildireguired to build this item
Description: Returns the required minimum level

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -

Post-conditions: The required level is returned

Called by: BuildingPanel.update

Calls: -

getName()

Method Name: getName

Parameters: -

Return Value: String - The name of the item

Description: Returns the name of the item

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The name is returned

Called by: BuildingPanel.update, BuildltemPanelstamctor
Calls: -

getCost()

Method Name: getCost

Parameters: -

Return Value: int - The cost to build this item

Description: Returns the cost

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The cost is returned

Called by: TotalCostPanel.getTotalCost, Buildltem&taipdateCost

28

Calls: -

getBuildTime ()

Method Name: getBuildTime

Parameters: -

Return Value: int - The time it takes to build drths item
Description: Returns the build time

Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The cost build time is returned

Called by: -

Calls: -

5.5.4. Class Combat

References: Functional Requirements
Conflict of armies 6.1.3.5.

Methods:
Size()

Method Name: Size()

Return Value: int size

Description: Defines the combat size in numberastipipants
Pre-conditions: To armies has initialized a combat
Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: -

Called by: Army.initializeCombat()

Calls: -

getArmy(int index)

Method Name: getArmy(int index)

Return Value: Army Army

Description: Collects the combat participants
Pre-conditions: To armies has initialized a combat
Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: -

Called by: Army.initializeCombat()

Calls: -

getCombatCalculator()

Method Name: getCombatCalculator ()
Return Value: CombatCalculator CombatCalculator

29

Description: Collects the combat logic from Combaitulator
Pre-conditions: To armies has initialized a combat
Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: -

Called by: Army.initializeCombat()

Calls: -

5.5.5. Class CombatCalculator

References: Functional Requirements
Conflict of armies 4.4.3.6.
Attack villages with armies 4.4.3.5.
Conflict of armies 6.1.3.5.

Methods:

calculateCombat(Army armyB, Army armyC)

Method Name: calculateCombat(Army armyB, Army aryC
Parameters: armyB — An army

armyC — An army of another player
Return Value: Army winningArmy

Description: Calculates who is the combat’'s wigniarmy, dependant on army factors,

troops relations and some random factors.

Pre-conditions: Two different player's armies maiethe same map cell.

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: One army has been eliminated,

Called by: Cell.calculateCombat(Army armyB, ArmyrC)
Calls: -

5.5.6. Class Map

References: Functional Requirements
Game map 4.4.4.1.
Maps cells 4.4.4.2.
Perform movement of player armies 6.1.3.6.
Provide interactive game map 6.1.4.1.
Construct a map with different kinds of map cells.4.2.

Fields
Attribute: grid
Type: Cell[][]

Usage: All map cells are stored in this cell-matrix

Attribute: randomizer
Type: Random

Usage: Machine for producing random seeds for tap ameation process. This is needed to

make each game map unique.

30

Methods:
generateRivers()

Method Name: generateRivers()

Parameters: -

Return Value: -

Description: Generates and randomizes amount efgithat should exist on the map. Also
randomizes how long each river should be.

Data structures: -

Pre-conditions: A game is launched and a map idetee

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: A map with a cell matrix full offérent cells is created.
Called by: Game.generateMap()

Calls: createRiver(int n)

createRiver(int riverSize)

Method Name: createRiver(int riverSize)

Parameters: riverSize — specifies how many celisriver should be

Return Value: -

Description: Randomizes rivers positioning and gates the related cells in the cell matrix.
Data structures: -

Pre-conditions: Rivers are being created.

Validity Checks, Errors, and other Anomalous Situa: -

Post-conditions: A river is created.

Called by: generateRivers()

Calls: -

generateRocks()

Method Name: generateRocks()

Parameters: -

Return Value: -

Description: Generates and randomizes amount &sfomuntains that should exist on the
map. Also randomizes how big each rock should be.

