
fundamnit!
Group 14

Per Almquist

Peter Andersson
Marcus Bergenlid

Victor Mangs
Ali Mosavi

Contents
1. Introduction .. 4

1.1 Summary of the document ... 4
2. System Overview .. 5

2.1 General description .. 5
2.2 Overall Architecture Description .. 5
2.3 Detailed Architecture.. 6

2.3.1 Server Architecture ... 6
2.3.1.1 Server Architecture Modules .. 6
2.3.1.2 Server architecture control and data flow ... 7

2.3.2 Client architecture ... 9
2.3.2.1 Client architecture modules .. 9
2.3.2.2 Client architecture control and data flow .. 10

3. Design Considerations .. 11
3.1 Assumptions and Dependencies ... 11

3.1.1 Related software .. 11
3.1.2 Related hardware ... 11
3.1.3 End-user characteristics ... 12
3.1.4 Possible and/or probable changes in functionality ... 12

3.2 General Constraints .. 12
4. Graphical User Interface ... 13

4.1 Overview of the User Interface .. 13
4.2 Graphical user interface forms .. 14

4.2.1 Free Sketch ... 14
4.2.2 Global gallery .. 14
4.2.3 Home .. 15
4.2.4 Login ... 15
4.2.5 Profile ... 16
4.2.6 Playing arena ... 17
4.2.7 Search ... 18
4.2.8 Sign up .. 19
4.2.9 Vote .. 20

5. Design Details ... 21
5.1 Class Responsibility Collaborator (CRC) cards .. 21

5.1.1 View .. 21
5.1.2 Controller .. 22
5.1.3 Model .. 24

5.2 Class diagram ... 26
5.2.1 View .. 26
5.2.2 Model .. 26
5.2.3 Controller .. 27
5.2.4 Playing Arena .. 28

5.3 State charts ... 29
5.4 Interaction diagrams ... 30

5.4.1 Register ... 30
5.4.2 Login ... 31
5.4.3 Challenge .. 32
5.4.4 Battle ... 33
5.4.5 Vote .. 34
5.4.6 Add guestbook message .. 35

5.5 Detailed Design .. 36
5.6 Package diagram ..167

2

6. Test cases ...168
6.1. Register ..168
6.2. Login ..169
6.3. Artistic points ...170
6.4. Guestbook..171
6.5. Personal gallery ...172
6.6. Statistics ...173
6.7. Playing arena ..174
6.8. Playing arena idle ..175
6.9. Signup ..176
6.10. Show challengeable users ..177
6.11. Chat room ..178
6.12. Challenging users ..179
6.13. Drawing board colors ...180
6.14. Painting tools - Pencil ...181
6.15. Painting tools - bucket ..182
6.16. Free sketch mode ...183
6.17. Competition ...184
6.18. Voting ..185
6.19. Golden Vote ...186
6.20. AP transfer ...187
6.21. Challenge options – Time limit ...188
6.22. Challenge options – Bet ..189
6.23. Challenge request ..190
6.24. AP reservation ..191
6.25. Battle topic ...192
6.26. Vote time limit ..193
6.27. Voting page ..194
6.28. Vote weight ..195
6.29. Vote statistics ...196
6.30. Voter gets AP, can only vote once and not in own competition ..197
6.31. Top ten user list ..198
6.32. Global gallery ...199
6.33. Search users ..200

3

1. Introduction

This document is intended for developers of the fundamnit! system. The purpose is to give the
developer an insight into how the system will look and feel and how the various components of the
system are supposed to interact with each other.
After reading this document the developer should be able to implement the system in a way that
satisfies the initial requirements that were put on the system.

This document describes a design of the fundamnit! system version 1.0.

The reader of this document should have read or at least have the possibility to concurrently read the
requirements document that this design document is based on, since there are a lot of references to
that document.

For important terms, acronyms and abbreviations, see the requirements document section 3
(Glossary).

1.1 Summary of the document

The document starts out with a walkthrough of the overall architecture of the system in section 2.
After that, some general aspects of the design that needs special attention is discussed in section 3.

In section 4 we tackle some guidelines about the graphical user interface that must be taken into
account.

In section 5 we go into the core of the system and describe the detailed design of all classes and
packages in the system. Accompanying these are a lot of detailed diagrams that should give the
developer a firm ground to stand on when the implementation is being planned. Also included in
section 5 are a lot of interaction diagrams that further describe some of the thoughts behind the
design.

In section 6, some test cases are described that can be used after or during implementation to make
sure that the system functions as intended.

4

2. System Overview

2.1 General description

Fundamnit! is a web based community that focuses on user competing in the art of painting. The
system is intended to be entertaining but may also serve as a natural meeting place for users across
the globe.

The system will be a client and server application, the server will run a Tomcat web server so the
interface between the client and server will follow the HTTP protocol.
The client side will consist of a web browser (Mozilla Firefox should be used for the best result) and
Adobe Flash Player.

2.2 Overall Architecture Description

Client

Server
Database

File system

Application

Web server

Application

Web browser

The general architecture applied is a two tier (semi) fat client web service system, meaning that the
server basically does nothing more than receive requests, processes them and sends back the

5

requested information. Semi-fat means that there’s an event driven application on the client side that
does some of the html generation and injection. The actual pages being viewed aren’t fully complete
(at least in some cases), the missing information is fetched and processed real time when the page is
loading and/or as a response to user interaction.

On the server side there exists a web server which handles the low level http protocol requests and
reroutes them to the web service application which decides how to respond. The application may
also request information from the database or from a separate file.

On the client side a web browser (supporting XHTML, Flash plugin, ECMAScripts) handles the
requests to the server and presents the results to the end user. In aid of presenting the information
and interacting with the user, the browser uses various applications.

2.3 Detailed Architecture

In this section a more detailed version of the architecture is explained.

2.3.1 Server Architecture

The server as a whole is made out of several major components as depicted in the figure in section
2.3.1.2. Each of the individual components will be described in the next section followed by a control
and data flow description in section 2.3.1.2.

2.3.1.1 Server Architecture Modules

Tomcat

Apache Tomcat1 is a web server derived from Apache Hypertext Transfer
Protocol (HTTP) Server2 which adds support for Hypertext Transfer Protocol over Secure Socket
Layer (HTTPS) protocol as well as being the standard implementation for JEE Web Application
Technologies.

Java Enterprise Edition (JEE) Web Application Technologies

The JEE Web Application Technologies3 is a collection of technologies for Java based web
applications. Two of these are Java Servlets and Java Server Pages (JSP) which we will be using
extensively. It is basically a layer or interface linking the web server with the custom written Java code.

When an incoming http request (which is mapped to some servlet) is received by Tomcat it is
forwarded to the JEE Web Application technologies which will handle the details concerning the
http request and then call the correct custom Servlet. The JEE Web services are run inside/on top of
the Java Virtual Machine (JVM).

1 http://tomcat.apache.org/
2 http://httpd.apache.org/
3 http://java.sun.com/javaee/technologies/webapps/

6

http://tomcat.apache.org/
http://httpd.apache.org/
http://java.sun.com/javaee/technologies/webapps/

Service Application

The service application is a collection of custom written Servlets and JSP pages that will receive
different requests made by the user in the form of HTTP requests, process them and if required,
return the appropriate information. It is here that all of the server side logic of our software system
resides. It will use the database (through Hibernate) to store all of the data concerning the users and
the system, and the file system to store the user drawings.

Hibernate

Hibernate4 is a sort of middleware which will simplify the integration of a Structured Query
Language (SQL) database with the rest of the application by acting as a link between the
programming language and the database, doing on the fly (two way) translation between Java objects
and SQL. In simplified terms this means that it will automatically transform Java objects to SQL
queries and database table rows. It will also do the opposite, that is, transform the result of a query
back to Java objects. This will simplify the development of a data intense application such as this as
the code need not to be cluttered with SQL code and will also greatly simplify the evolution of the
data model as the code more or less needs not to be aware of the database schema.

JVM

The JVM will run all the java related code. It needs to comply to the Java 1.5 standard as Generics
will be used.

The database

The database will be a standard PostgreSQL5 setup which need not be on the same physical machine
as the Apache Tomcat server.

The file system

The underlying file system will be used to store the user created pictures. As the server side
application is entirely written in Java, it is independent of the platform. So the only requirement on
the file system is that it supports long file names (up to 256 characters) and can be a network mapped
drive.

2.3.1.2 Server architecture control and data flow

4 http://www.hibernate.org/
5 http://www.postgresql.org/

7

http://www.hibernate.org/
http://www.postgresql.org/

This section will provide a general and simplified overview of the control and data flow of the
architecture model. The text will often be followed by a number inside a parenthesis. This number is
a reference to the numbered arrows in the figure above. The different steps in this process are
described below.

1. The client will make HTTP/HTTPS requests to the server (12). In some cases (such as
login) this request will be made synchronously, meaning that the control will be given over
to the server and nothing more will occur until a response (7) has been received. But in most
case it be an asynchronous request and the client can go on to do whatever it wishes.

2. Tomcat will handle this request and forward (11) it to JEE Web Application layer along with

any additional data (6) in the HTTP request.

3. The JEE Application layer will in turn forward (10) this to the correct custom written Servlet
or JSP along with the parsed extra data (4).

4. The custom servlet will process the request and gather any additional data required through

Hibernate (9) which will return the data (2).

8

5. Hibernate will translate the request to SQL and send (8) a query to the database. It will
receive the response (1) and transform it back to Java objects which will be returned (2) to
the custom Servlet.

6. Having the required data, a correct response can now be constructed by the custom Servlet.

It might require a specific file which will be fetched (5 and 3).

7. The response is now constructed by the Servlet and returned (4) to JEE Web Application
layer which returns it to Tomcat (6), which in turn, forwards (7) it to the client.

8. The request is now complete.

2.3.2 Client architecture

The client is also made out of several major components. Again, first a description of the
components then a description of the control and data flow is described.

2.3.2.1 Client architecture modules

Web browser

The web browser serves as the HTTP client that makes and handles HTTP requests and responses
to and from the server. It views the html and host the JavaScript interpreter, and plugins such as
Flash Player.

Flash Player

The Flash Player is an ActionScript engine that executes ActionScript source code.

JavaScript interpreter

The JavaScript interpreter will run the actual client application, which handles different events and
performs the corresponding action.

Client application

The client application is a collection of custom ECMAScripts written mainly in JavaScripts with the
exception of the one painting component that is written in ActionScript. It is here that all the client
side logic of the system resides. Takes care of the user interaction with the system and generates
HTML for different actions.

9

2.3.2.2 Client architecture control and data flow

This section corresponds to section 2.3.1.2 and will provide a general and simplified overview of the
Control and Data flow of the architecture model for the client. Again, a number wrapped in
parentheses implies the respective arrow in the figure above. The different steps in the process are
described below in the (mostly) general case.

1. The user interacts with the html page which triggers an event that is sent to (4) the JavaScript
interpreter.

2. The JavaScript interpreter calls (3) the JavaScript function which is mapped to the

corresponding event.

3. The function might need to fetch or register some data on the server. So an asynchronous
HTTP request (8, 9, 10) is made.

4. The server will respond (5, 4, 3) which will trigger the corresponding JavaScript event

handler (10, 9, 8)

5. The event handler will do the required action, i.e. generate the required HTML and inject it
into the html page.

10

3. Design Considerations

3.1 Assumptions and Dependencies

First off, before reading this section read the following in this design document (DD) and in the
requirements document (RD):
• DD section 2.3 about the detailed architecture.
• RD section 2.1 about the intended users of the system
• RD section 2.6.1 and 2.6.2 about client and server side technologies.
• RD section 4.2 about the system’s non-functional requirements.
• RD section 8 about system evolution. It covers a lot of assumptions about; the system, it’s

hardware and what in its functionality that is likely to be changed due to user needs.

3.1.1 Related software

The server side of the system is built in JEE and therefore depends on a JVM to be available on the
server in order to run the system. The server side of the system also depends on the existence of a
database and a web server.

The client side of the system is built through a collection of ECMAScripts (mostly JavaScript but at
least one ActionScript) and that depends on the existence of a web browser capable of running these
scripts. The client side of the system also depends on the web browser being compliant to other web
standards such as HTML, CSS and DOM.

The system is created based on the assumption that the dependencies above are matched.

The system will be tested with the following software:
• Server side

o OS: Debian GNU/Linux with kernel 2.6.18-5-686
o JVM: JVM 1.5.0_14
o database: PostgreSQL 8.1.11
o web server: Apache Tomcat 5.5.20

• Client side
o web browser: different versions of Mozilla Firefox with Flash 9 support

3.1.2 Related hardware

The system is dependent on internet access.

It is likely that the server side of the system will have a higher demand of computational power,
memory and bandwidth in the case of the system being widely used.

The system will be tested with the following hardware:
• Server side

o internet access: 10 Mbit
o computational power: 900 MHZ Intel Pentium III CPU
o memory:

11

 primary: 256 MB RAM
 secondary: 40 GB HD

• Client side

o random computers with the appropriate (see previous section) web browser support

3.1.3 End-user characteristics

 The users of the system are supposedly young (10 to 30 years of age) and are therefore assumed to
be up to date with current technologies. They are assumed to know their way around a standard web
site and should therefore be able to navigate our system.

3.1.4 Possible and/or probable changes in functionality

After some time using the system the users might get bored. Then changes that increase the game
value to the system’s users might be implemented.

These changes could involve:
• making the system available in alternative ways. For example via mobile devices.
• adding new functionality when painting pictures. For example new painting tools.
• introducing special events to the community. For example during Christmas all the topics will be

related to Christmas.

3.2 General Constraints

There are several limitations that constrain the software implementation of the system. Since
it is web based and is used over the internet, it has to be small to make the game playable to
people with slow internet connections. The game is to be played in the user’s web browser,
and that imposes other limitations, like having to use supported standards and protocols.
The security and ability to verify a user is also very important in a web based system like this.

12

4. Graphical User Interface

4.1 Overview of the User Interface

Please note that this part of the Design Document (DD) does most definitively not present the
system’s final layout (sizing, color, style). The figures should be viewed as guidelines when describing
the functionality when a user interacts with the system through the system’s different web pages that
is explained below. The functionality described is however not a guideline.
Users will interact with the system via the user’s web browser. In the user's web browser the system
will be available through several web pages. These web pages will share some similar sections and
have other sections that are unique for just that web page.

All of the system’s web pages will include the menu shown in the figure above. This menu will
provide the functionality to:

(1) Direct the user to the “About” web pages which will let the user know who has created the
system and which version of the system that is currently used.

(2) Direct the ser to the “Help” web pages which will teach the user how to use the system and
help the user to get passed difficulties.

 With the exception of the web pages concerning Login and Sign up (which are explained in DD
section 4.2) all other web pages contained the menu shown in the figure above. This menu will

provide the functionality to:
(1) Direct the user to the “Home” web pages. For more information see 4.2.3
(2) Direct the user to the “Profile” web pages. For more information see 4.2.5
(3) Search for a user in the system by specifying it's username.
(4) Direct the user to the “Free Sketch” web pages. For more information see 4.2.1
(5) Direct the user to the “Playing Arena” web pages. For more information see 4.2.6
(6) Direct the user to the “Vote” web pages. For more information see 4.2.10
(7) Direct the user to the “Top list” web pages. For more information see 4.2.9
(8) Direct the user to the “Global gallery” web pages. For more information see 4.2.2
(9) Log out from the system.

13

4.2 Graphical user interface forms

4.2.1 Free Sketch

Functional requirements (FR) that are covered by everything written here are 4.1.4.1 – 4.1.5.1.

Please note that this is just a guideline of what the implementation will look like.
What you see in the picture is on the left a few tools and colors that can be used while painting. To
the right is the canvas upon which a user will draw pictures.

4.2.2 Global gallery

FR: 4.1.7.2
This is the global gallery page where all pictures ever made are posted for all users to view.

This page consists of a list of competitions. The list can be sorted with respect to any of the six
subjects at the top and it can also be filtered by entering a string in one or more of the text fields

14

below the corresponding subject. For example, the list above is filtered to only show competitions
where user P1 is the winner.

More information about the competition can be shown by clicking on the plus-sign at the right of
each competition as shown in the picture above. There you can see the two pictures and some
statistics about the two competitors.

4.2.3 Home

On the start page news and upcoming events are posted for the users to view. This page is only
available to users that are logged in.

4.2.4 Login

The login page is quite self explanatory. All users are required to login to be able to use the system.
As mentioned before this isn’t the final design, but more of a guide line.