Data structures: -

Pre-conditions: A game is launched and a map idateeRivers are created.
Validity Checks, Errors, and other Anomalous Situa: -

Post-conditions: A map with a cell matrix full offdrent cells is created.
Called by: Game.generateMap()

Calls: createRock(int n)

createRock(int rockSize)
Method Name: createRock(int rockSize)

Parameters: rockSize — specifies how many celisrduk should be
Return Value: -

31

Description: Randomizes rock positioning and getesrthe related cells in the cell matrix.
Data structures: -

Pre-conditions: Rocks are being created.

Validity Checks, Errors, and other Anomalous Situa: -

Post-conditions: A rock is created.

Called by: generateRocks()

Calls: -

generatePlains()

Method Name: generatePlains()

Parameters: -

Return Value: -

Description: Generates and creates plains cetlseempty cells of the cell-matrix.
Pre-conditions: A game is launched and a map ideteeRivers and rocks are created.
Validity Checks, Errors, and other Anomalous Situa: -

Post-conditions: A map with a cell matrix full offdrent cells is created.

Called by: Game.generateMap()

Calls: -

5.5.7. Interface Race

References: Functional Requirements
Playable Races 4.4.1.5.
Choosing a player race 6.1.1.5.

Methods:
getName()

Method Name: getName()

Parameters: -

Return Value: The name of the race

Description: The method returns the name of the rac
Data structures: -

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The name of the race is returned
Called by: BuildingPanel update

Calls: -

5.5.8. Class Team

References: Functional Requirements
Player specific colors 4.4.5.6
Assign each player a unique player name 6.1.5.1.
Player specific colors 6.1.5.6

32

Fields

Attribute: name
Type: String
Usage: Every team has a unique name to separateftbie each other.

Attribute: money
Type: int
Usage: This is used to keep track of a teams mtimegycan spend.

Attribute: color
Type: Color
Usage: Every team has a unique team color to sepi#éwem from other teams.

Attribute moneyListeners
Type: List<MoneyListener> - List of moneyListeners

Methods:
addMoney(int money)

Method Name: addMoney(int money)

Parameters: money — how much you should add tteime money.

Return Value: -

Description: This method is used to add money &tdam. The amount of money added is
told by the parameter.

Data structures: -

Pre-condition: A team has gain money in some waj/ raged to add it to there
team money.

Validity Checks, Errors, and other Anomalous Situa: -

Post-condition: The teams money has change.

Called by: Village.increadeMoney()

Calls: -

5.5.9. Interface Troop

References: Functional Requirements
Different types of troops 6.1.3.1.
Train military troops 6.1.3.2

Methods:

Troop(Troop type, TrooplnfoFactory factory
Method Name: Troop

Parameters: Troop type, TrooplnfoFactory factory
Return Value: -

Description: The method defines a troop
Data structures: -

33

Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: -

Called by: BuildingPanel

Calls: -

getType()

Method Name: getType

Parameters: -

Return Value: TroopType

Description: The method

Data structures:

Pre-conditions: Two or more troops exists and anyais about to form or a combat takes
place.

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The type of the troop is retuned.
Called by: CombatCalculator, BuildingPanel, Army
Calls: -

getinfo();

Method Name: getinfo

Parameters: -

Return Value: Trooplnfo

Description: The method returns info about thefiroo
Data structures: -

Pre-conditions: Two or more troops exist and anyagrabout to form or a combat is about to
take place.

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: Troopinfo is returned

Called by: CombatCalculator, Army

Calls: -

getAmount()

Method Name: getAmount

Parameters:

Return Value: Int

Description: Returns the size of the troop

Data structures:

Pre-conditions: Two or more troop exists and anyasrabout to form.
Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The amount of troops is returned

Called by: CombatCalculator, Army

Calls: -

34

5.5.10. Interface Troopinfo

Methods:
getName()

Method Name: getName()

Parameters: -

Return Value: Troop hame

Description: Returns the troop name

Data structures: -

Pre-conditions: The player has a troop

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The name of the troop is returned
Called by: TroopInfoFactory.getinfo(TroopType type)
Calls: -

getAttackPoints(TroopType against)