The page covers the following functional requirements: 4.1.1.2

15

4.2.5 Profile

Functional requirements that are covered by everything written here are 4.1.2.1-4.1.2.4.
At the top we have the actual profile, where various information about the user is shown. Here we
find game statistics, a user avatar, the user’s name and a personal message written by the user.
Next we have the user’s guestbook, where the latest messages written to the user are displayed. Here
we also have a form where other users can post a new message into the guestbook. At the right we
have the personal gallery where the user’s latest pictures are displayed along with information about
the battle, e.g. if the user won or lost, what topic they was supposed to draw and against who the user
battled.

16

4.2.6 Playing arena

FR that are covered by everything written here are 4.1.3.1 – 4.1.3.2.

To the left we have the game options area. This is where a user will specify the game options that will
be sent to another user upon challenge. Time limit is chosen from a few predetermined options
presented in the tlList. The bet (1-100 %) is written in the betTextField. In the anteLabel the actual
AP that the user will bet is shown.
FR: 4.1.3.7, 4.1.6.2.1, 4.1.6.2.3

At the top is the signupBtn. To interact with the rest of the controls on this page you must click on
this button.
FR: 4.1.3.3

In the middle is the chat room. This comprise 3 parts: chatArea, competitorsArea and
chatInputTextField. In general, to post a message a user types the message into the chatInputField
and then clicks on the chatPostBtn. The message should then pop up in the chatArea. In the
competitorsArea all users that are signed up and not participating in a battle at the moment are
shown.
FR: 4.1.3.4 - 4.1.3.5

The competitorsArea also has a second use that are intertwined with the compInfoArea at the right.
When a username in the competitorsArea is selected the compInfoArea will change.
The compInfoArea is used to present statistics about the selected user. These labels will be changed
when a new username is selected in the competitorsArea:

totAPLbl – the total AP that the user currently has.
nCompLbl – the total number of competitions the user has participated in.

17

nWonLbl – the number of won competitions by the user.

The compInfoArea also has a button challengeBtn. When a user clicks on this the selected user will
receive a challenge invitation using the selected battle options.

FR: 4.1.3.6 – 4.1.3.7

When a battle is commenced the chat room is replaced by a flash application that as depicted below
(Note: just a guideline).
FR: 4.1.4.1 – 4.1.4.1, 4.1.6.3.1

4.2.7 Search

The web page shown in the figure above covers the functional requirement 4.1.7.3 and is used when
searching for other users in the system.

18

(1) Search for other users with regards for their username. Takes characters as input.
(2) Search for other users with regards for their number of participated competitions. Any of

the comparators “>,≥, ≤ and <” can be used. Takes digits as input.
(3) Search for other users with regards for AP. Any of the comparators “>,≥, ≤ and <” can be

used. Takes digits as input.
(4) Search for other users with regards for their number of won competitions. Any of the

comparators “>,≥, ≤ and <” can be used. Takes digits as input.
(5) This button performs the search for user given the options specified by (1) – (4).
(6) This is a list of the results from a search. The result can be ordered by Name, Participated

competitions”, Won competitions or Number of AP.

4.2.8 Sign up

As mentioned before, a user needs to be logged in to use the system. But before logging in they need
to create an account once. The page where a new user can register and create an account is the
following.

The page covers the following functional requirements: 4.1.1.1

19

4.2.9 Vote

FR: 4.1.6.4.1 – 4.1.5.4.8
The voting page is like the global gallery except that this page contains all competitions that are in the
voting phase. When the user viewing the page has not yet voted for this competition and has not
participated in the competition, the user will be able to vote. The user is shown the two pictures,
without knowing which belongs to which user, and a vote-button below each picture.

When the user viewing the page already has voted in the competition or the user is one of the
combatants, this will be shown when the user views the competition. The user now sees some
statistics about the combatants and also the development of the competition.

20

5. Design Details

5.1 Class Responsibility Collaborator (CRC) cards6

5.1.1 View

Class: GlobalGalleryJSP
Responsibilities Collaborators
Generates the HTML for the global gallery. PersonalGalleryManager

Class: PersonalGalleryJSP
Responsibilities Collaborators
Generates the HTML for the personal
gallery.

PersonalGalleryManager

Class: VoteJSP
Responsibilities Collaborators
Retrieves and registers a user vote
Generates HTML for voting page.

VoteManager

Class: SearchJSP
Responsibilities Collaborators
Generates the HTML for the search result
page.

SearchManager

Class: GuestBookJSP
Responsibilities Collaborators
Generates HTML for the guestbook of a
user.

GuestBookManager

Class: BattleArenaJSP
Responsibilities Collaborators
Generates HTML along with the Flash
component

None

Class: PlayingArenaJSP
Responsibilities Collaborators
Generates HTML for the Playing arena Page. None

Class: LoginJSP
Responsibilities Collaborators
Generates the HTML to handle user login AuthorityManager

6 http://c2.com/doc/oopsla89/paper.html

21

Class: RegisterJSP
Responsibilities Collaborators
Generates the HTML to handle user
registration

RegisterManager

5.1.2 Controller

Class: PersonalGalleryManager
Responsibilities Collaborators
Gathers and returns a list with information
about different competition a user has
entered.

CompetionAgent

Class: PersonalGalleryManager
Responsibilities Collaborators
Gathers and returns a list with information
about different competition a user has
entered.

CompetionAgent

Class: VoteManager
Responsibilities Collaborators
Retrieves a user vote, looks up how many
real votes it corresponds to and registers it
with the corresponding competition. Then
gives the voter a predefined amount of AP
for voting. Voting can only be done once for
every competition and user.

APUtil
CompetitionAgent

Class: SearchManager
Responsibilities Collaborators
Searches for users based on some given
parameters and returns a list with the result.

UserAgent

Class: GuestBookManager
Responsibilities Collaborators
Returns a users guestbook posts based on a
timestamp and count.

GuestBookAgent

Class: CompetitionAgent
Responsibilities Collaborators
Registers a vote from a user with the
corresponding competition. Looks up and
returns the different competitions which a
user is connected to in the database.

Competition

Class: UserAgent

22

Responsibilities Collaborators
Creates a user in the database.
Retrieves users from the database.

User

Class: GuestBookAgent
Responsibilities Collaborators
Creates a guestbook post in the database.
Retrieves guestbook posts from the database.

GuestBookPost

Class: ChallengeServlet
Responsibilities Collaborators
Handle user signup in the playing arena.
Handle user challenge another user

PlayingArenaManager

Class: ChatServlet
Responsibilities Collaborators
Handle get and post chat messages PlayingArenaManager

Class: PlayingArenaManager
Responsibilities Collaborators
Get and post chat messages.

Handle challenges.
Handle Playing arena sign up.

ChatManager

ChallengeManager

Class: ChatManager
Responsibilities Collaborators
Get and Post ChatMessages ChatMessage

Class: ChallengeManager
Responsibilities Collaborators
Keep track of users in the Playing arena.

Create competitions.

ChallengeManagerUserEntry.

CompetitionAgent

Class: AuthorityManager
Responsibilities Collaborators
Handles user authentication

Handles user rights, used by all of the
interfaces outward to check if a session/user
has the right to perform the requested
action.

UserAgent

UserAgent

Class: RegisterManager
Responsibilities Collaborators

23

Handles user registration UserAgent

5.1.3 Model

Class: Competition
Responsibilities Collaborators
Holds information about a competition. Is
an entity that is stored in the database.

Topic
Combatant

Class: Topic
Responsibilities Collaborators
Holds information about a topic. Is an entity
that is stored in the database.

None

Class: Combatant
Responsibilities Collaborators
Holds information about a combatant. Is an
entity that is stored in the database.

Picture

Class: Picture
Responsibilities Collaborators
Holds information about a picture. Is an
entity that is stored in the database.

None

Class: Class
Responsibilities Collaborators
Holds information about a user class. Is an
entity that is stored in the database.

None

Class: GuestBookPost
Responsibilities Collaborators
Holds information about a guest book post.
Is an entity that is stored in the database.

User

Class: News
Responsibilities Collaborators
Holds information about the system that is
presented as news. Is an entity that is stored
in the database.

User

Class: User
Responsibilities Collaborators
Holds information about a user. Is an entity UserProfile

24

that is stored in the database.

Class: UserProfile
Responsibilities Collaborators
Holds information about a user’s profile. Is
an entity that is stored in the database.

None

Class: PlayingArenaUserManager
Responsibilities Collaborators
Keep track of all ChallengeRequests

Keep track of ChallengeMessages.

ChallengeRequest

Message

Class: ChallengeRequest
Responsibilities Collaborators
Holds information about a challenge. PlayingArenaUserManager

Class: Message
Responsibilities Collaborators
A base class for returning various messages
to the user.

None

Class: MessageChallenge
Responsibilities Collaborators
A sub class of Message, tells the user client
application that the user has been challenged.

None

Class: MessageGoToArena
Responsibilities Collaborators
A sub class of Message, tells the user client
application to go to the battle arena.

None

Class: MessageChat
Responsibilities Collaborators
A class for posting messages in the chat. None

Class: MessageOK

Responsibilities Collaborators
A class that tells if something went ok. None

Class: MessageError
Responsibilities Collaborators
A class that tells if something went wrong. None

25

5.2 Class diagram7

5.2.1 View

5.2.2 Model

7 http://dn.codegear.com/article/31863#classdiagrams

26

5.2.3 Controller

27

5.2.4 Playing Arena

28

5.3 State charts

States of a user in the Playing Arena.

Not signed up

Signed up

Challenged Challenge

Battle

/ Sign out,Timeout

/ Challenge/ Challenged

/ Accept / Accept

/ Sign up

/ Decline / Decline

/ Sign out,Timeout
/ Sign out,Timeout

/ Battle starts

29

5.4 Interaction diagrams

5.4.1 Register

Reference to Use Case: 1

30

5.4.2 Login

Reference to Use Case: 2

31

5.4.3 Challenge

Web browser (User A)

MessageServlet PlayingArenaManager

User A specifies battle options.

Sign up

PlayingArenaJSP

show Playing Arena

Playing Arena page

PlayingArenaUserManager PlayingArenaUser

ChallengeRequest

PlayingArenaUser

Signed up

getInstance()

PlayingArenaManager

signUpToArena() signUpToArena()

MessageOKMessageOK

Challenge User B

getInstance()

PlayingArenaManager

challengeUser(User B)

createChallenge(User B)

getArenaUser(User A)

PlayingArenaUser

isArenaUser()

getArenaUser(User B)

PlayingArenaUser

isArenaUser()

MessageOK MessageOKMessageOKMessageOK

Challenged

PlayingArenaUser

User A

User B

MessageChallenge

AuthorityManager

OK

getInstance()

AuthorityManager

validate()

new PlayingArenaUser()

Reference to Use Case: 3

32

5.4.4 Battle

33

Reference to Use Case: 4

5.4.5 Vote

Reference to Use Case: 5

34

5.4.6 Add guestbook message

Reference to Use Case: 9

35

5.5 Detailed Design
APUtils Class Reference
This is a utility class, responsible for making all types of calculations with the Artistic Points.

Public Member Functions

• void updateClasses ()
Updates the classes with new limits.

• Class getClass (User user)
Returns the class that the given user belongs to.

• int getVoteWeight (User user)
Returns the weight of the specified user's vote.

• Combatant makeBet (User bettingUser, int betPercent)
Calculates the user's bet according to the percent specified.

• void transferAP (User fromUser, User toUser, int amount)
Transfer 'amount' AP from 'fromUser' to 'toUser'.

Detailed Description

This is a utility class, responsible for making all types of calculations with the Artistic Points.

Member Function Documentation

void updateClasses ()
Updates the classes with new limits.
The limits depends on the AP of the user with the most AP.

Pre condition>
None

Post condition>
None
When the classes are modified they are saved in the database.

Class getClass (User user)
Returns the class that the given user belongs to.

Pre condition>
None

36

Post condition>
None

Parameters:
user An User object

Returns:
The user's class.

int getVoteWeight (User user)
Returns the weight of the specified user's vote.

Pre condition>
None

Post condition>
None

Parameters:
user

Returns:
The weight

Combatant makeBet (User bettingUser, int betPercent)
Calculates the user's bet according to the percent specified.
Returns the same user with it's reserved AP increased or null if the user doesn't have enough free
AP.

Pre condition>
None

Post condition>
None

Parameters:
bettingUser The user that makes the bet
betPercent The percent of total AP.

Returns:
The modified user.

void transferAP (User fromUser, User toUser, int amount)
Transfer 'amount' AP from 'fromUser' to 'toUser'.
That is decreasing the fromUser's total AP by amount and increasing toUser's total AP by
amount. Both user's reserved AP will be decreased by amount.

37

38

The method assumes that the transfer is possible i.e. that the fromUser's total AP is less or equal
to amount.

Pre condition>
None

Post condition>
None

Parameters:
fromUser
toUser
amount The amount that shall be transfered

The documentation for this class was generated from the following file:

• APUtils.java

ArenaUser Class Reference
The class represents an arena user.
Collaboration diagram for ArenaUser:

Package Functions

• ArenaUser (long userId)
Constructor, initializes the object.

• long getLastUpdate ()

39

Returns a timestamp that is the 'lastUpdate' property.
• void setLastUpdate ()

Updates the last 'updated' field so that the arena user doesn't time out.
• long getUserID ()

Gets the user ID.
• void setChallenge (ChallengeRequest c)

Sets the arena users challenge object.
• ChallengeRequest getChallenge ()

Returns the users challenge request object.
• void clearChallenge ()

Clears the arena users challenge request object.
• boolean hasChallenge ()

Checks if the arena user has challenge request object.
• void addMessage (Message m)

Adds a message to the arena user message list.
• List< Message > getMessages ()

Returns all the arena user messages and clears the message list.
• List< Message > getMessages (Message.TYPE type)

Returns all the messages of a certain type from the message list and also removes them from the list.
• boolean checkMessages (Message.TYPE type)

Checks if the arena user has a message of a certain type.

Detailed Description

The class represents an arena user.
It contains the message list and a challenge request.
This class is not thread safe.

Author:
Ali Mosavian

Constructor & Destructor Documentation

ArenaUser (long userId) [package]
Constructor, initializes the object.

Pre condition
None

Post condition
None

40

Parameters:
userId The user ID

Member Function Documentation

long getLastUpdate () [package]
Returns a timestamp that is the 'lastUpdate' property.

Pre condition
The object isn't being modified by another thread.

Post condition
None

Returns:
UTC timestamp

void setLastUpdate () [package]
Updates the last 'updated' field so that the arena user doesn't time out.

Pre condition
The object isn't being modified by another thread.

Post condition
'lastUpdate' is set to now.
Referenced by ChallengeManager.getUserMessages().

Here is the caller graph for this function:

long getUserID () [package]
Gets the user ID.

Pre condition
The object isn't being modified by another thread.

Post condition
None

Returns:
User ID

void setChallenge (ChallengeRequest c) [package]
Sets the arena users challenge object.

41

Pre condition
The object isn't being modified by another thread.

Post condition
Challenge request object is 'c'

Parameters:
c The challenge request object to set

Referenced by ArenaUser.clearChallenge(), and ChallengeManager.createChallenge().
Here is the caller graph for this function:

ChallengeRequest getChallenge () [package]
Returns the users challenge request object.

Pre condition
The object isn't being modified by another thread.

Post condition
None

Returns:
The object or null if there is none.

void clearChallenge () [package]
Clears the arena users challenge request object.

Pre condition
The object isn't being modified by another thread.

Post condition
None

Returns:
True if the user has a challenge request, false otherwise

References ArenaUser.setChallenge().
Here is the call graph for this function:

42

boolean hasChallenge () [package]
Checks if the arena user has challenge request object.

Pre condition
The object isn't being modified by another thread.

Post condition
None

Returns:
True if the user has a challenge request, false otherwise

Referenced by ChallengeManager.createChallenge().
Here is the caller graph for this function:

void addMessage (Message m) [package]
Adds a message to the arena user message list.
This method is not thread safe.

Pre condition
The message list isn't being modified by another thread

Post condition
The message has been added to the message list.

Parameters:
m The message to add to the arena user message list

Referenced by ChallengeManager.createChallenge().
Here is the caller graph for this function:

List<Message> getMessages () [package]
Returns all the arena user messages and clears the message list.
This method is not thread safe.

Pre condition
The message list isn't being modified by another thread

Post condition
Message list is empty.

Returns:
A list of messages.

43

Referenced by ChallengeManager.getUserMessages().
Here is the caller graph for this function:

List<Message> getMessages (Message.TYPE type) [package]
Returns all the messages of a certain type from the message list and also removes them from the
list.
This method is not thread safe.

Pre condition
The message list isn't being modified by another thread

Post condition
All messages of the requested type have been removed from the message list.

Parameters:
type The message type to get

Returns:
A list of message of the requested type

boolean checkMessages (Message.TYPE type) [package]
Checks if the arena user has a message of a certain type.
This method is not thread safe.

Pre condition
The message list isn't being modified by another thread

Post condition
None

Parameters:
type Message type

Returns:
True if any message(s) of that type were found

The documentation for this class was generated from the following file:

• ArenaUser.java

44

AuthorityManager Class Reference
Collaboration diagram for AuthorityManager:

Public Member Functions

• boolean login (String session, String email, String challenge, String passwordHash)
Authenticates the user.

• void logout (String session)
Marks a user as logged out if the user is logged in.

• boolean isLoggedIn (String session)
Checks if a user is logged in based on session ID.

• User getUser (String session)
Returns a user object based on session ID, if the user is logged in.

• String createChallenge ()
Creates a random 24 character challenge.

Static Public Member Functions

• static AuthorityManager getInstance ()
Returns the AuthorityManager instance.

Detailed Description

Description
The authority manager handles authentication of users to the system by demanding that a user is
logged in in order to use the system. This is validated every time a user tries to contact the system.
The class is thread safe.
Per Almquist Ali Mosavian

45

Member Function Documentation

boolean login (String session, String email, String challenge, String
passwordHash)

Authenticates the user.
The method assumes that that the password which is passed to it is has been appended with the
challenge and hashed with SHA-1 and base64 encoded. The method will do the same and check
if the hashed password matches. If so the session will be marked as logged in until the user logs
out or the session expires.

Pre condition
None.

Post condition
If the authentication is successful, the users is marked as logged.

Parameters:
session Session ID
email Users e-mail
challenge The password challenge
passwordHash The pasword + challenge hashes with SHA-1

Returns:
True if the user is logged in or false if not

void logout (String session)
Marks a user as logged out if the user is logged in.

Pre condition
User is logged in.

Post condition
User is marked as logged out.

Parameters:
session Session ID of the user

boolean isLoggedIn (String session)
Checks if a user is logged in based on session ID.

Pre condition
User is logged in.

Post condition
None

46

Parameters:
session Session ID of the user

Returns:
true if the user is logged in, false if not

References AuthorityManager.getUser().
Here is the call graph for this function:

User getUser (String session)
Returns a user object based on session ID, if the user is logged in.

Pre condition
User is logged in.

Post condition
None

Parameters:
session Session ID of the user

Returns:
User object if user is logged in, null otherwise

Referenced by AuthorityManager.isLoggedIn().
Here is the caller graph for this function:

String createChallenge ()
Creates a random 24 character challenge.

Pre condition
None

Post condition
None

Returns:
A 24 char long string containing the challenge.

static AuthorityManager getInstance () [static]
Returns the AuthorityManager instance.
It makes sure that there is only one UserAgent instance, if there is none, one is created.
Implements the singleton design pattern.

47

48

Pre condition(s)
: None

Post condition(s)
: The singleton instance is created if required

Returns:
The singleton instance.

The documentation for this class was generated from the following file:

• AuthorityManager.java

BattleDrawingManager Class Reference
This class retrieves pictures from BattleDrawingServlet and binds them to the correct Competititon
and saves them in the file system.

Public Member Functions

• void postPicture (Long userId, InputStream picture)
This method is invoked by BattleDrawingServlet, the userId is the id of the user that posted the picture.

Detailed Description

This class retrieves pictures from BattleDrawingServlet and binds them to the correct Competititon
and saves them in the file system.

Member Function Documentation

void postPicture (Long userId, InputStream picture)
This method is invoked by BattleDrawingServlet, the userId is the id of the user that posted the
picture.
The method will create a Picture object and bind it to the correct Competition by using
CompetitionAgent.
Then the picture will be saved in the filesystem with the help of ImageIO.

Parameters:
userId
picture

The documentation for this class was generated from the following file:

• BattleDrawingManager.java

49

BattleDrawingsServlet Class Reference
This class will receive requests from the Flash-component when the battle is over.
Inheritance diagram for BattleDrawingsServlet:

Collaboration diagram for BattleDrawingsServlet:

Public Member Functions

• void doPost (HttpServletRequest req, HttpServletResponse resp)
The request parameter will contain binary data representing the picture send by the Flash-component.

Detailed Description

This class will receive requests from the Flash-component when the battle is over.

Member Function Documentation

50

51

void doPost (HttpServletRequest req, HttpServletResponse resp)
The request parameter will contain binary data representing the picture send by the Flash-
component.
The method will obtain an InputStream to the binary data from the request parameter and the
userId of the user that created the picture from the session.
The BattleDrawingManager is then responsible for saving the picture in the file system.

Parameters:
req The Request parameter.
resp The Response parameter.

The documentation for this class was generated from the following file:

• BattleDrawingsServlet.java

ChallengeManager Class Reference
This class handles all challenges and playing arena sign ups.
Collaboration diagram for ChallengeManager:

Public Member Functions

• ChallengeManager (long userTimeout)
Constructor, initializes the ChallengerManager object.

• List< Message > getUserMessages (long userID)
Returns a users messages if he/she is signed in to the playing arena and updates the last update field of the user.

• Map< String, Long > getArenaUserList ()
Returns a sorted map of playing arena users.

• Message signUpToArena (long userID)
Signs up a user to the playing arena.

• Message signOutFromArena (long userID)
Signs out a user from the playing arena, prohibiting them from being challenged and challenging others.

• Message createChallenge (long challengeeID, long challengerID, int challengeeAP, int challengerAP, int
timelimit)
Creates a challenge request.

52

• Message challengeAccept (int userID)
This method is called by a challenge when the user accepts a challenge request.

• Message challengeReject (int userID)
This method is called by challengee to reject a challenge request or by challenger to cancel challenge request.

• boolean isArenaUser (long userID)
Checks if the user is signed in to the playing arena.

• ArenaUser getArenaUser (long id)
Returns an ArenaUserEntry based on user id if the user is signed up in the arena, or null if he/she isn't.

• void run ()
This thread runs every 500 milliseconds and checks which users havent updated for USER_TIMEOUT
milliseconds and remove their challenges, and sign them out.

Detailed Description

This class handles all challenges and playing arena sign ups.
All methods are thread safe. Timed out users are signed out.

Author:
Ali Mosavian

Constructor & Destructor Documentation

ChallengeManager (long userTimeout)
Constructor, initializes the ChallengerManager object.

Pre condition
None

Post condition
None

Parameters:
userTimeout The number of milliseconds before a user should be considered timed out (>1000)

Member Function Documentation

List<Message> getUserMessages (long userID)
Returns a users messages if he/she is signed in to the playing arena and updates the last update
field of the user.
If not null is returned. If there are no messages an empty list is returned.

53

Pre condition
None

Post condition
None

Parameters:
userID ID of user

Returns:
null, empty list or list with messages.

References ChallengeManager.getArenaUser(), ArenaUser.getMessages(), ChallengeManager.isArenaUser(),
and ArenaUser.setLastUpdate().

Here is the call graph for this function:

Map<String, Long> getArenaUserList ()
Returns a sorted map of playing arena users.

Pre condition
None

Post condition
None

Returns:
Sorted map with <user name, user id>

Referenced by PlayingArenaManager.getArenaUserList().
Here is the caller graph for this function:

Message signUpToArena (long userID)
Signs up a user to the playing arena.
Enabling them to be challenged and challenge other users. This method is thread safe.

Pre condition
The user isn't already signed up.

54

Post condition
User is signed up in the arena. User can be challenged.

Parameters:
userID The user (id) to sign up/add to the playing arena

Returns:
MessageOK on success or MessageError on failing.

Message signOutFromArena (long userID)
Signs out a user from the playing arena, prohibiting them from being challenged and challenging
others.
Any active challenges which hasn't been turned into an competition.

Pre condition
User is signed up in the arena.

Post condition
User is removed from the arena

Parameters:
userID

Returns:
MessageOK or MessageError

Referenced by ChallengeManager.run().
Here is the caller graph for this function:

Message createChallenge (long challengeeID, long challengerID, int
challengeeAP, int challengerAP, int timelimit)

Creates a challenge request.
But before that it makes sure that both users are signed in to the playing arena (not the site!) and
that neither of them currently have active challenges. This method is thread safe.

Pre condition
Both users are signed up in the playing arena. Neither have on going challenge request or
competition.

Post condition
Either no change, or the same challenge request have been added to both users and a
MessageChallenge has been added to the challengees message list.

Parameters:
challengeeID The id of the user beeing challenged

55

challengeeAP
challengerID The id of the user who is challenging
challengerAP
timelimit

Returns:
MessageOK on success or MessageError on failing.

References ArenaUser.addMessage(), ChallengeManager.getArenaUser(), ArenaUser.hasChallenge(),
ChallengeManager.isArenaUser(), and ArenaUser.setChallenge().

Here is the call graph for this function:

Message challengeAccept (int userID)
This method is called by a challenge when the user accepts a challenge request.

Pre condition
The user has been challenged. The challenger is still signed in to the playing arena.

Post condition
A competition is created through competion agent. The challenge is cleared for both users,
a message is returned that the challengee should go to the battle arena. A message is left for the
challenger to go to the battle arena.

Parameters:
userID The id of the challengee

Returns:
MessageGoToBattleArena or MessageError

Message challengeReject (int userID)
This method is called by challengee to reject a challenge request or by challenger to
cancel challenge request.
The method is thread safe.

Pre condition
The user has been challenged/has challenged someone.

56

Post condition
The challenge is removed from both users, a corresponding message is left for the other user if
required.

Parameters:
userID The is of the user

Returns:
MessageOK or MessageError on failure

boolean isArenaUser (long userID)
Checks if the user is signed in to the playing arena.

Pre condition
None

Post condition
None

Parameters:
userID The id of the user to check

Returns:
true or false

Referenced by PlayingArenaManager.addMessageChat(), PlayingArenaManager.checkMessagesArena(),
ChallengeManager.createChallenge(), ChallengeManager.getArenaUser(), and
ChallengeManager.getUserMessages().

Here is the caller graph for this function:

ArenaUser getArenaUser (long id)
Returns an ArenaUserEntry based on user id if the user is signed up in the arena, or null if
he/she isn't.
This method is thread safe and is meant to be used within the package only.

57

Pre condition
The user list isn't being modified by another thread.

Post condition
None

Parameters:
id The ID of the user to return

Returns:
Instance of Arena user entry or null

References ChallengeManager.isArenaUser().
Referenced by ChallengeManager.createChallenge(), and ChallengeManager.getUserMessages().

Here is the call graph for this function:

Here is the caller graph for this function:

void run ()
This thread runs every 500 milliseconds and checks which users havent updated for
USER_TIMEOUT milliseconds and remove their challenges, and sign them out.

Post condition
None

Post condition
None
References ChallengeManager.signOutFromArena().

Here is the call graph for this function:

The documentation for this class was generated from the following file:

• ChallengeManager.java

58

ChallengeRequest Class Reference

Public Member Functions

• ChallengeRequest (long challengerID, int challengerAP, long challengeeID, int challengeeAP, int timelimit)
Initializes the object.

Package Types

• enum TYPE

Package Functions

• long getChallengerID ()
Returns challenger user ID.

• long getChallengeeID ()
Returns Challengee ID.

• int getChallengerAP ()
Returns challenger betted AP.

• int getChallengeeAP ()
Returns challengee betted AP.

• int getTimelimit ()
Returns battle timelimit in seconds.

• TYPE whoIsThis (long userID)
Checks if the passes user ID is challenger, challengee or neither.

Detailed Description

Author:
Ali Mosavian

Member Enumeration Documentation

enum TYPE [package]

Enumerator:
CHAT
TEXT
OK

59

FAIL
ERROR
BEEN_CHALLENGED
CHALLENGE_CANCELED
ACCEPT
GO_TO_BATTLE_ARENA
NEITHER
CHALLENGER
CHALLENGEE

Constructor & Destructor Documentation

ChallengeRequest (long challengerID, int challengerAP, long
challengeeID, int challengeeAP, int timelimit)

Initializes the object.

Post condition
None

Post condition
None

Parameters:
challengerID User ID of the challenger
challengerAP Betted AP of challenger
challengeeID User ID of the challengee
challengeeAP Betted AP of challengee
timelimit Battle timelimit in seconds

Member Function Documentation

long getChallengerID () [package]
Returns challenger user ID.

Post condition
None

Post condition
None

Returns:
Challenger ID

long getChallengeeID () [package]
Returns Challengee ID.

60

Post condition
None

Post condition
None

Returns:
Challengee ID.

int getChallengerAP () [package]
Returns challenger betted AP.

Post condition
None

Post condition
None

Returns:
AP

int getChallengeeAP () [package]
Returns challengee betted AP.

Post condition
None

Post condition
None

Returns:
AP

int getTimelimit () [package]
Returns battle timelimit in seconds.

Post condition
None

Post condition
None

Returns:
Battle timelimit

61

62

TYPE whoIsThis (long userID) [package]
Checks if the passes user ID is challenger, challengee or neither.

Post condition
None

Post condition
None

Returns:
TYPE.CHALLENGER, TYPE.CHALLENGE, TYPE.NEITHER

The documentation for this class was generated from the following file:

• ChallengeRequest.java

ChatManager Class Reference
This class is the main playing arena chat component.
Collaboration diagram for ChatManager:

Public Member Functions

• ChatManager (int size)
Initializes the chat manager.

• void addMessage (int userID, String userName, String message)
Adds a message to the chat message list, replacing the last one if the max list size has been reached.

• List< MessageChat > getMessageFrom (long timestamp, int count)
This method will return a maximum of 'count' number of messages from the passed timestamp and forward.

• List< MessageChat > getMessageFromTo (long first, long last)
Will return all messages with are with a given timestamp range.The Method is thread safe.

Detailed Description

This class is the main playing arena chat component.
All chat messages go through this class. All methods are synchronized and are thread safe.

Author:
Ali Mosavian

63

Constructor & Destructor Documentation

ChatManager (int size)
Initializes the chat manager.

Pre condition
0 < size < 1000

Post condition
Object initialized

Parameters:
size The maxmimum number of messages to hold

Member Function Documentation

void addMessage (int userID, String userName, String message)
Adds a message to the chat message list, replacing the last one if the max list size has been
reached.
The method is thread safe.

Pre condition
Valid userID and userName

Post condition
None

Parameters:
userID User ID of message author
userName (nick) Name of the author
message The message text

References ListHandler.add().
Referenced by PlayingArenaManager.addMessageChat().

Here is the call graph for this function:

Here is the caller graph for this function:

List<MessageChat> getMessageFrom (long timestamp, int count)
This method will return a maximum of 'count' number of messages from the passed timestamp
and forward.

64

The method is thread safe.

Pre condition
None

Post condition
None

Parameters:
timestamp The first messages timestamp will be either equal to this parameters or greater if an exact
match isn't found.
count Number of messages to retrieve from the first message. This is the maximum number of
messages that will be returned. But the actual count might be less depending on how many are
available from that point on. Count will be clipped to to the maximum list size.

Returns:
A list that contains from 0 to count ChatMessage objects.

References ListHandler.getFrom().
Referenced by PlayingArenaManager.getMessagesChat().

Here is the call graph for this function:

Here is the caller graph for this function:

List<MessageChat> getMessageFromTo (long first, long last)
Will return all messages with are with a given timestamp range.The Method is thread safe.

Pre condition
Parameter 'first' > 'last'

Post condition
None

Parameters:
first The first messages timestamp will be either equal to this parameters or greater if an exact match
isn't found.
last The last message timestamp, the actual last message returned will be either equal to or less then
this.

Returns:
A list containing a minimum of zero to a maximum as large as the circular list size messages.

References ListHandler.getFromTo().
Referenced by PlayingArenaManager.getMessagesChat().

Here is the call graph for this function:

65

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

• ChatManager.java

66

CircularList< E > Class Reference
A circular list data structure.
Collaboration diagram for CircularList< E >:

Public Member Functions

• CircularList (int size)
The list constructor.

• void push (E item)
This method will insert an item at the begining of the list.

• E getFirst ()
Returns the first item of the list.

• E get (int index)
Returns item 'index'.

Detailed Description

A circular list data structure.
This class is not thread safe.

Author:
Ali Mosavian

67

Member Function Documentation

CircularList (int size)
The list constructor.

Pre condition
None

Post condition
None

Parameters:
size The circular list size

void push (E item)
This method will insert an item at the begining of the list.
If the list has reached the maximum size the last item will replaced and the last item will become
the item before it.

Pre condition
None

Post condition
First item of list is 'item', last item might have been replaced.