Method Name: getAttackPoints(TroopType against)
Parameters: TroopType

Return Value: Int

Description: Assembles the troop attack points

Data structures: -

Pre-conditions: The player has a troop

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The attack points of the troopetsrned
Called by: TroopInfoFactory.getinfo(TroopType type)
Calls: -

getDefensePoints(TroopType against)

Method Name: getDefensePoints(TroopType against)
Parameters: TroopType

Return Value: Int

Description: Assembles the troop defense points

Data structures: -

Pre-conditions: The player has a troop

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The defense points of the troaptisrned
Called by: TroopInfoFactory.getinfo(TroopType type)
Calls: -

getSpeed()

Method Name: getSpeed()
Parameters: -
Return Value: float

Description: Returns the troop speed

Data structures: -

Pre-conditions: The player has a troop

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The speed of the troop is returned
Called by: TroopInfoFactory.getinfo(TroopType type)
Calls: -

5.5.11. Interface TrooplnfoFactory

Methods:
getinfo(TroopType type)

Method Name: getinfo(TroopType type)

Parameters: -

Return Value: Trooplnfo

Description: Returns the full troop information

Data structures: -

Pre-conditions: The player has a troop

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The full info of the troop is netad
Called by: -

Calls: TroopType

5.5.12. Class Village

References: Functional Requirements
Player controlled villages 4.4.1.1.
One village per player 4.4.1.2
Establish village control in multiplayer mode 6.1.1
A player shall have one village 6.1.1.2.
Buildings slots 6.1.2.1

Fields:

Attribute: team

Type: Team

Usage: Assigns a village name

Attribute: homeArmy

Type: Army

Usage: The stationary army where new built troopsgathered
Methods:

increaseMoney()

Method Name: increaseMoney

36

Parameters: -
Return Value: -

Description: The method increases the player mpneguction

Data structures: -
Pre-conditions: -

Validity Checks, Errors, and other Anomalous Situa: -
Post-conditions: The player money amount is in@éas

Called by: MainWindow.createThread()

Calls: Team.addMoney()

5.6.

5.6.1. User Functional Requirements

Cross-referenced index

Army consists of troops 4.4.3.3.

5.5.1. Class Army

Attack villages with armies 4.4.3.5

5.5.5. ClassrbatCalculator

Building slots 4.4.2.1.

5.5.2 Interface Building

Conflict of armies 4.4.3.6

55.1. Class Army,
CombatCalculator

5.5.5 Class

Construct Buildings 4.4.2.3.

5.5.2 Interface Builgli

Different types of buildings 4.4.2.2

5.5.2 IntegadBuilding, 5.5.3.
Buildableltem

Interfac

11

Game map 4.4.4.1.

5.5.6. Class Map

Maps cells 4.4.4.2.

5.5.6. Class Map

Move armies around the map 4.4.3.7

5.5.1. ClassyArm

One village per player 4.4.1.2

5.5.12. Class Vdlag

Playable Races 4.4.1.5.

5.5.7. Interface Race

Player controlled villages 4.4.1.1.

5.5.12. CNikage

Player specific colors 4.4.5.6

5.5.8. Class Team

Upgrade Buildings 4.4.2.4

5.5.2 Interface Building

5.6.2. System Functional requirements

A player shall have one village 6.1.1.2.

5.5.1as8lVillage

Armies consist of troops 6.1.3.3.

5.5.1. Class Army

Assign each player a unique player nandes.8 Class Team

6.1.5.1.

Buildings slots 6.1.2.1

5.5.12. Class Village

Choosing a player race 6.1.1.5.

5.5.7 InterfaceeRac

Conflict of armies 6.1.3.5.

55.4. Class
CombatCalculator

Combat, 5.%. Class

Construct a map with different kinds of map.5.6. Class Map

cells 6.1.4.2.

Construct different kinds of buildings 6.1.2.2 B.8nterface Buildableltem

Different types of troops 6.1.3.1.

5.5.9. Interfdceop

Establish village control in multiplayer mod®.5.12. Class Village

6.1.1.1.
Perform movement of player armies 6.1.3.6. 5.5l4s€Army
Perform movement of player armies 6.1.3.6. 5.5l&8s€Map

37

Player specific colors 6.1.5.6

5.5.8 Clas Team

Provide interactive game map 6.1.4.1.