Parameters:
item The item to push to the start of the list

E getFirst ()
Returns the first item of the list.

Pre condition
None

Post condition
None

Returns:
Returns first item of list, or null if empty

E get (int index)
Returns item 'index'.

Pre condition
0 < index < list size

68

69

Post condition

Parameters:
index Index of the item to return

Returns:
The 'index' item or null if out of boundry

The documentation for this class was generated from the following file:

• CircularList.java

Combatant Class Reference
The Combatant class represents a user in a specific competition.
Collaboration diagram for Combatant:

70

71

72

Public Member Functions

• int getBet ()
• void setBet (int bet)
• Picture getPicture ()
• void setPicture (Picture picture)
• User getUser ()
• void setUser (User user)
• Long getId ()
• void setId (Long id)

Detailed Description

The Combatant class represents a user in a specific competition.
This is an entity that can be saved in the database using hibernate.
A combatant has a picture, a bet and user.

Member Function Documentation

int getBet ()

void setBet (int bet)

Picture getPicture ()

void setPicture (Picture picture)

User getUser ()

void setUser (User user)

Long getId ()

void setId (Long id)

The documentation for this class was generated from the following file:

• Combatant.java

Competition Class Reference
A database entity that represents a competition.
Collaboration diagram for Competition:

73

74

Public Member Functions

• boolean userHasVoted (Long userId)
Returns true if and only if the user with the specified id has voted for this competition.

• void addVotingUser (User user)
Adds a user to the list of voting users.

• Combatant getCombatant1 ()
• void setCombatant1 (Combatant combatant1)
• Combatant getCombatant2 ()
• void setCombatant2 (Combatant combatant2)
• Date getStartDate ()
• void setStartDate (Date startDate)
• Topic getTopic ()
• void setTopic (Topic topic)
• Combatant getWinner ()
• void setWinner (Combatant winner)
• int getVotes ()
• void setVotes (int votes)
• String getState ()
• void setState (String state)
• Long getId ()
• void setId (Long id)
• Set< Long > getVotingUserIds ()
• void setVotingUserIds (Set< Long > votingUserIds)

Detailed Description

A database entity that represents a competition.
This class will be saved in the database using hibernate.

Member Function Documentation

boolean userHasVoted (Long userId)
Returns true if and only if the user with the specified id has voted for this competition.

Parameters:
userId The id of the user.

Returns:
True if the user has voted in the competition.

75

void addVotingUser (User user)
Adds a user to the list of voting users.

Parameters:
user The user to add.

Combatant getCombatant1 ()

void setCombatant1 (Combatant combatant1)

Combatant getCombatant2 ()

void setCombatant2 (Combatant combatant2)

Date getStartDate ()

void setStartDate (Date startDate)

Topic getTopic ()

void setTopic (Topic topic)

Combatant getWinner ()

void setWinner (Combatant winner)

int getVotes ()

void setVotes (int votes)

String getState ()

void setState (String state)

Long getId ()

void setId (Long id)

Set<Long> getVotingUserIds ()

void setVotingUserIds (Set< Long > votingUserIds)

The documentation for this class was generated from the following file:

• Competition.java

76

77

CompetitionAgent Class Reference
An agent with the responsibility to retreive Competitions from the database.
Collaboration diagram for CompetitionAgent:

Public Member Functions

• Competition findCompetitionById (long id)
Finds the competition object with the given id.

• Picture findPictureById (long id)
Finds the picture with the given id.

• List< Competition > findfinishedCompetitions (Date date, String Combatant1, String Combatant2, String
winner, String looser, String topic, int votes)
Returns all finished competitions that matches the given parameters.

• List< Competition > findVotingCompetitions (Date date, String Combatant1, String Combatant2, String
topic, boolean goldenVote)
Returns all competitions in the voting phase that matches the given parameters.

Static Public Member Functions

• static CompetitionAgent getInstance ()
This method returns the singleton instance of the class.

Detailed Description

An agent with the responsibility to retreive Competitions from the database.
The class is thread safe.

Author:
Marcus Bergenlid Ali Mosavian

Member Function Documentation

78

Competition findCompetitionById (long id)
Finds the competition object with the given id.

Pre condition>
None

Post condition>
None

Parameters:
id The unique id of the competition to retreive

Returns:
The competition with the specified id. null, if there are no competition with this id.

Picture findPictureById (long id)
Finds the picture with the given id.

Pre condition>
None

Post condition>
None

Parameters:
id The unique id of the picture to retreive

Returns:
The picture with the specified id. null, if there are no pictures with this id.

List< Competition > findfinishedCompetitions (Date date, String
Combatant1, String Combatant2, String winner, String looser, String
topic, int votes)

Returns all finished competitions that matches the given parameters.
If one of the parameters is null the method will ignore that in the database query. The two
combatant parameters can match one of the competitions combatant.

Pre condition>
None

Post condition>
None

Parameters:
date The startDate of the competitions

79

80

Combatant1 The name of the first combatant.
Combatant2 The name of the second combatant.
winner The name of the winner.
looser The name of the looser.
topic The topic

Returns:
A list of competitions matching the criteria above.

List< Competition > findVotingCompetitions (Date date, String
Combatant1, String Combatant2, String topic, boolean goldenVote)

Returns all competitions in the voting phase that matches the given parameters.
If one of the parameters is null the method will ignore that in the database query. The two
combatant parameters can match one of the competitions combatant.

Pre condition>
None

Post condition>
None

Parameters:
date The startDate of the competitions
Combatant1 The name of the first combatant.
Combatant2 The name of the second combatant.
topic The topic
goldenVote find golden vote competitions only.

Returns:
A list of competitions matching the criteria above.

static CompetitionAgent getInstance () [static]
This method returns the singleton instance of the class.

Pre condition>
Either singleton instance has been created or not

Post condition>
Singleton instance is created, otherwise nothing.

Returns:
The instance of competitonAgent.

The documentation for this class was generated from the following file:

• CompetitionAgent.java

GeneralEnum Class Reference
A class for common enums.

Public Types

• enum COMPARATOR

Detailed Description

A class for common enums.

Author:
Ali Mosavian

Member Enumeration Documentation

enum COMPARATOR

Enumerator:
LESS
GREATER
EQUAL
LESS_OR_EQUAL
GREATER_OR_EQUAL

The documentation for this class was generated from the following file:

• GeneralEnum.java

81

GlobalGalleryManager Class Reference
This class is responsible for processing every request that can be made on the global gallery page.
Collaboration diagram for GlobalGalleryManager:

Public Member Functions

• List< Competition > getCompetitions ()
This method is called by GlobalGalleryJSP.

• void setCombatant1 (String combatant)
Sets the first battle partipicant property.

• void setCombatant2 (String combatant)
Sets the second battle partipicant property.

• void setDate (Date date)
Sets the battle date property.

• void setLooser (String looser)
Sets the looser property.

• void setTopic (String topic)
Sets the topic property.

• void setWinner (String winner)

82

Sets the winner property.
• void setVotes (int votes)

Sets the votes property.

Detailed Description

This class is responsible for processing every request that can be made on the global gallery page.

Author:
Marcus Bergenlid Ali Mosavian

Member Function Documentation

List<Competition> getCompetitions ()
This method is called by GlobalGalleryJSP.
The method will then use CompetitionAgent to find all Competitions that matches the fields that
are set. The result will be in the field competitions, a list of competitions that the JSP-page can
get later.

Pre condition>
None

Post condition>
None

Returns:
Either list with competition or empty list

void setCombatant1 (String combatant)
Sets the first battle partipicant property.

Pre condition>
None

Post condition>
The first battle participant is set.

Parameters:
combatant Name of the first participant

void setCombatant2 (String combatant)
Sets the second battle partipicant property.

83

Pre condition>
None

Post condition>
The second battle participant is set

Parameters:
combatant Name of the second participant

void setDate (Date date)
Sets the battle date property.

Pre condition>
None

Post condition>
The battle date is set

Parameters:
date A date

void setLooser (String looser)
Sets the looser property.

Pre condition>
None

Post condition>
The property is set.

Parameters:
looser Name of the looser

void setTopic (String topic)
Sets the topic property.

Pre condition>
None

Post condition>
The property is set.

Parameters:
topic The topic property to use

84

85

void setWinner (String winner)
Sets the winner property.

Pre condition>
None

Post condition>
The property is set.

Parameters:
winner The name of the winner

void setVotes (int votes)
Sets the votes property.

Pre condition>
None

Post condition>
The property is set.

Parameters:
votes Number of votes

The documentation for this class was generated from the following file:

• GlobalGalleryManager.java

GuestBookAgent Class Reference
Collaboration diagram for GuestBookAgent:

Public Member Functions

• GuestBookMessage getMessage (long id)
Find and return the guestbook messages with the id id .

• List< GuestBookMessage > getMessages (long userID, int count)
Find and return a list of guestbook messages starting from the latest time wise and the specified amount
(maximum) of post backward time wise.

• List< GuestBookMessage > getMessages (long userID, long localPostID, int count)
Find and return a list of guestbook messages with the first one being less then or equal to the specified local post id.

• void addMessage (GuestBookMessage m)
Add a guestbook message to the database.

Static Public Member Functions

• static GuestBookAgent getInstance ()

Member Function Documentation

GuestBookMessage getMessage (long id)
Find and return the guestbook messages with the id id .

Pre condition(s)
None

Post condition(s)
If there exists a message with the specified id, it is returned.

Parameters:
id The guesbook message id.

86

Returns:
The guestbook message.

List<GuestBookMessage> getMessages (long userID, int count)
Find and return a list of guestbook messages starting from the latest time wise and the specified
amount (maximum) of post backward time wise.

Pre condition(s)

None Post condition(s)
None

Parameters:
userID The user id of the guestbook owner
count The maximum number of posts to return

Returns:
A list of Guestbooks messages sorted descending after 'localID'. The first message will have the
largest localID, meaning that it's the latest time wise. All the rest will have values less then it. If there
are non null will be returned.

List<GuestBookMessage> getMessages (long userID, long
localPostID, int count)

Find and return a list of guestbook messages with the first one being less then or equal to the
specified local post id.
And going backward (time wise) with a maximum of 'count' posts.

Pre condition(s)

None Post condition(s)
None

Parameters:
userID The user id of the guestbook owner
localPostID The local ID of the first (last time wise) guestbook post.
count The maximum number of posts to return

Returns:
A list of Guestbooks messages sorted descending after local post ID. The first returned message will
be exactly or less then 'localPostID' and the rest will be all be less.

void addMessage (GuestBookMessage m)
Add a guestbook message to the database.

87

88

Pre condition(s)

None Post condition(s)
None

Parameters:
m The guest book message to add to the guest book

Returns:
Nothing

static GuestBookAgent getInstance () [static]

Description

Returns the GuestBookAgent instance. It makes sure that there is only one UserAgent instance,
if there is none, one is created. Implements the singleton design pattern.

Pre condition(s)
None

Post condition(s)
The singleton instance of the GustBookAgent is returned.

Returns:
The GuestBookAgent instance.

The documentation for this class was generated from the following file:

• GuestBookAgent.java

GuestBookManager Class Reference
This class handles users guestbooks.

Public Member Functions

• Message setNewMessage ()
The method creates a new post in a users guestbook Before use, set the properties senderID recieverID
messageText.

• List< GuestBookMessage > getMessages ()
The method retreives all post in the requested users guestbook, starting from the specified timestamp and max
'messageCount' messages forward.

• void setGuestBookUserID (int userID)
• void setSenderID (int userID)
• void setReceiverID (int userID)
• void setMessageText (String text)
• void setMessageCount (int count)
• void setMessageFirst (long timestamp)

Detailed Description

This class handles users guestbooks.
Both posting and retrieving user messages. It's a java bean, so its properties has to be set before
attempting to do anything.

Author:
Per Almquist Ali Mosavian

Member Function Documentation

Message setNewMessage ()
The method creates a new post in a users guestbook Before use, set the properties senderID
recieverID messageText.

Pre condition

Properties (senderID, recieverID, messageText) are set Post condition
A new post in the the guestbook of user 'senderID' from user 'receiverID' with the text
'messageText'

Returns:
MessageOK on success MessageError on failing

89

90

List<GuestBookMessage> getMessages ()
The method retreives all post in the requested users guestbook, starting from the specified
timestamp and max 'messageCount' messages forward.

Pre condition

Properties (guestbookUserID, messageFirst, messageCount) are set
Post condition

None

Returns:
List of GuestBookMessages

void setGuestBookUserID (int userID)

void setSenderID (int userID)

void setReceiverID (int userID)

void setMessageText (String text)

void setMessageCount (int count)

void setMessageFirst (long timestamp)

The documentation for this class was generated from the following file:

• GuestBookManager.java

GuestBookMessage Class Reference
A database entity that represents a guestbook post.
Collaboration diagram for GuestBookMessage:

91

92

93

Public Member Functions

• Date getDate ()
• void setDate (Date date)
• User getFromUser ()
• void setFromUser (User fromUser)
• String getText ()
• void setText (String text)
• User getToUser ()
• void setToUser (User toUser)

Detailed Description

A database entity that represents a guestbook post.
This class will be saved in the database using hibernate.

Member Function Documentation

Date getDate ()

void setDate (Date date)

User getFromUser ()

void setFromUser (User fromUser)

String getText ()

void setText (String text)

User getToUser ()

void setToUser (User toUser)

The documentation for this class was generated from the following file:

• GuestBookMessage.java

ImageIO Class Reference
This class holds a stream to an image and is used for sending images to the client.
Collaboration diagram for ImageIO:

Public Member Functions

• InputStream getStream ()
• void setStream (InputStream stream)
• String getType ()
• void setType (String type)

Detailed Description

This class holds a stream to an image and is used for sending images to the client.

Member Function Documentation

94

95

InputStream getStream ()

void setStream (InputStream stream)

String getType ()

void setType (String type)

The documentation for this class was generated from the following file:

• ImageIO.java

ImageManager Class Reference

Public Member Functions

• ImageIO loadImage (Long pictureId)
Finds the picture with the specified id from the database using CompetitionAgent.

• void saveImage (ImageIO image, String path)
Saves the image given in the ImageIO at the specified path.

Member Function Documentation

ImageIO loadImage (Long pictureId)
Finds the picture with the specified id from the database using CompetitionAgent.
It then finds out the path to the actual image data and creates an ImageIO object containing an
InputStream to the image data and a type description of the image.

Parameters:
pictureId The id of the picture.

Returns:
An object containing a stream to the image data.

void saveImage (ImageIO image, String path)
Saves the image given in the ImageIO at the specified path.

Parameters:
image The image object to be saved.
path Where the image shall be saved.

The documentation for this class was generated from the following file:

• ImageManager.java

96

ImageServlet Class Reference
This is the servlet class responsible for sending the binary image data to the client.
Inheritance diagram for ImageServlet:

Collaboration diagram for ImageServlet:

Public Member Functions

• void doGet (HttpServletRequest request, HttpServletResponse response)
The request parameter will contain the id of the picture that shall be tranfered to the client.

Detailed Description

This is the servlet class responsible for sending the binary image data to the client.
Every time the client need to download a picture this is the class it shall use.

97

98

Member Function Documentation

void doGet (HttpServletRequest request, HttpServletResponse
response)

The request parameter will contain the id of the picture that shall be tranfered to the client.
The method wil simlpy use ImageManager to retrieve a Stream to the binary data and then send
it to the client by using the response parameter.

Parameters:
request The request
response The response

The documentation for this class was generated from the following file:

• ImageServlet.java

ListHandler Class Reference
This class stores chat messages in a circular queue and provides messages to retrieve them based on
timestamp.

Public Member Functions

• ListHandler (int size)
Initializes the list.

• void add (MessageChat m)
Adds a message to the circular chat message list, replacing the oldest message.

• List< MessageChat > getFrom (long timestamp, int count)
The method retrieves all messages from timestamp t and c messages (if possible) forward.

• List< MessageChat > getFromTo (long first, long last)
The method retrieves all messages from timestamp t to timestamp l.

Detailed Description

This class stores chat messages in a circular queue and provides messages to retrieve them based on
timestamp.
This class is not thread safe.

Author:
Ali Mosavian

Constructor & Destructor Documentation

ListHandler (int size)
Initializes the list.

Pre condition
0 < size < 1000

Post condition
None

Parameters:
size The maximum list size

Member Function Documentation

99

void add (MessageChat m)
Adds a message to the circular chat message list, replacing the oldest message.

Pre condition
None

Post condition
First item of list is 'm', last item might have been replaced.

Parameters:
m The message to add

Referenced by ChatManager.addMessage().
Here is the caller graph for this function:

List<MessageChat> getFrom (long timestamp, int count)
The method retrieves all messages from timestamp t and c messages (if possible) forward.

Pre condition
0 < count < list size

Post condition
None

Parameters:
timestamp Timestamp of the first message
count The number of messages to retrieve

Returns:
A list of ChatMessage, if none were found that fullfilled the requirements, an empty list is returned.

Referenced by ChatManager.getMessageFrom().
Here is the caller graph for this function:

List<MessageChat> getFromTo (long first, long last)
The method retrieves all messages from timestamp t to timestamp l.

Pre condition
None

Post condition
None

Parameters:
first Timestamp of the first message

100

last Timestamp of the last message

Returns:
A list of ChatMessage, if none were found that fullfilled the requirements, an empty list is returned.

Referenced by ChatManager.getMessageFromTo().
Here is the caller graph for this function:

The documentation for this class was generated from the following file:

• ListHandler.java

101

Message Class Reference
The base class for all types of messages.
Inheritance diagram for Message:

Public Types

• enum TYPE

Public Member Functions

• String getMessage ()
The methods simply returns the text message.

• TYPE getType ()
Returns the message type.

Protected Member Functions

• Message (String text, TYPE t)
Constructor.

Detailed Description

The base class for all types of messages.
The class is thread safe

Author:
Ali Mosavian

102

Member Enumeration Documentation

enum TYPE

Enumerator:
CHAT
TEXT
OK
FAIL
ERROR
BEEN_CHALLENGED
CHALLENGE_CANCELED
ACCEPT
GO_TO_BATTLE_ARENA
NEITHER
CHALLENGER
CHALLENGEE

Constructor & Destructor Documentation

Message (String text, TYPE t) [protected]
Constructor.

Pre condition
None

Post condition
Object initialized

Parameters:
text The message text
t Message type

Member Function Documentation

String getMessage ()
The methods simply returns the text message.

Pre condition
None

Post condition
None

103

104

Returns:
The text message as String

TYPE getType ()
Returns the message type.

Pre condition
None

Post condition
None

Returns:
Message type

The documentation for this class was generated from the following file:

• Message.java

MessageChallenge Class Reference
The class represents a challenge request message which is sent to the challengee in the event of being
challenged.
Inheritance diagram for MessageChallenge:

Collaboration diagram for MessageChallenge:

105

Public Member Functions

• MessageChallenge (int ap, int timelimit, long challengerID, String challengerName)
Constructor.

• int getAP ()
Returns the bet AP in percent.

• int getTimeLimit ()
Returns the battle timelimit in seconds.

• long getChallengerID ()
Returns the challenger user ID.

• String getChallengerName ()
Returns the challenger user name.

Detailed Description

The class represents a challenge request message which is sent to the challengee in the event of being
challenged.

Author:
Ali Mosavian

106

Constructor & Destructor Documentation

MessageChallenge (int ap, int timelimit, long challengerID, String
challengerName)

Constructor.

Pre condition
None

Post condition
Object initialized

Parameters:
ap The betted AP in percent
timelimit The battle timelimit in seconds
challengerID The Challenger user ID
challengerName The Challenger user name

Member Function Documentation

int getAP ()
Returns the bet AP in percent.

Pre condition
None

Post condition
None

Returns:
AP

int getTimeLimit ()
Returns the battle timelimit in seconds.

Pre condition
None

Post condition
None

Returns:

107

108

Timelimit

long getChallengerID ()
Returns the challenger user ID.

Pre condition
None

Post condition
None

Returns:
User ID

String getChallengerName ()
Returns the challenger user name.

Pre condition
None

Post condition
None

Returns:
User name

The documentation for this class was generated from the following file:

• MessageChallenge.java

MessageChat Class Reference
This class represents a chat message.
Inheritance diagram for MessageChat:

Collaboration diagram for MessageChat:

109

Public Member Functions

• MessageChat (int userID, String userName, String message)
Constructor, This method initializes the object, the timestamp property will be filled in automatically based on the
number of seconds passed since midnight 1970 UTC.

• int getUserID ()
Returns the user id of the message author.

• String getUserName ()
Returns the (nick) name of the message author.

• long getTimestamp ()
Returns the message timestamp.

• long compareTimeStamp (long t)
This method will compare the timestamp t with the chat message timestamp.

Detailed Description

This class represents a chat message.
It holds the author user id, (nick) name and timestamp. The class is thread safe

Author:
Ali Mosavian

Constructor & Destructor Documentation

MessageChat (int userID, String userName, String message)
Constructor, This method initializes the object, the timestamp property will be filled in
automatically based on the number of seconds passed since midnight 1970 UTC.

Pre condition
None

Post condition
Object initialized

Parameters:
userID The user ID of the message author
userName The (nick) name of the message author
message The actual message

110

Member Function Documentation

int getUserID ()
Returns the user id of the message author.

Pre condition
None

Post condition
None

Returns:
User id (integer)

String getUserName ()
Returns the (nick) name of the message author.
pre cond: None
post cond: None

Returns:
Name (String)

long getTimestamp ()
Returns the message timestamp.

Pre condition
None

Post condition
None

Returns:
Timestamp

long compareTimeStamp (long t)
This method will compare the timestamp t with the chat message timestamp.

Pre condition
None

Post condition
None

Parameters:
t The timestamp to compare the message

111

112

Returns:
0, if t == message.timestamp
-, if t < message.timestamp
+, if t > message.timestamp

The documentation for this class was generated from the following file:

• MessageChat.java

MessageError Class Reference
This class represents an error message which is sent to the user.
Inheritance diagram for MessageError:

Collaboration diagram for MessageError:

Public Member Functions

• MessageError (String title, String message)
Constructor.

• String getTitle ()
Returns the error message title.

113

114

Detailed Description

This class represents an error message which is sent to the user.

Author:
Ali Mosavian

Constructor & Destructor Documentation

MessageError (String title, String message)
Constructor.

Pre condition
None

Post condition
Object initilized

Parameters:
title
message

Member Function Documentation

String getTitle ()
Returns the error message title.

Pre condition
None

Post condition
None

Returns:
String containing error title

The documentation for this class was generated from the following file:

• MessageError.java

MessageGoToBattleArena Class Reference
This class represent the message which tells the client to go the battle arena becuase they have an
active battle.
Inheritance diagram for MessageGoToBattleArena:

Collaboration diagram for MessageGoToBattleArena:

Public Member Functions

• MessageGoToBattleArena ()
Constructor.

115

116

Detailed Description

This class represent the message which tells the client to go the battle arena becuase they have an
active battle.

Author:
Ali Mosavian

Constructor & Destructor Documentation

MessageGoToBattleArena ()
Constructor.

Pre condition
None

Post condition
Object initialized

The documentation for this class was generated from the following file:

• MessageGoToBattleArena.java

MessageOK Class Reference
This class represent a success confirmation which the client will recieve upon requesting an operation
which succeds.
Inheritance diagram for MessageOK:

Collaboration diagram for MessageOK:

Public Member Functions

• MessageOK ()
Constructor.

• MessageOK (String message)

117

118

Constructor, with a custom message.

Detailed Description

This class represent a success confirmation which the client will recieve upon requesting an operation
which succeds.

Author:
Ali Mosavian

Constructor & Destructor Documentation

MessageOK ()
Constructor.

Pre condition
None

Post condition
None

MessageOK (String message)
Constructor, with a custom message.

Pre condition
None

Post condition
None

Parameters:
message The message to send to user.

The documentation for this class was generated from the following file:

• MessageOK.java

MessageServlet Class Reference
All messages pass through this servlet.
Inheritance diagram for MessageServlet:

Collaboration diagram for MessageServlet:

Public Member Functions

• String getServletInfo ()
Returns a short description of the servlet.

Protected Member Functions

119

• void processRequest (HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException
Processes requests for both HTTP GET and POST methods.

• void doGet (HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException
Handles the HTTP GET method.

• void doPost (HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException
Handles the HTTP POST method.

Detailed Description

All messages pass through this servlet.

Author:
Ali Mosavian

Member Function Documentation

void processRequest (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException
[protected]

Processes requests for both HTTP GET and POST methods.

Parameters:
request servlet request
response servlet response

Referenced by MessageServlet.doGet(), and MessageServlet.doPost().
Here is the caller graph for this function:

void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException [protected]

Handles the HTTP GET method.

Parameters:
request servlet request

120

response servlet response
References MessageServlet.processRequest().

Here is the call graph for this function:

void doPost (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException [protected]

Handles the HTTP POST method.

Parameters:
request servlet request
response servlet response

References MessageServlet.processRequest().
Here is the call graph for this function:

String getServletInfo ()
Returns a short description of the servlet.

The documentation for this class was generated from the following file:

• MessageServlet.java

121

NewsAgent Class Reference
The news agent is responsible for the retrieving of news messages and storing of new news messages
in the database.
Collaboration diagram for NewsAgent:

Public Member Functions

• NewsMessage getNews (long id)
Finds and retrieves a news message from the database.

• List< NewsMessage > getNews (int count)
Finds and retrieves 'count' news messages from the database where the first will be the lastest time wise and the rest
will be in a time descending order.

• List< NewsMessage > getNews (Date first, Date last)
Finds and retrieves a list of all messages created in a specific time period, and returned in a time descending order.

• void add (NewsMessage m)
Add a new news message to the database.

Static Public Member Functions

• static NewsAgent getInstance ()
Returns the NewsAgent instance.

Detailed Description

The news agent is responsible for the retrieving of news messages and storing of new news messages
in the database.
The class is thread safe.

Author:
Per Almquist Peter Andersson Ali Mosavian

122

Member Function Documentation

NewsMessage getNews (long id)
Finds and retrieves a news message from the database.
based on id.

Pre condition(s)
None

Post condition(s)
None

Parameters:
id The id of the news message to get.

Returns:
A news post with specified id or null if it doesn't exist.

List<NewsMessage> getNews (int count)
Finds and retrieves 'count' news messages from the database where the first will be the lastest
time wise and the rest will be in a time descending order.

Pre condition(s)
None

Post condition(s)
None

Parameters:
count The maximum number of messages/post the retrieve.

Returns:
A list of news posts in a time descending order or null if there were none.

List<NewsMessage> getNews (Date first, Date last)
Finds and retrieves a list of all messages created in a specific time period, and returned in a time
descending order.

Pre condition(s)
None

Post condition(s)
None

Parameters:

123

124

first The date of the first news post.
last The date of the last news post.

Returns:
List of news messages in time descending order or null of none were found.

void add (NewsMessage m)
Add a new news message to the database.

Pre condition(s)
None

Post condition(s)
News message has been added to the database with time stamp set to the current time.

Parameters:
m The message to be added.

static NewsAgent getInstance () [static]
Returns the NewsAgent instance.
It makes sure that there is only one UserAgent instance, if there is none, one is created.
Implements the singleton design pattern.

Pre condition(s)
None

Post condition(s)
The singleton instance of the GustBookAgent is returned.

Returns:
The NewsAgent instance.

The documentation for this class was generated from the following file:

• NewsAgent.java

NewsMessage Class Reference
A database entity that represents a news message.
Collaboration diagram for NewsMessage:

125

126

Public Member Functions

• Date getDate ()
Returns the timestamp when the message was created.

• void setDate (Date date)
Set the time when the message was created.

• User getFromAdmin ()
Returns the admin that created the message.

• void setFromAdmin (User fromAdmin)
Set the admin that created the message.

• Long getId ()
Returns the id of the message.

• void setId (Long id)
Set the id of the message.

• String getText ()
Returns the contents of the news message.

• void setText (String text)
Set the contents of the news message.

Detailed Description

A database entity that represents a news message.
This class will be saved in the database using hibernate.
Javadoc by Pelle and Peter.

Author:

Member Function Documentation

Date getDate ()
Returns the timestamp when the message was created.

void setDate (Date date)
Set the time when the message was created.

Date:
The time when the message was created.

127

128

User getFromAdmin ()
Returns the admin that created the message.

void setFromAdmin (User fromAdmin)
Set the admin that created the message.
The admin that created the message.

Long getId ()
Returns the id of the message.

void setId (Long id)
Set the id of the message.
The id of the message

String getText ()
Returns the contents of the news message.

void setText (String text)
Set the contents of the news message.
The contents of the message.

The documentation for this class was generated from the following file:

• NewsMessage.java

PersonalGalleryManager Class Reference

Public Member Functions

• List< Picture > getPictures ()
• void setUserId (int userId)
• void setMessageCount (int c)
• void setfirstTimestamp (long first)

Member Function Documentation

List<Picture> getPictures ()

void setUserId (int userId)

void setMessageCount (int c)

void setfirstTimestamp (long first)

The documentation for this class was generated from the following file:

• profile/PersonalGalleryManager.java

129

PersonalGalleryManager Class Reference

Public Member Functions

• void findPersonalGallery ()
This method uses CompetitionAgent to find all Competitions that the user with id 'userId' has participated in.

• List< Competition > getCompetitions ()
• void setCompetitions (List< Competition > competitions)
• Long getUserId ()
• void setUserId (Long userId)

Member Function Documentation

void findPersonalGallery ()
This method uses CompetitionAgent to find all Competitions that the user with id 'userId' has
participated in.
The result will be put in the field 'competitions' and it will be sorted by date.

List<Competition> getCompetitions ()

void setCompetitions (List< Competition > competitions)

Long getUserId ()

void setUserId (Long userId)

The documentation for this class was generated from the following file:

• personalgallery/PersonalGalleryManager.java

130

Picture Class Reference
Represents a picture that is stored in the database.
Collaboration diagram for Picture:

131

132

Public Member Functions

• String getPath ()
• void setPath (String path)
• int getVotes ()
• void setVotes (int votes)
• Long getId ()
• void setId (Long id)
• Competition getCompetition ()
• void setCompetition (Competition competition)
• long getTimestamp ()
• void setTimestamp (long t)

Detailed Description

Represents a picture that is stored in the database.

Member Function Documentation

String getPath ()

void setPath (String path)

int getVotes ()

void setVotes (int votes)

Long getId ()

void setId (Long id)

Competition getCompetition ()

void setCompetition (Competition competition)

long getTimestamp ()

void setTimestamp (long t)

The documentation for this class was generated from the following file:

• Picture.java

133

134

PlayingArenaManager Class Reference
This class acts as a controller for the playing arena.
Collaboration diagram for PlayingArenaManager:

135

136

Public Member Functions

• List< Message > checkMessagesArena (int userID)
Checks the users messages and updates the user so he/she doesn't time out.

• Map< String, Long > getArenaUserList ()
Gets the signed in playing arena users as a sorted Map.

• Message challengeUser (int challengerID, int challengeeID, int ap, int timelimit)
A challenge request.

• Message challengeAccept (int userID)
Is called by challenge to accept a challenge request.

• Message challengeReject (int userID)
Is called by a challenger/challenge to either reject or cancel are challenge request.

• Message addMessageChat (int userID, String userName, String message)
Adds a message to chat.

• List< MessageChat > getMessagesChat (long first, int count)
Gets chat messages from a UTC timestamp and forward with maximum of 'count' messages.

• List< MessageChat > getMessagesChat (long first, long last)
Get chat messages from a UTC timestamp to another UTC timestamp.

Static Public Member Functions

• static PlayingArenaManager getInstance ()
Will return a singleton instance of the class.

Detailed Description

This class acts as a controller for the playing arena.
It will handle all challenges and chat messages and makes sure no user does something they're not
allowed. The class is thread safe.

Author:
Ali Mosavian

Member Function Documentation

List<Message> checkMessagesArena (int userID)
Checks the users messages and updates the user so he/she doesn't time out.

Pre condition
User is signed up in the arena.

137

Post condition
None

Parameters:
userID The id of the user

Returns:
A list of messages, or null if user isn't signed up

References ChallengeManager.isArenaUser().
Here is the call graph for this function:

Map<String, Long> getArenaUserList ()
Gets the signed in playing arena users as a sorted Map.

Pre condition
None

Post condition
None

Returns:
A sorted map with the arena users such as <User name, User ID>

References ChallengeManager.getArenaUserList().
Here is the call graph for this function:

Message challengeUser (int challengerID, int challengeeID, int ap,
int timelimit)

A challenge request.

Pre condition

• Challenger and challenge are signed up
• Neither have active challenge requests

Post condition

• Challenge request is created
• A message is left for the challengee

Parameters:
challengerID The user id of the challenger
challengeeID The user id of the challengee

138

ap AP in percent
timelimit The battle timelimit

Returns:
K or MessageError

Message

MessageO

 challengeAccept (int userID)
Is called by challenge to accept a challenge request.