5.5.6. Qléeys

Train military troops 6.1.3.2

5.5.9. Interface Tpoo

Upgrade Buildings 6.1.2.3.

5.5.2 Interface Building

5.7. Package Diagram
sad
garme
SR : Ay
Qe E R IR M . Buildableltem

gLl Building
ActionBackButtonPane| N Combat
BuldEventHeaderFanal "x CombatCalculator
BuildEventPariel 2 Map
BuildEventsPanel Settings f&-7 | Race
BullditernFane| Team
BulldlternFaneListener Troop
BuildingButton Trooplhfo
EuildingF’angl TroopInfoF actory
DialoogManager TroopType
Gamelialog Yillane
HostGameDialog =
HostGamePane| I
M airiAindow i 4
MapPanel o RS s
MessagePanel oo Gy
MessagePansl T = SadUtil -
MultiplaverModeDialog F
MultiplayverModeFanel

MultiplayenyaitingReadyDialog
multiplavendaitingReadyFanel
MNameFanel

OnebuttonPaneal
Starttenulialog
StartenuPanel

TestDialog

TestEl|

TotalZostPanel
UpgradeBuildingP ane
YillagelnfoFanel

YillageFangl
FeroLevelBiildingPane|

Metwark |

Session
Senver
Cllemnt

Figur 15

. Package Diagram

38

6. Functional Test Cases

6.1. Different types of troops
Description: Test to see if you can create different types tsoop
Reference: Functional Requirements

User-4.4.3.1
System —6.1.3.1

Input: None
Expected output: Different type of troops are constructed
Procedure:

1. Upgrade village barracks

2. Construct troops of the at least two different g/geat now is possible.

3. Compare that the two troops are different by comngathe info that appears when
clicking on them. E.g. names.

6.2. Train military troops

Description: Test if it is possible to build troops

Reference:Functional Requirements
User - 4.4.3.2
System - 6.1.3.2

Input: Amount of troops
Expected output: Troops are constructed

Procedure:

Enter the barracks

Click to build a troop

Enter the amount of troops need

Push the button to start building troops

Hold the mouse over the village

A pop-up appears showing the troops that have be#n

QA LNE

6.3. Resources

Description: Test that resources are collected.
Reference:Functional Requirements
User-4.4.1.3,4.4.1.4
System -6.1.1.4

Input: None.
Expected output: Resources are increased at a constant rate.

39

Procedure:
4. Choose “Training mode” from the start menu.
5. Wait for the game to start.
6. Wait a few seconds and you will see that your resesiare increased.

6.4. Different kinds of buildings

Description: Test that different buildings can be constructed apgraded.

Reference:Functional Requirements
User-4.4.2.2,4.4.2.3,4.4.2.4
System — 6.1.2.2.

Input: A village
Expected output: Upgraded buildings; barrack, stable, bank, strottghod hospital
Procedure:

1. Create a new barrack, stable, bank, strongholchagplital

2. Upgrade each building

3. Control that the buildings has been upgraded bygingathe text tool tip and check
what level they are.

6.5. Map

Description: Test the map and that it has different cells.

Reference:Functional Requirements
User-4.4.4.1,44.42
System-6.1.4.1,6.1.4.2

Input: None.
Expected output: A map with different cells.
Procedure:

1. Choose “Training mode” from the start menu.
2. Wait for the game to start.
3. Arandom map will be generated and drawn into tap panel.

6.6. Connect to a multiplayer game

Description: Test to connect to a multiplayer game.
Reference:Functional Requirements

User-4.45.2

System — 6.1.5.2

Input: A player name and a host name.
Expected output: A connection to a multiplayer game is made OR

40

No connection is made because no multiplayer gaxistseat the
location.

Procedure:
1. Choose “Multiplayer mode” from the start menu.
2. Choose “Join a game” from the menu.
3. Enter a player name and an ip/host name to conmect
4. Click “Connect”.