Pre condition

Post condition

Parameters:
er id of the accepting user

Returns:
oToBattleArena or MessageError

Message

None

None

userID The us

MessageG

 challengeReject (int userID)
or cancel are challengeIs called by a challenger/challenge to either reject request.

Pre condition
ged/been challenged

Post condition

Parameters:
er id

Returns:
K or MessageError

Message

User has challen

None

userID The us

MessageO

 addMessageChat (int userID, String userName, String

ssage
message)

Adds a me to chat.
in to the playing arena for this.

Pre condition
p in the arena

Post condition
Message is among chat

The user needs to be signed

User is signed u

 messages

139

Parameters:
userID The user id
userName The user name
message The actual text message

Re

References ChatManager.addMessage(), and ChallengeManager.isArenaUser().
Here is the call graph for this function:

turns:
MessageOK or MessageError

List<MessageChat> getMessagesChat (long first, int count)
Gets chat messages from a UTC timestamp and forward with maximum of 'count' messages.

 Timestamp of the first message

Pre condition
None

Post condition
None

Parameters:
first

 Maximum number of messages to fetch count

Returns:
A list of chat messages

References ChatManager.getMessageFrom().
Here is the call graph for this function:

List<MessageChat> getMessagesChat (long first, long last)
Get chat messages from a UTC timestamp to another UTC timestamp.

 UTC timestamp of the first message

Pre condition
None

Post condition
None

Parameters:
first
last UTC timestamp of the last message

Returns:

140

141

References ChatManager.getMessageFromTo().
Here is the call graph for this function:

static PlayingArenaManager getInstance () [static]
Will return a singleton instance of the class.

Pre

e is created if it hadn't previously been.

Method is thread safe

 condition
None

Post condition
Instanc

Returns:
Instance of the class

The ion for this class was generated from the following file:
• java
documentat

PlayingArenaManager.

ProfileManager Class Reference

Public Member Functions

• void findUserInformation ()
• void findPersonalGallery ()

Fetch the user's personal gallery.
• void findGuestBook ()

Fetch the user's guestbook.

Detailed Description

Description
Find the neccessary data needed in order to generate a user profile page. This data concerns a specific
user's general information, guestbook and personal gallery.

Member Function Documentation

void findUserInformation ()

Description
Fetch the user's general information. That is the user's
• username
• profile message
• avatar picture
• total AP
• reserved AP
• number of participated competitions

Pre

None. Post
None.

void findPersonalGallery ()
Fetch the user's personal gallery.
Uses PersonalGalleryManager

void findGuestBook ()
Fetch the user's guestbook.
Uses GuestBookManager

142

143

The documentation for this class was generated from the following file:

• ProfileManager.java

ProfilePictureManager Class Reference

Public Member Functions

• void postPicture (Long userId, InputStream picture)

Detailed Description

Description
This class retrieves pictures from ProfilePictureServlet and binds them to the
correct User's UserProfile avatar and saves them in the file system.

Member Function Documentation

void postPicture (Long userId, InputStream picture)

Description
This method is invoked by ProfilePictureServlet, the userId is the id of the user's. The method
will create a Picture and bind it to the correct UserProfile by using UserAgent.
Then the picture will be saved in the filesystem with the help of ImageIO.

Pre

The user has uploaded a picture to be used as his/her avatar picture.
Post

The avatar picture is added to the user's profile.

Parameters:
userId The user's id in the system.
picture The avatar picture.

The documentation for this class was generated from the following file:

• ProfilePictureManager.java

144

ProfilePictureServlet Class Reference
This class enables the user to upload his/her avatar picture.

Public Member Functions

• void doPost (HTTPServletRequest req, HTTPServletResponse resp)
The request parameter will contain binary data representing the picture sent by the user's web browser.

Detailed Description

This class enables the user to upload his/her avatar picture.

Member Function Documentation

void doPost (HTTPServletRequest req, HTTPServletResponse resp)
The request parameter will contain binary data representing the picture sent by the user's web
browser.
The method will obtain an InputStream to the binary data from the request parameter and the
user's userId from the session.
The ProfilePictureManager is then responsible for saving the picture in the file system.

Parameters:
req The Request parameter.
resp The Response parameter.

The documentation for this class was generated from the following file:

• ProfilePictureServlet.java

145

RegisterManager Class Reference

Public Member Functions

• void addUser ()
• String getEMail ()

Return the e-mail address.
• void setEMail (String mail)

Set the e-mail address.
• String getPassword ()

Return the password.
• void setPassword (String password)

Set the password.
• int getTotalAP ()

Return the total AP.
• void setTotalAP (int totalAP)

Set the total AP.
• String getUsername ()

Return the username.
• void setUsername (String username)

Set the username.

Detailed Description

Description
A register manager handles the registration process of new users to the system.

Member Function Documentation

void addUser ()

Description
Create and add a new user to a the system. Uses the JavaBean convention to store and retrieve
information about the user. A new user is created by instantiating a RegisterManager object and
it's member fields
• eMail
• username
• password
• totalAP
then calling this method.

146

Pre

The member fields need to be filled. Post
If all member fields i filled by appropriate values (see User to see what is an appropriate value for
each field). Then a new User is created.

String getEMail ()
Return the e-mail address.

Returns:
The e-mail address.

void setEMail (String mail)
Set the e-mail address.

Parameters:
mail The E-mail address.

String getPassword ()
Return the password.

Returns:
The password.

void setPassword (String password)
Set the password.

Parameters:
password The password.

int getTotalAP ()
Return the total AP.

Returns:
The total AP.

void setTotalAP (int totalAP)
Set the total AP.

147

148

Parameters:
totalAP The total AP.

String getUsername ()
Return the username.

Returns:
The username.

void setUsername (String username)
Set the username.

Parameters:
username The username.

The documentation for this class was generated from the following file:

• RegisterManager.java

SearchManager Class Reference

Public Member Functions

• void findUsers ()

Detailed Description

Description
A search manager handles search requests from the SearchJSP.

Member Function Documentation

void findUsers ()

Description
Find users that meets the critera made up by the fields
• Name
• Number of competitions the user has participated in
• Users total AP
• Number of competitions the user has won
the comparators
• '>' (greater than)
• '>=' (greater than or equal to)
• '<= (less than or equal to)
• '<' (less than)

Pre

None. Post
The list users is updated.

The documentation for this class was generated from the following file:

• SearchManager.java

149

Topic Class Reference
Represents a topic that is used in the competitions.

Public Member Functions

• String getName ()
• void setName (String name)
• Long getId ()
• void setId (Long id)

Detailed Description

Represents a topic that is used in the competitions.

Member Function Documentation

String getName ()

void setName (String name)

Long getId ()

void setId (Long id)

The documentation for this class was generated from the following file:

• Topic.java

150

User Class Reference
A database entity that represents a user.
Collaboration diagram for User:

151

152

153

Public Member Functions

• int getNumberOfGuestbookPosts ()
Returns the number of guestbook posts for this user.

Detailed Description

A database entity that represents a user.
This class will be saved in the database using hibernate.

Member Function Documentation

int getNumberOfGuestbookPosts ()
Returns the number of guestbook posts for this user.
Everytime a new guestbook message is added this method will be called. The purpose is to keep
track of the ID's of the messages local to this user. This is to ensure that messages will be stored
and retrieved in chronological order when the guestbook is fetched from the database.

The documentation for this class was generated from the following file:

• User.java

UserAgent Class Reference
The user agent is responsible for the retrieving and storing information about a user in the database.
Collaboration diagram for UserAgent:

Public Member Functions

• User getUserByID (long userID)
Finds the user with a specific user id.

• User getUserByEmail (String email)
Finds the user with a specific user email.

• List< User > getUsersByTotalAP (GeneralEnum.COMPARATOR c, int value)
Find users with a total AP that meets the critera made up by the comparator c and the value v of.

• List< User > getUsersByName (String n)
Finds all user that match the given name.

• List< User > getUsersByWonCompetitions (GeneralEnum.COMPARATOR c, int value)
Find users with the number of won competitions that meets the critera made up by the comparator c and the value
v of.

• List< User > GetUsersByNumberOfCompetitions (GeneralEnum.COMPARATOR c, int value)
Find users with the number of participated competitons that meets the critera made up by the comparator c and the
value v.

• void addUser (User u)
Add a new user to the database.

• void addAvatar (long userID, Picture p)
Add an avatar picture to the user's profile.

Static Public Member Functions

• static UserAgent getInstance ()
Returns the UserAgent instance.

154

Detailed Description

The user agent is responsible for the retrieving and storing information about a user in the database.
The class is thread safe.

Author:
Per Almquist Ali Mosavian

Member Function Documentation

User getUserByID (long userID)
Finds the user with a specific user id.

Pre condition(s)
User exists

Post condition(s)
None

Parameters:
userID The user id to search for

Returns:
A user object or null if the user could not be found

User getUserByEmail (String email)
Finds the user with a specific user email.

Pre condition(s)
User exists

Post condition(s)
None

Parameters:
email The email to search for

Returns:
A user object or null if the user could not be found

155

List<User> getUsersByTotalAP (GeneralEnum.COMPARATOR c, int
value)

Find users with a total AP that meets the critera made up by the comparator c and the value v of.

Pre condition(s)
None

Post condition(s)
None

Parameters:
c The comparator
v The value to compare against

Returns:
A list of users that matches the search criteria or null if no match.

List<User> getUsersByName (String n)
Finds all user that match the given name.

Pre condition(s)
None

Post condition(s)
None

Parameters:
n The name to search for

Returns:
A list of users that matches the search criteria or null if no match.

List<User> getUsersByWonCompetitions
(GeneralEnum.COMPARATOR c, int value)

Find users with the number of won competitions that meets the critera made up by the
comparator c and the value v of.

Pre condition(s)
None

Post condition(s)
None

Parameters:
c The comparator
v The value to compare against

156

Returns:
A list of users that matches the search criteria or null if no match.

List<User> GetUsersByNumberOfCompetitions
(GeneralEnum.COMPARATOR c, int value)

Find users with the number of participated competitons that meets the critera made up by the
comparator c and the value v.

Pre condition(s)
None

Post condition(s)
None

Parameters:
c The comparator
v The value to compare against

Returns:
A list of users that matches the search criteria or null if no match.

void addUser (User u)
Add a new user to the database.

Pre condition(s)
User does not exist

Post condition(s)
User is in the database

Parameters:
u The user to add

void addAvatar (long userID, Picture p)
Add an avatar picture to the user's profile.

Pre condition(s)
User exists

Post condition(s)
Users avatar/profile picture is set to p

Parameters:
userID ID of the user to get
p The avatar picture.

157

158

static UserAgent getInstance () [static]
Returns the UserAgent instance.
It makes sure that there is only one UserAgent instance, if there is none, one is created.
Implements the singleton design pattern.

Pre condition(s)
None

Post condition(s)
The singleton instance of the GustBookAgent is returned.

Returns:
The UserAgent instance.

The documentation for this class was generated from the following file:

• UserAgent.java

UserProfile Class Reference
A database entity that represents a user profile.
Collaboration diagram for UserProfile:

159

160

161

Public Member Functions

• Picture getAvatar ()
• void setAvatar (Picture avatar)
• Long getId ()
• void setId (Long id)
• String getProfileMessage ()
• void setProfileMessage (String profileMessage)

Detailed Description

A database entity that represents a user profile.
This class will be saved in the database using hibernate.

Member Function Documentation

Picture getAvatar ()

void setAvatar (Picture avatar)

Long getId ()

void setId (Long id)

String getProfileMessage ()

void setProfileMessage (String profileMessage)

The documentation for this class was generated from the following file:

• UserProfile.java

VoteManager Class Reference
Collaboration diagram for VoteManager:

Public Member Functions

• void vote ()
Vote is called by voteJSP when a user votes for a picture in a competition.

• void findCompetitions ()
Finds all competitions that are in the voting phase and matches the fields 'date', 'combatant1', 'combatant2',
'topic' and 'golden vote'.

• void setPictureId (Long pictureId)
• void setUserId (long userId)
• List< Competition > getCompetitions ()
• void setCombatant1 (String combatant)
• void setCombatant2 (String combatant)
• void setDate (Date date)
• boolean isGoldenVote ()
• void setTopic (String topic)

162

Member Function Documentation

void vote ()
Vote is called by voteJSP when a user votes for a picture in a competition.
The method will use the two fields 'pictureId' and 'userId' as parameters. The 'pictureId' is the id
of the picture that the user votes for and 'userId' is the id of the voting user.
This method will first verify that the user are allowed to vote for the picture.

Pre condition>
None

Post condition>
None

void findCompetitions ()
Finds all competitions that are in the voting phase and matches the fields 'date', 'combatant1',
'combatant2', 'topic' and 'golden vote'.
The result is then placed in the competitions field.

Pre condition>
None

Post condition>
None

void setPictureId (Long pictureId)

Pre condition>
None

Post condition>
None

Parameters:
pictureId

void setUserId (long userId)

Pre condition>
None

Post condition>
None

163

Parameters:
userId

List<Competition> getCompetitions ()

Pre condition>
None

Post condition>
None

Returns:

void setCombatant1 (String combatant)

Pre condition>
None

Post condition>
None

Parameters:
combatant

void setCombatant2 (String combatant)

Pre condition>
None

Post condition>
None

Parameters:
combatant

void setDate (Date date)

Pre condition>
None

Post condition>
None

Parameters:

164

165

date

boolean isGoldenVote ()

Pre condition>
None

Post condition>
None

Returns:

void setTopic (String topic)

Pre condition>
None

Post condition>
None

Parameters:
topic

The documentation for this class was generated from the following file:

• VoteManager.java

• VoteManager.java

166

5.6 Package diagram

167

6. Test cases

6.1. Register

Description:

Test of the register phase.

References:

4.1.1.1

Inputs:

Username (existing, non-existing), password and email-address (valid)

Expected output:

a) You can login with the new user.
b) Error messages.

Procedure:

1. Go to the register page.
2. Create a new user using the non-existing username, a password of your choice and the email

address.
3. Go to the mailbox and verify that you have received a mail with a a confirmation link.
4. Follow the link.
5. Go to the login page and verify a according to test case login that you can login with the new

username/password.
6. Try to register with the existing username and the valid email.

Verify that you get an error message that asks you to choose a different username.
7. Try registering with a non-valid email address (e.g. one without @)

Verify that you get an error message saying the email is incorrect.

168

6.2. Login

Description:

Test of the login mechanism.

References:

FR: 4.1.1.2

Inputs:

Username and password.
Both for an existing user and a non-existing user.

Expected output:

a) Redirection to profile page
b) Error message

Procedure:

1. Login using the existing user with correct password.
Make sure you are redirected to the profile page of that user.

2. Try to login using the existing user with an incorrect password.
You should get a message saying that the username/password pair is invalid.

3. Try to login using the non-existing user with any password.
You should get a message saying that the username/password pair is invalid.

169

6.3. Artistic points

Description:

Test of artistic points given upon registration.

References:

FR: 4.1.2.1
Appendix A

Inputs:

Non-existing username.

Expected output:

100 AP received upon registration.

Procedure:

1. Create a new user using the non-existing username.
2. Verify that the new user has 100 AP when the profile page comes up.

170

6.4. Guestbook

Description:

Test of guestbook. Would take forever to test every guestbook so this will be a sample test.

References:

4.1.2.2

Inputs:

An existing user (A). Some (at least 1) other users usernames.

Expected output:

The contents of the guestbooks show up upon entering user profile pages, and new posts are shown
perceptually immediately.

Procedure:

1. Login with user A
2. Verify that the guestbook for the user is displayed on the profile page.
3. Post a new message and verify that it is visible immediately.
4. Repeat 1-3 with for another user’s guestbook

171

6.5. Personal gallery

Description:

A test of the personal gallery

References:

FR: 4.1.2.3

Inputs:

none

Expected output:

Pictures created in battle mode visible in personal gallery.

Procedure:

1. Enter a competition.
2. Before the competition ends. Make sure the picture in the competition is not visible in the

personal gallery on the profile page.
3. When the competition ends, make sure that the picture drawn in that competition is visible

in the personal gallery.

172

6.6. Statistics

Description:

Test that some statistics about each user are publicly available and are available at the profile page
and in the playing arena.
These statistics are:
Number of competitions participated in
Number of won competitions
Total AP

References:

FR: 4.1.2.4, 4.1.3.6

Inputs:

One user for checking (A) and another for usage (B).
Again, a test for all users would be too cumbersome, so a sample test is done.

Expected output:

Consistent statistics about the user.