6.7. Multiplayer game settings

Description: Test to create a multiplayer game with differentiisgs.

Reference:Functional Requirements
User—4.45.1,445.3
System - 6.1.5.1, 6.1.5.3

Input: Different game settings and a player name.
Expected output: A multiplayer game is started.
Procedure:

1. Choose “Multiplayer mode” from the start menu.

2. Choose “Host a game” from the menu.

3. Enter a player name and change the game settings.
4. Click “Create”.

6.8. Player specific colors
Description: Tests that all players have unique colors.

Reference:Functional Requirements
User - 4.4.5.6
System — 6.1.5.6.

Input: An initialized game, several players
Expected output: That all teams/players have different colors
Procedure:

1. Chose one of the teams

2. Look at team village on the map

3. Compare village color with the other players vidazplor
4. Decide whether any teams have the same colors

6.9. Assign each player a unique player name
Description: Test to see if you can assign unique player name.
Reference:Functional Requirements

User-4.45.1

System - 6.1.5.1.

41

Input: Player names
Expected output: Messages informing that the name is already taken.
A game with two or more players with different nane

Procedure:

Create a new game with two or more players
Choose a name for the first player

Try to choose the same name for the second player.
Check that you get an error message.

Try to choose a different name.

agrwnE

6.10.A player has arace
Description: Tests that a player has a valid race.

Reference:Functional Requirements
User—-4.4.15
System - 6.1.1.5

Input: A player
Expected output: The player race
Procedure:

1. Create ateam
2. Look at village panel at the top left of the screen
3. The player race should be stated here

6.11. A player shall have one village

Description: Test to see that a player has one village.

Reference:Functional Requirements
User—4.4.1.2.
System - 6.1.1.2

Input: None.
Expected output: A game is created and the player has one village.
Procedure:

1. Choose “Training mode” from the start menu.
2. Wait for the game to start.
3. Watch the map and look for your one and only vilag

6.12. Move armies around the map
Description: Test that an army can be moved.
Reference:Functional Requirements

42

User - 4.4.3.7.
System — 6.1.3.6.

Input: An input and mouse actions.
Expected output: An army is moved.
Procedure:

1. Left click on one of your armies on the map.
4. Right click on another cell in the map.
5. Watch the army move.

6.13.Join two armies
Description: Tests that two armies could be joined

Reference:Functional Requirements
User - 4.4.3.4.
System - 6.1.3.3

Input: Two armies
Expected output: One army
Procedure:

1. Check the troop amounts within the two armies

2. Join the two armies by moving them to the same oedlp

3. Check that the troops amounts within the new siaghey is consistent
4. Move the new army to a new map cell to see thaath®y acts as one.

6.14. Armies never separate
Description: Tests that an army never could be separated

Reference:Functional Requirements
User - 4.4.3.4.
System - 6.1.3.3

Input: Two armies
Expected output: The army has moved to another position and stilsisis of the
amount of troops.

Procedure:
5. Join two armies by moving them to the same map cell
. Check map position of the army
. Check the troops size of the armies different tsoop

6

7

8. Move the army one step.

9. Check if the troops size are consistent

6.15. Attack village with armies
Description: Test that a village can be attacked.
Reference:Functional Requirements

43

User-4.4.35
System - 6.1.3.4.

Input: An army and a hostile village.
Expected output: The hostile village has been attacked.
Procedure:

1. Left click on one of your armies on the map.
2. Right click on a hostile village on the map.
3. Watch the army move.
4. When the army reaches the village:
a. The village is destroyed if the army is big enough.
b. If the army is too small: The village is partialtiestroyed and the army is
destroyed.

6.16.Conflict of armies

Description: Test to see that two armies battles with each otlen entering the same map
cell.
Reference:Functional Requirements

User - 4.4.3.6

System - 6.1.3.5

Input: Two armies from different players
Expected output: One army remaining.
Procedure:

1. Move one of the armies to the spot on the map winerether army is located.
2. Check that there is only one army left.

44