Procedure:

1. Log in as user B
2. Make sure user A is signed up in the playing arena, and that A is not in a competition that is

about to end (end of voting phase) during this test case.
3. Select A in the playing arena.
4. Verify that number of participated competitions, number of win competition and total AP is

displayed. Make a note of these statistics.
5. Go to A’s profile page.
6. Verify that the above mentioned statistics are displayed.
7. Verify that the statistics are consistent with those from the playing arena.

173

6.7. Playing arena

Description:

A test that the playing arena is operational

References:

4.1.3.1

Inputs:

none

Expected output:

Playing arena is operational.

Procedure:

1. Signup (test case:)
2. Test chat room (test case:)
3. Test challenge (test case:)
4. Test competition (test case:)

174

6.8. Playing arena idle

Description:

A test to verify that you can see some of the things that are happening in the playing arena, even if
you aren’t signed up. You need two computers or at least two different web browsers (from different
vendors) to test this.

References:

FR: 4.1.3.2

Inputs:

Two users (A, B).

Expected output:

Chat messages are delivered and signed up users are visible even if you aren’t signed up.

Procedure:

1. Make sure you aren’t signed up in the playing arena with user A.
2. Make sure you ARE signed up in the playing arena with user B.
3. Enter playing arena with user A without signing up.
4. Verify from A’s perspective that B is visible in the list of signed up users.
5. Post a chat message with user B.
6. Verify from A’s perspective that the chat message comes up.
7. Sign out of the playing arena with B.
8. Verify from both users perspective that B is no longer visible in the list of signed up users.

175

6.9. Signup

Description:

A test that shows that interaction with the playing arena cannot be done unless a user is signed up in
it.

References:

4.1.3.3

Inputs:

A user (A).

Expected output:

The user cannot interact with the playing arena unless signed up in it.

Procedure:

1. Log in as A
2. Enter playing arena without signing up
3. Verify that you cannot challenge other users
4. Verify that you cannot post messages in the chat
5. Sign up
6. Post a message in the chat (according to test case:)
7. Challenge another user (according to test case:)

176

6.10. Show challengeable users

Description:

Test if users that sign up in the playing arena end up in the list of challengeable users.

References:

4.1.3.4

Inputs:

A user (A)

Expected output:

A end up in list of challengeable users upon signup.

Procedure:

1. Log in with user A
2. Enter playing arena without signing up
3. Verify user A is not in the list.
4. Sign up
5. Verify that A is now in the list

177

6.11. Chat room

Description:

Test the functionality of the chat room.

References:

4.1.3.5

Inputs:

A user (A)

Expected output:

Messages posted in the chat room are actually displayed. A user cannot post messages if not signed
up in the playing arena.

Procedure:

1. Log in with user A
2. Enter playing arena without signing up
3. Verify that you cannot post messages in the chat room
4. Sign up
5. Post message in the chat room
6. Verify that the message is displayed.

178

6.12. Challenging users

Description:

Test the ability to challenge other users.

References:

FR: 4.1.3.7
FR: 4.1.6.1.1

Inputs:

• A second user
• A time limit
• Amount of AP in percent

Expected output:

4. A message that the challenge request has be sent to the user.
5. An error message, i.e ‘The user has timed out’.

Procedure:

1. Go to the playing arena
2. Click on the ‘Signup’ button
3. Select a user from the user list
4. Click on the ‘Challenge’ button
5. The system should respond with either (a) or (b)

179

6.13. Drawing board colors

Description:

The procedure tests that a drawing can be made with different colors.

References:

FR: 4.1.4.1

Inputs:

• One user

Expected output:

A drawing with different colors

Procedure:

1. Go to the free sketch page
2. Select a color and a drawing tool
3. Draw something
4. Repeat steps 2 and 3 with a few other colors

180

6.14. Painting tools - Pencil

Description:

Test drawing with the pencil tool.

References:

FR: 4.1.4.2

Inputs:

Mouse input

Expected output:

A trace of the pencil movement on the drawing area with the selected color.

Procedure:

1. Either
a. Go to the free sketch page.
b. Start a battle.

2. Select the pencil tool
3. Hold down the left mouse button and make some movements with the

mouse on the drawing board

181

6.15. Painting tools - bucket

Description:

Test drawing with the bucket tool.

References:

FR: 4.1.4.2

Inputs:

• Mouse input

Expected output:

The point which the bucket tool was used should be filled with the selected color,
outwards until some edge is reached, or until the edges of the drawing board is
reached.

Procedure:

1. Either
a. Go to the free sketch page.
b. Start a battle.

2. Select the bucket tool
3. Click somewhere on the drawing board

182

6.16. Free sketch mode

Description:

The procedure tests the free sketch mode.

References:

FR: 4.1.5.1

Inputs:

• Mouse input

Expected output:

Being able to draw on the drawing board.

Procedure:

1. Go to the free sketch page.
2. Select some drawing tool and draw on the drawing board.

183

6.17. Competition

Description:

The procedure tests the three phases of a competition.

References:

FR: 4.1.6.1.1
FR: 4.1.6.1.2
FR: 4.1.6.1.3

Inputs:

• Two users {A, B} for challenge and battle phase.
• At least one user {C ,D,…} different from A and B for the voting phase.

Expected output:

A winner is announced after the voting phase has ended.

Procedure:

1. Let user A challenge user B
2. Let user B accept the challenge
3. Both will be forwarded to the battle arena
4. Let A, B each create a drawing based on the topic
5. Once A and B are finished with the battle, their battle and drawings should

show up on the Global Galley.
6. Let users C,{ D, …} vote for A and Bs drawings.

184

6.18. Voting

Description:

The procedure tests the voting phase.

References:

FR: 4.1.6.1.1
FR: 4.1.6.1.2
FR: 4.1.6.1.3

Inputs:

• A competition between users A and B in the voting phase
• At least one user {C ,D,…} different from A and B for the voting phase.

Expected output:

a. A winner is announced after a 24 hour period.
b. A tie has occurred after a 24 hour period, goes into golden vote phase.

Procedure:

1. Let users C,{ D, …} vote for A and Bs drawings during a 24 hour period
after the battle phase of A and B.

185

6.19. Golden Vote

Description:

The procedure tests the golden vote state.

References:

FR: 4.1.6.1.1
FR: 4.1.6.1.2
FR: 4.1.6.1.3

Inputs:

• A competition between users A and B which has ended in a tie
• One user C different from A and B for the voting phase.

Expected output:

A winner is announced after the user C votes

Procedure:

1. Let user C vote on the competition which has been ties (gold vote).

186

6.20. AP transfer

Description:

The procedure tests that AP is transferred from the loser to the winner after a
finished competition.

References:

FR: 4.1.6.1.3

Inputs:

• A competition between users A and B which has ended.

Expected output:

The amount of AP reserved will be transferred from the losers to the winners total
AP. The winners reserved AP will be added to his/hers total AP.

Procedure:

1. Let A and B play in a competition.
2. Wait for the voting phase of the competition to finish.

187

6.21. Challenge options – Time limit

Description:

The procedure tests that the time limit can be configured before a challenge request
is made.

References:

FR: 4.1.6.2.1

Inputs:

• Two users A and B

Expected output:

A battle which lasts for the selected number of minutes

Procedure:

1. Let user A and B signup in the playing arena.
3. Let user A select a time limit
4. Let user A challenge user B
5. Let user B accept the challenge
6. For each of the users A and B

a. Time how long it takes for the battle to time out from time the
battle starts.

188

6.22. Challenge options – Bet

Description:

The procedure tests that the amount of AP in percent can be configured before a
challenge request is made.

References:

FR: 4.1.6.2.1
FR: 4.1.6.2.3

Inputs:

• Two users A and B

Expected output:

The selected amount of AP in percent (at the time the challenge was made) is
transferred from the loser to the winner after the competition has ended.

Procedure:

1. Let user A and B signup in the playing arena.
2. Let user A select amount of AP in percent.
3. Let user A challenge user B
4. Let user B accept the challenge
5. Let the competition end.

189

6.23. Challenge request

Description:

The procedure tests that the user being challenged receives the challenge request

References:

FR: 4.1.6.2.2

Inputs:

• Two users A and B

Expected output:

A challenge request is received by user B.

Procedure:

1. Let user A and B signup in the playing arena.
2. Let user A challenge user B

190

6.24. AP reservation

Description:

The procedure tests that the AP of the two user in a competition is reserved during
the competition.

References:

FR: 4.1.6.2.4

Inputs:

• Two users A and B

Expected output:

The reserved AP of users A and B is independently increased with amount (in
percent at the time the challenge request was made) that challenger (user A) choose
during the challenge. request.

Procedure:

1. Let the users A and B be undisturbed during the procedure
2. Let user A and B signup in the playing arena.
3. Let user A select the amount of AP in percent
4. Let user A challenge user B
5. Let user B accept the challenge
6. Check that their reserved AP has increased with the correct amount during

the challenge.

191

6.25. Battle topic

Description:

The procedure tests that the topic of the battle is randomly selected for each battle

References:

FR: 4.1.6.3.1

Inputs:

• Several pairs of users

Expected output:

The topic of each battle is different; some topics can be the same. But not all.

Procedure:

1. Let each pair of user signup in the playing arena.
2. Let one of them challenge the other
3. Let the other accept the challenge
4. Check that the topics differ

192

6.26. Vote time limit

Description:

Tests if a competition is no longer possible to vote for after 24 hours have passed, and that it is
possible within 24 hours.

References:

FR: 4.1.6.4.1

Inputs:

Competition ID for one competition that ended less than 24 hours ago and one that ended more
than 24 hours ago.
Picture ID.

Expected output:

For the competition that ended less than 24 hours ago: A message telling you that the vote has been
registered.
For the competition that ended more than 24 hours ago: An error message telling you that the voting
is closed.

Procedure:

1. Make sure that you have a competition ended less than 24 hours ago (A) and one that ended
more than 24 hours ago (B).

2. Vote for one of the pictures in A and make sure that the competition score is updated and
the success message is displayed.

3. Vote for B and make sure that the competition score is not updated and the error message is
displayed.

193

6.27. Voting page

Description:

Tests that there is a voting page and that only competitions that are in the voting page are displayed
there. Also tests that the information about the competitors are not displayed.

References:

FR: 4.1.6.4.2, 4.1.6.4.8

Inputs:

Competition ID for one competition that ended less than 24 hours ago and one that ended more
than 24 hours ago.
Picture ID.

Expected output:

For the competition that ended less than 24 hours ago: An entry on the voting page displaying the
pictures of that competition, but no information about the competitors
For the competition that ended more than 24 hours ago: The competition is not shown on the
voting page.

Procedure:

1. Make sure that you have a competition ended less than 24 hours ago (A) and one that ended
more than 24 hours ago (B).

2. Navigate to the voting page.
3. Make sure that A is displayed with no information about the competitors, and that B is not

displayed.

194

6.28. Vote weight

Description:

Tests that a competitor gets more points from a vote by a user (A) with more AP than from a user
(B) with less AP than A.

References:

FR: 4.1.6.4.3

Inputs:

Competition ID for one competition that ended less than 24 hours ago.
Picture ID.

Expected output:

The vote casted by A gives the competitor with the picture ID more points than the vote casted by B.

Procedure:

1. A votes for the competitor.
2. Check the difference from the amount of points the competitor had before.
3. B votes for the competitor.
4. Check the difference from the amount of points the competitor had before.
5. Make sure that the difference is larger after A’s vote.

195

6.29. Vote statistics

Description:

Tests that statistics for a vote are displayed only to users that:
• Has participated in a competition
• Has voted for that competition

References:

FR: 4.1.6.4.4

Inputs:

Competition ID for one competition that ended less than 24 hours ago.
User that has participated in the competition (A).
User that has voted for the competition (B).
User that has not voted for the competition (C).

Expected output:

The statistics are only displayed to A and B.

Procedure:

1. A enters the voting page and makes sure that the statistics are displayed.
2. B enters the voting page and makes sure that the statistics are displayed.
3. C enters the voting page and makes sure that the statistics are not displayed.

196

6.30. Voter gets AP, can only vote once and not in own
competition

Description:

Tests that a user gets AP by voting, that the user only can vote for a competition once, and that a
user can not vote for a competition in which he participate.

References:

FR: 4.1.6.4.5, 4.1.6.4.6, 4.1.6.4.7

Inputs:

Competition ID for one competition that ended less than 24 hours ago.
User that has participated in the competition (A).
User that has voted for the competition (B).
User that has not voted for the competition (C).

Expected output:

User A gets an error message when trying to vote for the competition and the competition score
remains unchanged.
User B gets an error message when trying to vote for the competition and the competition score
remains unchanged.
User C gets AP by voting for the competition.

Procedure:

1. A tries to vote for the competition.
2. B tries to vote for the competition.
3. C tries to vote for the competition.

197

6.31. Top ten user list

Description:

Tests that the users with the most AP are displayed in a list available to all users.

References:

FR: 4.1.7.1

Inputs:

The ten users with most AP.

Expected output:

A page with the ten users listed.

Procedure:

6. Navigate to the page containing the list and make sure that the users displayed matches the
users from the input.

198

6.32. Global gallery

Description:

Tests that the Global gallery shows all the pictures in the system.

References:

FR: 4.1.7.2

Inputs:

Picture ID of all the pictures in the system.

Expected output:

For each picture in the system the picture is displayed in the Global gallery.

Procedure:

For each picture:
1. Make sure that the specific picture ID from the database matches exactly one picture in the

Global gallery.

199

200

6.33. Search users

Description:

Tests that the search function returns a user if the search string matches a user in the database, and
an error message otherwise.

References:

FR: 4.1.7.3

Inputs:

Search string matching a user in the database (A), and a string that is not (B).

Expected output:

For A the system should send the user to the user matching string A’s profile page.
For B the system should return an error message.

Procedure:

1. Use the search function with A as input.
2. Make sure you are directed to the profile page of user A.
3. Use the search function with B as input.
4. Make sure you get an error message.

	Contents
	1. Introduction
	1.1 Summary of the document

	2. System Overview
	2.1 General description
	2.2 Overall Architecture Description
	2.3 Detailed Architecture
	2.3.1 Server Architecture
	2.3.1.1 Server Architecture Modules
	Tomcat
	Java Enterprise Edition (JEE) Web Application Technologies
	Service Application
	Hibernate
	JVM
	The database
	The file system
	2.3.1.2 Server architecture control and data flow
	2.3.2 Client architecture
	The client is also made out of several major components. Again, first a description of the components then a description of the control and data flow is described.
	2.3.2.1 Client architecture modules
	Web browser
	Flash Player
	JavaScript interpreter
	Client application
	2.3.2.2 Client architecture control and data flow
	3. Design Considerations
	3.1 Assumptions and Dependencies
	3.1.1 Related software
	3.1.2 Related hardware
	3.1.3 End-user characteristics
	3.1.4 Possible and/or probable changes in functionality
	3.2 General Constraints
	4. Graphical User Interface
	4.1 Overview of the User Interface
	4.2 Graphical user interface forms
	4.2.1 Free Sketch
	4.2.2 Global gallery
	4.2.3 Home
	4.2.4 Login
	4.2.5 Profile
	4.2.6 Playing arena
	4.2.7 Search
	4.2.8 Sign up
	4.2.9 Vote
	5. Design Details

	5.1 Class Responsibility Collaborator (CRC) cards
	5.1.1 View
	5.1.2 Controller
	5.1.3 Model
	5.2 Class diagram
	5.2.1 View
	5.2.2 Model
	5.2.3 Controller
	5.2.4 Playing Arena
	5.3 State charts
	 5.4 Interaction diagrams
	5.4.1 Register
	5.4.2 Login
	5.4.3 Challenge
	5.4.4 Battle
	5.4.5 Vote
	5.4.6 Add guestbook message

	5.5 Detailed Design
	APUtils Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	void updateClasses ()
	Pre condition>
	Post condition>
	Class getClass (User user)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	int getVoteWeight (User user)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	Combatant makeBet (User bettingUser, int betPercent)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	void transferAP (User fromUser, User toUser, int amount)
	Pre condition>
	Post condition>
	Parameters:

	ArenaUser Class Reference
	Package Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	ArenaUser (long userId) [package]
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	long getLastUpdate () [package]
	Pre condition
	Post condition
	Returns:

	void setLastUpdate () [package]
	Pre condition
	Post condition
	long getUserID () [package]
	Pre condition
	Post condition
	Returns:

	void setChallenge (ChallengeRequest c) [package]
	Pre condition
	Post condition
	Parameters:

	ChallengeRequest getChallenge () [package]
	Pre condition
	Post condition
	Returns:

	void clearChallenge () [package]
	Pre condition
	Post condition
	Returns:

	boolean hasChallenge () [package]
	Pre condition
	Post condition
	Returns:

	void addMessage (Message m) [package]
	Pre condition
	Post condition
	Parameters:

	List<Message> getMessages () [package]
	Pre condition
	Post condition
	Returns:

	List<Message> getMessages (Message.TYPE type) [package]
	Pre condition
	Post condition
	Parameters:
	Returns:

	boolean checkMessages (Message.TYPE type) [package]
	Pre condition
	Post condition
	Parameters:
	Returns:

	AuthorityManager Class Reference
	Public Member Functions
	Static Public Member Functions
	Detailed Description
	Description

	Member Function Documentation
	boolean login (String session, String email, String challenge, String passwordHash)
	Pre condition
	Post condition
	Parameters:
	Returns:

	void logout (String session)
	Pre condition
	Post condition
	Parameters:

	boolean isLoggedIn (String session)
	Pre condition
	Post condition
	Parameters:
	Returns:

	User getUser (String session)
	Pre condition
	Post condition
	Parameters:
	Returns:

	String createChallenge ()
	Pre condition
	Post condition
	Returns:

	static AuthorityManager getInstance () [static]
	Pre condition(s)
	Post condition(s)
	Returns:

	BattleDrawingManager Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	void postPicture (Long userId, InputStream picture)
	Parameters:

	BattleDrawingsServlet Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	void doPost (HttpServletRequest req, HttpServletResponse resp)
	Parameters:

	ChallengeManager Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	ChallengeManager (long userTimeout)
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	List<Message> getUserMessages (long userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Map<String, Long> getArenaUserList ()
	Pre condition
	Post condition
	Returns:

	Message signUpToArena (long userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message signOutFromArena (long userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message createChallenge (long challengeeID, long challengerID, int challengeeAP, int challengerAP, int timelimit)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message challengeAccept (int userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message challengeReject (int userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	boolean isArenaUser (long userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	ArenaUser getArenaUser (long id)
	Pre condition
	Post condition
	Parameters:
	Returns:

	void run ()
	Post condition
	Post condition

	ChallengeRequest Class Reference
	Public Member Functions
	Package Types
	Package Functions
	Detailed Description
	Author:

	Member Enumeration Documentation
	enum TYPE [package]

	Constructor & Destructor Documentation
	ChallengeRequest (long challengerID, int challengerAP, long challengeeID, int challengeeAP, int timelimit)
	Post condition
	Post condition
	Parameters:

	Member Function Documentation
	long getChallengerID () [package]
	Post condition
	Post condition
	Returns:

	long getChallengeeID () [package]
	Post condition
	Post condition
	Returns:

	int getChallengerAP () [package]
	Post condition
	Post condition
	Returns:

	int getChallengeeAP () [package]
	Post condition
	Post condition
	Returns:

	int getTimelimit () [package]
	Post condition
	Post condition
	Returns:

	TYPE whoIsThis (long userID) [package]
	Post condition
	Post condition
	Returns:

	ChatManager Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	ChatManager (int size)
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	void addMessage (int userID, String userName, String message)
	Pre condition
	Post condition
	Parameters:

	List<MessageChat> getMessageFrom (long timestamp, int count)
	Pre condition
	Post condition
	Parameters:
	Returns:

	List<MessageChat> getMessageFromTo (long first, long last)
	Pre condition
	Post condition
	Parameters:
	Returns:

	CircularList< E > Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	CircularList (int size)
	Pre condition
	Post condition
	Parameters:

	void push (E item)
	Pre condition
	Post condition
	Parameters:

	E getFirst ()
	Pre condition
	Post condition
	Returns:

	E get (int index)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Combatant Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	int getBet ()
	void setBet (int bet)
	Picture getPicture ()
	void setPicture (Picture picture)
	User getUser ()
	void setUser (User user)
	Long getId ()
	void setId (Long id)

	Competition Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	boolean userHasVoted (Long userId)
	Parameters:
	Returns:

	void addVotingUser (User user)
	Parameters:

	Combatant getCombatant1 ()
	void setCombatant1 (Combatant combatant1)
	Combatant getCombatant2 ()
	void setCombatant2 (Combatant combatant2)
	Date getStartDate ()
	void setStartDate (Date startDate)
	Topic getTopic ()
	void setTopic (Topic topic)
	Combatant getWinner ()
	void setWinner (Combatant winner)
	int getVotes ()
	void setVotes (int votes)
	String getState ()
	void setState (String state)
	Long getId ()
	void setId (Long id)
	Set<Long> getVotingUserIds ()
	void setVotingUserIds (Set< Long > votingUserIds)

	CompetitionAgent Class Reference
	Public Member Functions
	Static Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	Competition findCompetitionById (long id)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	Picture findPictureById (long id)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	List< Competition > findfinishedCompetitions (Date date, String Combatant1, String Combatant2, String winner, String looser, String topic, int votes)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	List< Competition > findVotingCompetitions (Date date, String Combatant1, String Combatant2, String topic, boolean goldenVote)
	Pre condition>
	Post condition>
	Parameters:
	Returns:

	static CompetitionAgent getInstance () [static]
	Pre condition>
	Post condition>
	Returns:

	GeneralEnum Class Reference
	Public Types
	Detailed Description
	Author:

	Member Enumeration Documentation
	enum COMPARATOR

	GlobalGalleryManager Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	List<Competition> getCompetitions ()
	Pre condition>
	Post condition>
	Returns:

	void setCombatant1 (String combatant)
	Pre condition>
	Post condition>
	Parameters:

	void setCombatant2 (String combatant)
	Pre condition>
	Post condition>
	Parameters:

	void setDate (Date date)
	Pre condition>
	Post condition>
	Parameters:

	void setLooser (String looser)
	Pre condition>
	Post condition>
	Parameters:

	void setTopic (String topic)
	Pre condition>
	Post condition>
	Parameters:

	void setWinner (String winner)
	Pre condition>
	Post condition>
	Parameters:

	void setVotes (int votes)
	Pre condition>
	Post condition>
	Parameters:

	GuestBookAgent Class Reference
	Public Member Functions
	Static Public Member Functions
	Member Function Documentation
	GuestBookMessage getMessage (long id)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<GuestBookMessage> getMessages (long userID, int count)
	Pre condition(s)
	None Post condition(s)
	Parameters:
	Returns:

	List<GuestBookMessage> getMessages (long userID, long localPostID, int count)
	Pre condition(s)
	None Post condition(s)
	Parameters:
	Returns:

	void addMessage (GuestBookMessage m)
	Pre condition(s)
	None Post condition(s)
	Parameters:
	Returns:

	static GuestBookAgent getInstance () [static]

	Description
	Pre condition(s)
	Post condition(s)
	Returns:

	GuestBookManager Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	Message setNewMessage ()
	Pre condition
	Properties (senderID, recieverID, messageText) are set Post condition
	Returns:

	List<GuestBookMessage> getMessages ()
	Pre condition
	Properties (guestbookUserID, messageFirst, messageCount) are set Post condition
	Returns:

	void setGuestBookUserID (int userID)
	void setSenderID (int userID)
	void setReceiverID (int userID)
	void setMessageText (String text)
	void setMessageCount (int count)
	void setMessageFirst (long timestamp)

	GuestBookMessage Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	Date getDate ()
	void setDate (Date date)
	User getFromUser ()
	void setFromUser (User fromUser)
	String getText ()
	void setText (String text)
	User getToUser ()
	void setToUser (User toUser)

	ImageIO Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	InputStream getStream ()
	void setStream (InputStream stream)
	String getType ()
	void setType (String type)

	ImageManager Class Reference
	Public Member Functions
	Member Function Documentation
	ImageIO loadImage (Long pictureId)
	Parameters:
	Returns:

	void saveImage (ImageIO image, String path)
	Parameters:

	ImageServlet Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	void doGet (HttpServletRequest request, HttpServletResponse response)
	Parameters:

	ListHandler Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	ListHandler (int size)
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	void add (MessageChat m)
	Pre condition
	Post condition
	Parameters:

	List<MessageChat> getFrom (long timestamp, int count)
	Pre condition
	Post condition
	Parameters:
	Returns:

	List<MessageChat> getFromTo (long first, long last)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message Class Reference
	Public Types
	Public Member Functions
	Protected Member Functions
	Detailed Description
	Author:

	Member Enumeration Documentation
	enum TYPE

	Constructor & Destructor Documentation
	Message (String text, TYPE t) [protected]
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	String getMessage ()
	Pre condition
	Post condition
	Returns:

	TYPE getType ()
	Pre condition
	Post condition
	Returns:

	MessageChallenge Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	MessageChallenge (int ap, int timelimit, long challengerID, String challengerName)
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	int getAP ()
	Pre condition
	Post condition
	Returns:

	int getTimeLimit ()
	Pre condition
	Post condition
	Returns:

	long getChallengerID ()
	Pre condition
	Post condition
	Returns:

	String getChallengerName ()
	Pre condition
	Post condition
	Returns:

	MessageChat Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	MessageChat (int userID, String userName, String message)
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	int getUserID ()
	Pre condition
	Post condition
	Returns:

	String getUserName ()
	Returns:

	long getTimestamp ()
	Pre condition
	Post condition
	Returns:

	long compareTimeStamp (long t)
	Pre condition
	Post condition
	Parameters:
	Returns:

	MessageError Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	MessageError (String title, String message)
	Pre condition
	Post condition
	Parameters:

	Member Function Documentation
	String getTitle ()
	Pre condition
	Post condition
	Returns:

	MessageGoToBattleArena Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	MessageGoToBattleArena ()
	Pre condition
	Post condition

	MessageOK Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Constructor & Destructor Documentation
	MessageOK ()
	Pre condition
	Post condition
	MessageOK (String message)
	Pre condition
	Post condition
	Parameters:

	MessageServlet Class Reference
	Public Member Functions
	Protected Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	void processRequest (HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException [protected]
	Parameters:

	void doGet (HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException [protected]
	Parameters:

	void doPost (HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException [protected]
	Parameters:

	String getServletInfo ()

	NewsAgent Class Reference
	Public Member Functions
	Static Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	NewsMessage getNews (long id)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<NewsMessage> getNews (int count)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<NewsMessage> getNews (Date first, Date last)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	void add (NewsMessage m)
	Pre condition(s)
	Post condition(s)
	Parameters:

	static NewsAgent getInstance () [static]
	Pre condition(s)
	Post condition(s)
	Returns:

	NewsMessage Class Reference
	Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	Date getDate ()
	void setDate (Date date)
	Date:

	User getFromAdmin ()
	void setFromAdmin (User fromAdmin)
	Long getId ()
	void setId (Long id)
	String getText ()
	void setText (String text)

	PersonalGalleryManager Class Reference
	Public Member Functions
	Member Function Documentation
	List<Picture> getPictures ()
	void setUserId (int userId)
	void setMessageCount (int c)
	void setfirstTimestamp (long first)

	PersonalGalleryManager Class Reference
	Public Member Functions
	Member Function Documentation
	void findPersonalGallery ()
	List<Competition> getCompetitions ()
	void setCompetitions (List< Competition > competitions)
	Long getUserId ()
	void setUserId (Long userId)

	Picture Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	String getPath ()
	void setPath (String path)
	int getVotes ()
	void setVotes (int votes)
	Long getId ()
	void setId (Long id)
	Competition getCompetition ()
	void setCompetition (Competition competition)
	long getTimestamp ()
	void setTimestamp (long t)

	PlayingArenaManager Class Reference
	Public Member Functions
	Static Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	List<Message> checkMessagesArena (int userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Map<String, Long> getArenaUserList ()
	Pre condition
	Post condition
	Returns:

	Message challengeUser (int challengerID, int challengeeID, int ap, int timelimit)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message challengeAccept (int userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message challengeReject (int userID)
	Pre condition
	Post condition
	Parameters:
	Returns:

	Message addMessageChat (int userID, String userName, String message)
	Pre condition
	Post condition
	Parameters:
	Returns:

	List<MessageChat> getMessagesChat (long first, int count)
	Pre condition
	Post condition
	Parameters:
	Returns:

	List<MessageChat> getMessagesChat (long first, long last)
	Pre condition
	Post condition
	Parameters:
	Returns:

	static PlayingArenaManager getInstance () [static]
	Pre condition
	Post condition
	Returns:

	ProfileManager Class Reference
	Public Member Functions
	Detailed Description
	Description

	Member Function Documentation
	void findUserInformation ()
	Description
	Pre
	None. Post
	void findPersonalGallery ()
	void findGuestBook ()

	ProfilePictureManager Class Reference
	Public Member Functions
	Detailed Description
	Description

	Member Function Documentation
	void postPicture (Long userId, InputStream picture)
	Description
	Pre
	The user has uploaded a picture to be used as his/her avatar picture. Post
	Parameters:

	ProfilePictureServlet Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	void doPost (HTTPServletRequest req, HTTPServletResponse resp)
	Parameters:

	RegisterManager Class Reference
	Public Member Functions
	Detailed Description
	Description

	Member Function Documentation
	void addUser ()
	Description
	Pre
	The member fields need to be filled. Post
	String getEMail ()
	Returns:

	void setEMail (String mail)
	Parameters:

	String getPassword ()
	Returns:

	void setPassword (String password)
	Parameters:

	int getTotalAP ()
	Returns:

	void setTotalAP (int totalAP)
	Parameters:

	String getUsername ()
	Returns:

	void setUsername (String username)
	Parameters:

	SearchManager Class Reference
	Public Member Functions
	Detailed Description
	Description

	Member Function Documentation
	void findUsers ()
	Description
	Pre
	None. Post

	Topic Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	String getName ()
	void setName (String name)
	Long getId ()
	void setId (Long id)

	User Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	int getNumberOfGuestbookPosts ()

	UserAgent Class Reference
	Public Member Functions
	Static Public Member Functions
	Detailed Description
	Author:

	Member Function Documentation
	User getUserByID (long userID)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	User getUserByEmail (String email)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<User> getUsersByTotalAP (GeneralEnum.COMPARATOR c, int value)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<User> getUsersByName (String n)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<User> getUsersByWonCompetitions (GeneralEnum.COMPARATOR c, int value)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	List<User> GetUsersByNumberOfCompetitions (GeneralEnum.COMPARATOR c, int value)
	Pre condition(s)
	Post condition(s)
	Parameters:
	Returns:

	void addUser (User u)
	Pre condition(s)
	Post condition(s)
	Parameters:

	void addAvatar (long userID, Picture p)
	Pre condition(s)
	Post condition(s)
	Parameters:

	static UserAgent getInstance () [static]
	Pre condition(s)
	Post condition(s)
	Returns:

	UserProfile Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation
	Picture getAvatar ()
	void setAvatar (Picture avatar)
	Long getId ()
	void setId (Long id)
	String getProfileMessage ()
	void setProfileMessage (String profileMessage)

	VoteManager Class Reference
	Public Member Functions
	Member Function Documentation
	void vote ()
	Pre condition>
	Post condition>
	void findCompetitions ()
	Pre condition>
	Post condition>
	void setPictureId (Long pictureId)
	Pre condition>
	Post condition>
	Parameters:

	void setUserId (long userId)
	Pre condition>
	Post condition>
	Parameters:

	List<Competition> getCompetitions ()
	Pre condition>
	Post condition>
	Returns:

	void setCombatant1 (String combatant)
	Pre condition>
	Post condition>
	Parameters:

	void setCombatant2 (String combatant)
	Pre condition>
	Post condition>
	Parameters:

	void setDate (Date date)
	Pre condition>
	Post condition>
	Parameters:

	boolean isGoldenVote ()
	Pre condition>
	Post condition>
	Returns:

	void setTopic (String topic)
	Pre condition>
	Post condition>
	Parameters:

	5.6 Package diagram
	6. Test cases
	6.1. Register
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.2. Login
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.3. Artistic points
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.4. Guestbook
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.5. Personal gallery
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.6. Statistics
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.7. Playing arena
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.8. Playing arena idle
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.9. Signup
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.10. Show challengeable users
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.11. Chat room
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.12. Challenging users
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.13. Drawing board colors
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.14. Painting tools - Pencil
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.15. Painting tools - bucket
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.16. Free sketch mode
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.17. Competition
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.18. Voting
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.19. Golden Vote
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.20. AP transfer
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.21. Challenge options – Time limit
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.22. Challenge options – Bet
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.23. Challenge request
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.24. AP reservation
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.25. Battle topic
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.26. Vote time limit
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.27. Voting page
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.28. Vote weight
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.29. Vote statistics
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.30. Voter gets AP, can only vote once and not in own competition
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.31. Top ten user list
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.32. Global gallery
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

	6.33. Search users
	Description:
	References:
	Inputs:
	Expected output:
	Procedure:

