
Multiplayer Platform Game

Group 19

Martin Petterson
Oskar Kvist

Christoffer Ekeroth
Misael Berrios Salas

March 10, 2008



CONTENTS 1

Contents

1 Introduction 5
1.1 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 System Overview 7
2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overall Architecture Description . . . . . . . . . . . . . . . . 8
2.3 Detailed Architecture . . . . . . . . . . . . . . . . . . . . . . 11

3 Design Considerations 13
3.1 Assumptions and Dependencies . . . . . . . . . . . . . . . . . 13

3.1.1 Related Software and Hardware . . . . . . . . . . . . . 13
3.1.2 End-user Characteristics . . . . . . . . . . . . . . . . . 13
3.1.3 Possible and/or Probable Changes in Functionality . . 13

3.2 General Constraints . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Xbox 360 Hardware . . . . . . . . . . . . . . . . . . . 14
3.2.2 The Living Room as the End-User Environment . . . 15
3.2.3 TV-Safe Areas . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 The Xbox 360 Gamepad as an Input Device . . . . . . 15
3.2.5 Complying with Xbox 360 Interface Standards . . . . 15
3.2.6 Performance Requirements . . . . . . . . . . . . . . . 15
3.2.7 Storage Devices on the Xbox 360 . . . . . . . . . . . . 15

4 Graphical User Interface 16
4.1 User Interface Overview . . . . . . . . . . . . . . . . . . . . . 16
4.2 Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Character Selection Screen . . . . . . . . . . . . . . . 17
4.2.2 Game Stage Selection Screen . . . . . . . . . . . . . . 18
4.2.3 Game Screen . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Pause Screen . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.5 Game Over Screen . . . . . . . . . . . . . . . . . . . . 20
4.2.6 Game Stage Elements . . . . . . . . . . . . . . . . . . 21
4.2.7 Power-up Icons . . . . . . . . . . . . . . . . . . . . . . 22

5 Design Details 23
5.1 CRC cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 ScaryMonsters . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.4 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.5 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.6 GameObjects . . . . . . . . . . . . . . . . . . . . . . . 24



CONTENTS 2

5.1.7 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.8 GameStage . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.9 GameObject (abstract class, extends Geometry) . . . 25
5.1.10 SpriteObject (abstract class, extends GameObject) . . 26
5.1.11 ModelObject (abstract class, extends GameObject) . . 26
5.1.12 Controller . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.13 Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.14 Effect (abstract class) . . . . . . . . . . . . . . . . . . 26
5.1.15 StunEffect (extends Effect) . . . . . . . . . . . . . . . 26
5.1.16 ShrinkEffect (extends Effect) . . . . . . . . . . . . . . 27
5.1.17 SpeedEffect (extends Effect) . . . . . . . . . . . . . . . 27
5.1.18 LevitationEffect (extends Effect) . . . . . . . . . . . . 27
5.1.19 InvulnerabilityEffect (extends Effect) . . . . . . . . . . 27
5.1.20 FetterEffect (extends Effect) . . . . . . . . . . . . . . 27
5.1.21 ClawEffect (extends Effect) . . . . . . . . . . . . . . . 28
5.1.22 SlipEffect (extends Effect) . . . . . . . . . . . . . . . . 28
5.1.23 Player (extends ModelObject) . . . . . . . . . . . . . . 28
5.1.24 Monster (extends ModelObject) . . . . . . . . . . . . 28
5.1.25 MovingPlatform (extends GameObject) . . . . . . . . 29
5.1.26 PowerupDispenser (extends SpriteObject) . . . . . . . 29
5.1.27 FinishPoint (extends SpriteObject) . . . . . . . . . . . 29
5.1.28 StartingPoint (extends GameObject) . . . . . . . . . . 29
5.1.29 Springboard (extends ModelObject) . . . . . . . . . . 29
5.1.30 Trap (extends ModelObject) . . . . . . . . . . . . . . 29
5.1.31 BoxingGlove (extends SpriteObject) . . . . . . . . . . 30
5.1.32 Fetter (extends SpriteObject) . . . . . . . . . . . . . . 30
5.1.33 ShrinkingRay (extends SpriteObject) . . . . . . . . . . 30
5.1.34 Claw (extends SpriteObject) . . . . . . . . . . . . . . 30
5.1.35 BananaPeel (extends SpriteObject) . . . . . . . . . . . 30
5.1.36 CharacterSelectionScreen . . . . . . . . . . . . . . . . 31
5.1.37 GameStageSelectionScreen . . . . . . . . . . . . . . . 31
5.1.38 GameRunningState . . . . . . . . . . . . . . . . . . . 31
5.1.39 PauseScreen . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.40 GameOverScreen . . . . . . . . . . . . . . . . . . . . . 32
5.1.41 Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.42 MenuItem . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.43 HUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 State Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 Overall system . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Interaction Diagrams . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Detailed Design . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5.1 ScaryMonsters . . . . . . . . . . . . . . . . . . . . . . 36
5.5.2 IScreen (interface) . . . . . . . . . . . . . . . . . . . . 38



CONTENTS 3

5.5.3 CharacterSelectionScreen . . . . . . . . . . . . . . . . 38
5.5.4 GameStageSelectionScreen . . . . . . . . . . . . . . . 40
5.5.5 GameRunningScreen . . . . . . . . . . . . . . . . . . . 42
5.5.6 GameOverScreen . . . . . . . . . . . . . . . . . . . . . 44
5.5.7 Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.8 MenuItem . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5.9 HUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5.10 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5.11 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.12 Controller . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.13 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.14 GameObjects . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.15 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.16 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.17 GameStage . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.18 GameObject . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.19 ModelObject . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.20 SpriteObject . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.21 Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.22 StunEffect . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.23 ShrinkEffect . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.24 SpeedEffect . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.25 LevitationEffect . . . . . . . . . . . . . . . . . . . . . 60
5.5.26 InvulnerabilityEffect . . . . . . . . . . . . . . . . . . . 61
5.5.27 FetterEffect . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.28 ClawEffect . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.29 SlipEffect . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.30 Player . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.31 Monster . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.32 PowerupDispenser . . . . . . . . . . . . . . . . . . . . 67
5.5.33 Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.34 MovingPlatform . . . . . . . . . . . . . . . . . . . . . 69
5.5.35 Springboard . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.36 FinishPoint . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.37 BananaPeel . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.38 Fetter . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.39 BoxingGlove . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.40 ShrinkingRay . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.41 Claw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.42 Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Table of References . . . . . . . . . . . . . . . . . . . . . . . . 78



CONTENTS 4

6 Functional Test Cases 81
6.1 Any Test Game Stage . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Debug Game Stage 1 . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Debug Game Stage 2 . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Debug Game Stage 3 . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Debug Game Stage 4 . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Debug Game Stage 5 . . . . . . . . . . . . . . . . . . . . . . . 93
6.7 Debug Game Stage 6 . . . . . . . . . . . . . . . . . . . . . . . 93
6.8 Regular Game Stages . . . . . . . . . . . . . . . . . . . . . . . 94



1 INTRODUCTION 5

1 Introduction

The purpose of this document is to establish a framework for how the soft-
ware Scary Monsters is to be developed. As such, this document contains
descriptions of all the classes, test cases and interfaces to external libraries
that are needed in the development of Scary Monsters. At a higher level,
user interfaces, states and hardware constraints are also specified.

The intended audience of this document is the programmers, architects
and testers involved in the development process.

Readers should familiarize themselves with the Scary Monsters Require-
ments Document and keep it close at hand, since it is referenced to many
times in this document.

1.1 Terms

• Game stages are the playing fields of the game, similar to race tracks
in racing.

• The .Net Framework is a software component that is a part of Mi-
crosoft Windows operating systems. It has a large library of pre-coded
solutions to common program requirements, and manages the execu-
tion of programs written specifically for the framework. Since code
written in C# is compiled into the Microsoft Intermediate Language
it can be run on any platform that supports the .Net Framework it
can be run on Xbox 360.

• Platform games are a genre of videogames where the player must nav-
igate through a side-scrolling environment (usually presented in two
dimensions), often having to jump past obstacles, traps or enemies.

• Scrolling is the act of sliding the game presentation of the screen.

• Xbox 360 is a games console developed by Microsoft.

• XNA (XNA’s Not Acronymed) is both a C# game programming li-
brary and an extension to Visual C# Express. Games created with
XNA can run on both Windows Vista/XP and Xbox 360.

1.2 Summary

Introduction:
The section you’re currently reading. Except for this summary it contains
an introduction to this document as well as definitions of technical terms
used throughout the document.



1 INTRODUCTION 6

System Overview:
The System Overview section contains a brief overview and general descrip-
tion of the system architecture in Scary Monsters, as well as a more detailed
architecture description.

Design Considerations:
The Design Considerations section details assumptions that have affected
the design process, as well as a list of constraints imposed upon the imple-
mentation of the system.

Graphical User Interface:
The Graphical User Interface section provides an overview of the graphical
user interface in Scary Monsters using descriptive text and mock-up illus-
trations.

Design Details:
The Design Details section contains detailed information on how the system
is supposed to be divided up into classes. It contains detailed information
on all of the classes in the system as well as higher-level information about
class responsibilities and how classes interact.

Functional Test Cases:
The Functional Test Cases section defines a number of tests that can be car-
ried out in order to verify that the system satisfies the requirements defined
in the Requirements Document.



2 SYSTEM OVERVIEW 7

2 System Overview

2.1 General Description

Scary Monsters is a video game that lets multiple players compete in head-to-
head battles on the Xbox 360 game console. One of the main characteristics
of Scary Monsters, and video games in general, is that it incorporates a
wide array of inputs and outputs—the game must have a real-time graphical
representation, there are music and sound effects, input has to be received
from multiple devices, etc. To provide this functionality, several subsystems
are needed, many of which need to be able to communicate with each other.
Furthermore, the game world is filled with various types of game objects
that need to interact with each other in many different ways. Also, the
game can be in one of several states at any given time, which affects the
behavior of almost all subsystems. Thus, the major problems we needed to
solve in the design of Scary Monsters were:

• Allowing subsystems to interface with each other in an elegant manner.

• Handling all the possible interactions between the different objects in
the game world.

• Devising a system for managing and transitioning between the various
states of the game.

The basic design approach is as follows:

• Responsibility for handling the different kinds of inputs and outputs
needed in the game are divided across a number of subsystems, each
of them responsible for handling one type of input/output.

• Responsibility for handling interactions between game objects is split
up between the 2D physics engine Farseer and the game objects them-
selves. Farseer is responsible for detecting collisions between objects
and notifying colliding objects of what they have collided with. The
objects are in turn responsible for reacting to these collisions in the
appropriate manner. In summary, Farseer keeps track of who inter-
acts and when, and the different game objects keeps track of how they
interact with each other.

• Responsibility for keeping track of game states is delegated to classes
implementing the IScreen interface, each of which represents a game
state.



2 SYSTEM OVERVIEW 8

2.2 Overall Architecture Description

The following is a state transition diagram showing the states the game can
be in as well as how the game can change state.

The game can be in any of five states at any given time. These states are:

• Character Selection—This is the initial menu presented to the players
upon startup and before the start of each race. In order move on to
the Game Stage Selection state, the players have to select characters.

• Game Stage Selection—In this state one of the players, whom is ran-
domly chosen by the game, selects which game stage she wants to play
on.

• Race in Progress—In this state the players play the actual game.

• Game Paused—In this state the race is paused and the players are
presented with a menu. From here, the players can choose to quit the
race, unpause the game or restart the race.

• Game Over Screen—In this state the players are presented with the
positions they finished in and the times of their finishes and/or deaths.



2 SYSTEM OVERVIEW 9

Our main goal in designing the system was to divide the responsibilities of
the system across modules in a logical and intuitive manner. The following
diagram shows the modules the game is composed of as well as data and
control flow between them.

• The Logic module contains the main game loop, and calls upon the
other modules to perform tasks like receiving user input and updating
the screen. The control flow therefore goes from the Logic module to
the other modules and back again.

• The Input module is responsible for reading input from the players.
The Input module reads the button states of connected controllers
from the XNA Input module.

• The Physics module is responsible for calculating the positions and
velocities for game objects as well as detecting collisions between them.

The reason behind the division into Physics and Logic modules is
twofold—one is that we want to be able to use a physics module de-
veloped by a third party, the other is that dividing responsibilities
accross modules in this way makes each module smaller and more
manageable.

• The Graphics module is responsible for drawing to the screen. The
Graphics module reads data about the game world from the GameOb-
jects repository and utilizes calls to the XNA Graphics module to draw
the appropriate representations of the GameObjects to the screen.
Each GameObject is responsible for keeping track of its graphical rep-
resentation.



2 SYSTEM OVERVIEW 10

• The GameObjects module is a data repository containing information
about game objects such as players, traps, monsters, platforms, etc.

Note, however, that the Game Objects module it not purely a data
repository. It contains objects that have methods associated with
them.

The game runs in a continous loop, in all states of the game. In the Race
in Progress state, the following things happen during every iteration of the
loop:

1. The Logic module tells the Input module to read input from the play-
ers.

2. The Logic module tells the game objects to update themselves. For
player objects, this includes making use of the new input. These up-
dates can cause the game to play sound effects.

3. The Logic module tells the Physics module to calculate positions and
velocities for all game objects and to detect collisions between them.
Collisions between game objects can cause the game to play sound
effects.

4. The Logic module tells the Graphics module to update the graphics
on the screen.

In all other states, the following things happen during every iteration of the
loop:

1. The Logic module tells the Input module to read input from the play-
ers.

2. The Logic module interprets the input. This may cause the game to
play sound effects.

3. The Logic module tells the Graphics module to update the graphics
on the screen.



2 SYSTEM OVERVIEW 11

2.3 Detailed Architecture

The following diagram shows data and order of execution during an iteration
of the game loop in the general case. Recall that the Logic module calls upon
the other modules during the game loop; the control flow goes from the Logic
module and back again.



2 SYSTEM OVERVIEW 12

The following diagram shows data and order of execution during an iteration
of the game loop in the case of a player jumping. Recall that the Logic
module calls upon the other modules during the game loop; the control flow
goes from the Logic module and back again.



3 DESIGN CONSIDERATIONS 13

3 Design Considerations

Most of the design considerations that will have to be made during devel-
opment stem from the fact that the software will be developed for the Xbox
360 games console. Further considerations must also be made due to the
fact that the game will use the XNA framework, which means it will run on
the .NET Portable Framework present on the Xbox 360.

3.1 Assumptions and Dependencies

3.1.1 Related Software and Hardware

• Xbox 360 games console—The main hardware platform for Scary Mon-
sters.

• Xbox 360 gamepads—The input devices used to play the game.

• XNA Framework—A game programming library that will be used in
the development of Scary Monsters.

• .NET Portable Framework Class Library—A class library that will be
used in the development of Scary Monsters.

• .NET Portable Framework—The environment in which the interpreted
code will run on the Xbox 360.

3.1.2 End-user Characteristics

Our target end-user has previous experience with the Xbox 360 game console
or other similar game systems, at least to the extent that she is familiar and
comfortable with a gamepad as an input device. Except for being able to
operate the Xbox 360 console, no further technical knowledge is required
from the user.

3.1.3 Possible and/or Probable Changes in Functionality

The following changes in functionality will possibly or likely take place dur-
ing the course of development:

• Changes to game-related constants, such as the running speed of the
characters or how many lives each player start out with.

• Replacing the Farseer physics library with our own code in case inte-
gration of Farseer proves to be problematic.

• The addition of new types of game objects, such as new enemies or
power-ups.



3 DESIGN CONSIDERATIONS 14

3.2 General Constraints

3.2.1 Xbox 360 Hardware

The Xbox 360 has 512 MB of RAM. However, not all of it is available to us
at any one time since the .NET Portable Framework, Xbox 360 operating
system and Xbox 360 dashboard need RAM of their own. The consequences
of this is that we will definitely not be able to load more than 512 MB
worths of data into memory and that we can never be sure exactly how
much memory is available to us.

Due to the fact that XNA uses the .NET Portable Framework, Scary
Monsters will not be able to use the processors on the Xbox 360 to their
fullest potential. The nature of this constraint is described in detail below:

(...) the Xbox 360 CPU cores have a couple of interesting
problems associated with them. First, they have no out-of-order
instruction fixup. This means that if the instructions arrive at
the CPU in a way that isnt optimal, the CPU generates stalls to
keep things in sync. This is in direct contrast to the Intel and
AMD CPUs for Windows, which have a fair amount of logic to re-
order instructions as they come in to help the CPU digest them.
The Xbox 360 CPUs are also RISC-based processors. A complex
instruction set processor like the Intel and AMD processors have
many, many complex, essentially single-step instructions to do
what will take 2 to 5 instructions to perform on a RISC proces-
sor. Since we are compiling this to MSIL and then Just-In-Time
compiling it on the Xbox 360, the compiler doesn’t have a lot
of opportunity to reorder instructions the way the C++ com-
piler can. It also doesn’t get much opportunity to make use of
the tremendous numbers of registers on the Xbox 360 to prevent
load and storing from memory to the actual operations. Since
the C++ compiler is an offline compiler, it can crunch on the
code and help the Xbox 360 processor by reordering instructions
that would cause these stalls and also be “register aware” to pre-
vent loads and stores. The MSIL compiler won’t do this because
it is processor agnostic, and the JITer is blissfully unaware of
the CPU issues on the Xbox 360. The JITer must brute force
everything.

The above is a quote from an article published on the XNA Creators Club
homepage. The full article can be found at: http://creators.xna.com/
Downloads/GameStudio2/Optimization%20Tutorial%20-%20Particles
%20and%20High-Frequency%20Code.doc

The consequences of this is that if our code uses a lot of instruction
jumps it might run unacceptably slow on the Xbox 360. It might become
necessary to optimize the code by reducing the number of method calls.



3 DESIGN CONSIDERATIONS 15

3.2.2 The Living Room as the End-User Environment

A multitude of our possible user base will probably use our software in their
living room, with their Xbox 360s connected to a television set. That means
that the final output image from the Xbox360 might be downscaled to a low
resolution (480 or 525 vertical lines) and / or viewed at a distance. This has
several consequences, but the most important one is that small text might
be hard to read in these conditions.

3.2.3 TV-Safe Areas

Older television sets are sometimes unable to display a complete picture,
resulting in the edges of the picture being cut off. This means that im-
portant information, such as instructions to the players, should be kept
within the “title-safe area” of the screen. For more information, see: http:
//en.wikipedia.org/wiki/Safe_area

3.2.4 The Xbox 360 Gamepad as an Input Device

The Xbox 360 gamepad has no keyboard by default, though it can be pur-
chased as an accessory. Text input is possible without the keyboard, but
can be frustrating and time-consuming and so it should be avoided.

3.2.5 Complying with Xbox 360 Interface Standards

In most Xbox 360 user interfaces, “green” means moving forwards in a menu
and “red” means going backwards. Scary Monsters should ideally follow this
standard, in order not to confuse players.

3.2.6 Performance Requirements

Responsiveness and a stable frame rate are more important in games than
in many other applications. If the user can detect decreases in frame rate or
feels that the game is unresponsive it will have a significant negative impact
on the user experience.

3.2.7 Storage Devices on the Xbox 360

Most Xbox 360 consoles that are sold today come equipped with a hard
drive, but there are older models that lack hard drives. Some form of storage
device is required to play XNA games, however, and thus it is safe to assume
that the user has at least a memory card. The size of the smallest memory
card is 64 megabytes, and most likely the user has data on the memory card
that she does not wish to delete to make room for Scary Monsters. Thus,
any increase in the storage requirements for Scary Monsters will mean a
decrease in the potential user base.



4 GRAPHICAL USER INTERFACE 16

4 Graphical User Interface

4.1 User Interface Overview

The user interface is divided across five screens (see section 2.2 for a state
diagram):

• Character Select Screen

• Game Stage Select Screen

• Game Screen

• Pause Screen

• Game Over Screen

The players are initially presented with the Character Selection Screen. At
this screen each player confirms her participation in the race and selects a
character.

When the players have confirmed they are done selecting characters they
are taken to the Game Stage Selection Screen. The player who gets to choose
what game stage to play on is chosen by the game at random. In order to
start the race the chosen player selects one of the game stages.

When the game stage is chosen the players are taken to the Game Run-
ning Screen. This is where the actual game is played.

At any time during the race, players may pause the game. They are then
presented with the Pause Screen. From the Pause Screen they can either
choose to resume the race, restart the race or exit to the Character Selection
Screen.

After the race is finished the Game Over Screen is shown, where the
players are presented with their finish and/or death times. When every
player has confirmed that they are done viewing the results, the game returns
to the Character Selection Screen.



4 GRAPHICAL USER INTERFACE 17

4.2 Pictures

4.2.1 Character Selection Screen

This is the character selection screen. Players must first press the Start
button in order to confirm their participation in the next race (1). Once
a player has confirmed that she is to participate she can select one of the
characters in the table in the middle of the screen (4). The players move
selection arrows (5) with the analog sticks on their gamepads between the
characters and confirm their choices by pressing the A button (2). A player
may not choose the same character as someone else. If a character has
been selected, its table cell turns grey (6). A player can undo her choice
of character by pressing the B button. The arrows have different colors to
make them distinguishable from each other. Once a player has selected a
character she confirms that she is ready to start the race by pressing the
Start button (3). When every participating player has done so they are
taken to the game stage selection screen.

This screen fulfills the functional requirement that the players shall be
able to select characters (Requirements Document section 4.1.2, requirement
8(a)).



4 GRAPHICAL USER INTERFACE 18

4.2.2 Game Stage Selection Screen

This is the Game Stage Selection Screen. A player is chosen, at random by
the game, to choose a game stage (in this case player 3). While the chosen
player browses the available game stages, the background changes to show
a preview of the game stage currently pointed at by the arrow.

This screen fulfills the functional requirement that a randomly chosen
player shall be able to select a game stage (Requirements Document section
4.1.2, requirements 8(d) and 8(e)).



4 GRAPHICAL USER INTERFACE 19

4.2.3 Game Screen

This is the game screen, where the actual game is played. The game elements
(see Requirements Document section 4.1.2, requirements 1(b), 1(e) and 2(a))
shown here are:

1. A trap (a stationary cactus)

2. A power-up dispenser (currently showing the levitation power-up icon)

3. A monster

4. A springboard

5. Players

6. A platform

This screen also shows the head-up display. Each player is shown her
two power-up slots (7) and how many lives she has left (8). Player one has
her head-up display to the far left of the screen. Player two has her head-up
display to the right of player one’s, and so on, with player four having her
head-up display to the far right. In the picture above, only player one and
two are playing. (See Requirements Document section 4.1.2, requirement
5(a))

Notice also that the screen is not split up into smaller areas for each
player. Instead the players all use the whole screen when playing. (See
Requirements Document section 4.1.2, requirement 5(b))



4 GRAPHICAL USER INTERFACE 20

4.2.4 Pause Screen

This is the Pause Screen. While a race is in progress, any player may press
the Start button on her gamepad to pause the game. When the game is
paused, everything in the race freezes and the players are presented with
the pause menu. Only the player that paused the game may navigate the
pause menu. (See Requirements Document section 4.1.2, requirement 9)

4.2.5 Game Over Screen



4 GRAPHICAL USER INTERFACE 21

This is the Game Over Screen. When all players have either reached the
finish point or lost all of their lives, the race ends and the Game Over Screen
is shown. Here, the players are presented with their finish times and/or death
times. (See Requirements Document section 4.1.2, requirement 10(a))

4.2.6 Game Stage Elements

The picure above shows the game stage elements as described in the Re-
quirements Document section 4.1.2, requirement 2 with subitems.



4 GRAPHICAL USER INTERFACE 22

4.2.7 Power-up Icons

These are the power-up icons. They are shown both on the power-up dis-
pensers and as part of the head-up display (see section 4.2.3).

These icons correspond to the power-ups described in the Requirements
Document section 4.1.2, requirement 4(d).



5 DESIGN DETAILS 23

5 Design Details

5.1 CRC cards

5.1.1 ScaryMonsters

Responsibilities:

• To start up the game and keep it running until the user wants to quit.

• To instantite and store the instances of Logic, Physics, Input, Graph-
ics, GameObjects and Camera.

Collaborators:

• CharacterSelectionScreen

• GameStageSelectionScreen

• GameRunningScreen

• PauseScreen

• GameOverScreen

5.1.2 Logic

Responsibilities:

• Enforcing game rules.

Collaborators:

• GameObjects

5.1.3 Input

Responsibilities:

• To instantiate and store four Controllers.

• To provide methods that abstract details of the input mechanism.

Collaborators:

• Controller



5 DESIGN DETAILS 24

5.1.4 Physics

Responsibilities:

• To update the game objects’ positions and velocities.

• To detect collisions between game objects.

Collaborators:

• GameObjects

• Geometry (Farseer)

5.1.5 Graphics

Responsibilities:

• To draw everything

Collaborators:

• GraphicsDevice (XNA)

• GameObjects

• SpriteObject

• ModelObject

• Camera

5.1.6 GameObjects

Responsibilities:

• To load GameStages from files and store them.

• To store all instances of subclasses GameObject in the game.

Collaborators:

• GameStage

• Player

• Trap

• MovingPlatform

• Monster

• SpringBoard



5 DESIGN DETAILS 25

• BoxingGlove

• Claw

• ShrinkingRay

• BananaPeel

• Fetter

• StartingPoint

• FinishPoint

• PowerupDispenser

5.1.7 Camera

Responsibilities:

• To store the camera position.

• To update the camera position properly as the game progresses.

Collaborators:

• GameObjects

• Player

5.1.8 GameStage

Responsibilities:

• To represent a Game Stage; keeping track of platforms, finish point
and start points.

Collaborators:

• StartPoint

• FinishPoint

5.1.9 GameObject (abstract class, extends Geometry)

Responsibilities:

• To store the position, rotation and physical model of an object in the
game.

No collaborators.



5 DESIGN DETAILS 26

5.1.10 SpriteObject (abstract class, extends GameObject)

Responsibilities:

• To store the graphical representation (a sprite) of a GameObject.

No collaborators.

5.1.11 ModelObject (abstract class, extends GameObject)

Responsibilities:

• To store the graphical representation (a model) of a GameObject.

No collaborators.

5.1.12 Controller

Responsibilities:

• Represents a game pad device.

• Abstract details that is not important to the game.

Collaborators:

• GamePad (XNA)

5.1.13 Path

Responsibilities:

• To represent a path that a MovingPlatform or Trap follows.

No collaborators.

5.1.14 Effect (abstract class)

Responsibilities:

• Provide shared functionality for all Effects.

No collaborators.

5.1.15 StunEffect (extends Effect)

Responsibilities:

• Provides functionality associated with stun effects.

Collaborators:

• Player

• Monster



5 DESIGN DETAILS 27

5.1.16 ShrinkEffect (extends Effect)

Responsibilities:

• Provides functionality associated with the Shrinking Ray power-up.

Collaborators:

• Player

• Monster

5.1.17 SpeedEffect (extends Effect)

Responsibilities:

• Provides functionality associated with the Speed Boost power-up.

Collaborators:

• Player

5.1.18 LevitationEffect (extends Effect)

Responsibilities:

• Provides functionality associated with the Levitation power-up.

Collaborators:

• Player

5.1.19 InvulnerabilityEffect (extends Effect)

Responsibilities:

• Provides functionality associated with invulnerability effects.

Collaborators:

• Player

5.1.20 FetterEffect (extends Effect)

Responsibilities:

• Provides functionality associated with the Fetter power-up.

Collaborators:

• Player

• Monster



5 DESIGN DETAILS 28

5.1.21 ClawEffect (extends Effect)

Responsibilities:

• Provides functionality associated with the Claw power-up.

Collaborators:

• Player

• Monster

5.1.22 SlipEffect (extends Effect)

Responsibilities:

• Provides functionality associated with the Banana Peels power-up and
with slippery ground.

Collaborators:

• Player

• Monster

5.1.23 Player (extends ModelObject)

Responsibilities:

• To represent player.

• To update the player—getting input from a Controller and updating
the Effects it is affected by.

Collaborators:

• Controller

• Effect

5.1.24 Monster (extends ModelObject)

Responsibilities:

• To represent a monster.

• To update the monster—updating the movement of the monster and
updating the Effects it is affected by.

Collaborators:

• Effect



5 DESIGN DETAILS 29

5.1.25 MovingPlatform (extends GameObject)

Responsibilities:

• To represent a moving platform; keeping track of position and path.

Collaborators:

• Path

5.1.26 PowerupDispenser (extends SpriteObject)

Responsibilities:

• Represents a power-up dispenser.

No collaborators.

5.1.27 FinishPoint (extends SpriteObject)

Responsibilities:

• Represents the Finish Point

No collaborators.

5.1.28 StartingPoint (extends GameObject)

Responsibilities:

• Represents a Starting Point

No collaborators.

5.1.29 Springboard (extends ModelObject)

Responsibilities:

• Represents a Springboard

No collaborators.

5.1.30 Trap (extends ModelObject)

Responsibilities:

• Represents a trap.

No collaborators.



5 DESIGN DETAILS 30

5.1.31 BoxingGlove (extends SpriteObject)

Responsibilities:

• Represents a boxing glove that is spawned when the Boxing Glove
Power-up is applied.

No collaborators.

5.1.32 Fetter (extends SpriteObject)

Responsibilities:

• Represents a fetter that is spawned when the Fetter Power-up is ap-
plied.

No collaborators.

5.1.33 ShrinkingRay (extends SpriteObject)

Responsibilities:

• Represents a shrinking ray that is spawned when the Shrinking Ray
Power-up is applied.

No collaborators.

5.1.34 Claw (extends SpriteObject)

Responsibilities:

• Represents a claw that is spawned when the Claw Power-up is applied.

No collaborators.

5.1.35 BananaPeel (extends SpriteObject)

Responsibilities:

• Represents a banana peel that is spawned when the Banana Peels
Power-up is applied.

No collaborators.



5 DESIGN DETAILS 31

5.1.36 CharacterSelectionScreen

Responsibilities:

• Represent the state in which the players select characters.

• Keep track of which players are in the game and what characters they
have selected.

Collaborators:

• Controller

• Input

• Graphics

5.1.37 GameStageSelectionScreen

Responsibilities:

• Represent the Game Stage select state.

• Keep track of who gets to select the game stage.

• Keep track of what game stage the player selects.

Collaborators:

• Menu

• MenuItem

• Controller

• Input

5.1.38 GameRunningState

Responsibilities:

• Represent the Game Running State (i.e. a race).

• Keep track of everything that happens within the game, through the
use of the collaborators.

Collaborators:

• Logic

• Controller



5 DESIGN DETAILS 32

• Input

• Physics

• Graphics

• GameObjects

• Camera

• HUD

• PauseScreen

5.1.39 PauseScreen

Responsibilities:

• Represent the Pause State.

• Keep track of who has paused the game, and what she selects.

Collaborators:

• Controller

• Menu

• MenuItem

5.1.40 GameOverScreen

Responsibilities:

• Represent the Game Over State.

• Shows finishing times.

• Keeps track of if the players have pressed Start or not, in effect keeping
track of when to leave this state and go back to the character selection
state.

Collaborators:

• Controller



5 DESIGN DETAILS 33

5.1.41 Menu

Responsibilities:

• Represent a menu.

• Show menu items.

• Keeps track of what item the user selects.

Collaborators:

• MenuItem

• Controller

5.1.42 MenuItem

Responsibilities:

• Represent a menu item, consisting of text and images.

No Collaborators.

5.1.43 HUD

Responsibilities:

• Represent the HUD during a race.

• Show the players’ current number of lives left and currently available
power-ups.

Collaborators:

• Player



5 DESIGN DETAILS 34

5.2 Class Diagram

5.3 State Charts

5.3.1 Overall system

See section 2.2 for a description of the state chart.



5 DESIGN DETAILS 35

5.4 Interaction Diagrams

The following diagram shows the processes involved in the main game loop.



5 DESIGN DETAILS 36

5.5 Detailed Design

5.5.1 ScaryMonsters

The ScaryMonsters class extends the Game class in XNA
(Microsoft.Xna.Framework.Game).
ScaryMonsters is responsible for starting up the game. It is also responsible
for updating and drawing the different screens in the game. The currently
active screen is stored in the activeScreen field.

Fields:

• private GraphicsDeviceManager device

• private IScreen activeScreen

Properties:



5 DESIGN DETAILS 37

• public IScreen ActiveScreen

Methods:

• ScaryMonsters()

Access modifier: public
Parameters: None
Return value: None
Description: The constructor of the ScaryMonsters class. Instanti-
ates the XNA class GraphicsDeviceManager.
Data it accesses: None
Preconditions: None
Postconditions: The GraphicsDeviceManager has been instantiated.
Called by: Main()
Calls: None

• LoadContent()

Access modifier: protected
Parameters: None
Return value: None
Description: Instantiates a CharacterSelectScreen and sets it as the
currently active screen.
Data it accesses: None
Preconditions: None
Postconditions: A CharacterSelectionScreen is made the currently
active screen.
Called by: Game.Run()
Calls: CharacterSelectionScreen()

• Update()

Access modifier: protected
Parameters: None
Return value: None
Description: This method calls the Update() methods on the cur-
rently active screen.
Data it accesses: None
Preconditions: this.Initialize() must have been ran.
Postconditions: Update() has been called on the active screen.
Called by: Game.Run()
Calls: activeScreen.Update()

• Draw()

Access modifier: protected
Parameters: None



5 DESIGN DETAILS 38

Return value: None
Description: Calls the Draw() method on the currently active screen.
Data it accesses: None
Preconditions: this.LoadContent() must have been ran.
Postconditions: None
Called by: Game.Run()
Calls: activeScreen.Draw()

5.5.2 IScreen (interface)

IScreen is an interface that defines what methods a class needs to implement
in order to function as a “screen”.

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates this screen.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: ScaryMonsters.Update()
Calls: Varies, because this is an interface.

• Draw()

Access modifier: public
Parameters: None
Return value: None
Description: Draws this screen.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: ScaryMonsters.Update()
Calls: Graphics.Draw(IScreen)

5.5.3 CharacterSelectionScreen

The CharacterSelectionScreen class implements the IScreen interface. It
represents the character selection screen in the game. It is responsible for
providing a menu that lets players select characters.

It is also responsible for instantiating the GameStageSelectionScreen
class and changing the ActiveScreen property in the ScaryMonsters instance,
when the players are done selecting characters. Finally it is responsible for



5 DESIGN DETAILS 39

providing the GameStageSelectionScreen class with data on what player se-
lected which character.

The CharacterSelectionScreen class implements requirement 8(a), sec-
tion 4.1.2 in the Requirements Document.
Fields:

• private ScaryMonsters game

• private Graphics graphics

• private Input input

Properties:

• public ScaryMonsters Game

• public Graphics Graphics

• public Input Input

Methods:

• CharacterSelectionScreen(ScaryMonsters game)

Access modifier: public
Parameters:
ScaryMonsters game - the ScaryMonsters instance
Return value: None
Description: The constructor of the CharacterSelectionScreen class.
Instantiates Graphics and Input and stores a reference to each instance
in the fields.
Data it accesses: None
Preconditions: None
Postconditions: Graphics and Input have both been instantiated
and the instances stored in the fields of this instance of CharacterSe-
lectionScreen.
Called by: ScaryMonsters.LoadContent()
Calls: None

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Calls Update() on input.

If during the Update method the class notices that the players are
done selecting characters, this method instantiates the GameStageS-
electionScreen class and sets the instance as the activeScreen on the



5 DESIGN DETAILS 40

ScaryMonsters instance game.
Data it accesses: None
Preconditions: None
Postconditions: Update() has been called on input.
Called by: ScaryMonsters.Update()
Calls: Input.Update(), GameStageSelectionScreen()

• Draw()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the CharacterSelectionScreen by calling Draw(this)
on graphics.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: ScaryMonsters.Draw()
Calls: Graphics.Draw(IScreen)

5.5.4 GameStageSelectionScreen

The GameStageSelectionScreen class implements the IScreen interface. It
represents the game stage selection screen in the game. It is responsible for
providing a menu that lets players select which game stage to play on. It is
also responsible for instantiating the GameRunningScreen class and making
it the currently active screen.

The GameStageSelectionScreen class implements requirement 8(d), sec-
tion 4.1.2 in the Requirements Document.

Fields:

• private ScaryMonsters game

• private Graphics graphics

• private Input input

• private Controller[] controllers

• private int[] characters

Properties:

• public ScaryMonsters Game

• public Graphics Graphics

• public Input Input



5 DESIGN DETAILS 41

Methods:

• GameStageSelectionScreen(ScaryMonsters game, Controller[] controllers,
int[] characters)

Access modifier: public
Parameters:
ScaryMonsters game - the ScaryMonsters instance
Controller[] controllers - an array of size 4 with the Controllers of the
players that are going to participate in the upcoming race. int[] char-
acters - an array of size 4 with integers representing the characters
that was chosen by the players during character selection.
Return value: None
Description: The constructor of the GameStageSelectionScreen class.
Instantiates Graphics and Input and stores a reference to each instance
in the fields.

The controllers and characters parameters are saved for when this class
instantiates the GameRunningClass.
Data it accesses: None
Preconditions: None
Postconditions: Input and Graphics have been instantiated and the
instances stored in the fields of this instance of GameStageSelection-
Screen.
Called by: ScaryMonsters.LoadContent()
Calls: None

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Calls Update() on input.

Also, if a game stage has been selected, this method is responsible
for instantiating the GameRunningScreen class and setting it as the
active screen in the ScaryMonsters instance game.
Data it accesses: None
Preconditions: None
Postconditions: Update() has been called on input.
Called by: ScaryMonsters.Update()
Calls: Input.Update(), GameRunningScreen()

• Draw()

Access modifier: public
Parameters: None
Return value: None



5 DESIGN DETAILS 42

Description: Draws the GameStageSelectionScreen by calling Draw(this)
on graphics.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: ScaryMonsters.Draw()
Calls: Graphics.Draw(IScreen)

5.5.5 GameRunningScreen

The GameRunningScreen class implements the IScreen interface. It repre-
sents the race state (the actual game).

The GameRunningScreen class implements requirement 9, section 4.1.2
in the Requirements Document.

Fields:

• private ScaryMonsters game

• private Logic logic

• private Physics physics

• private Graphics graphics

• private Input input

• private GameObjects gameObjects

• private Camera camera

Properties:

• public ScaryMonsters Game

• public Logic Logic

• public Physics Physics

• public Graphics Graphics

• public Input Input

• public GameObjects GameObjects

• public Camera Camera

Methods:



5 DESIGN DETAILS 43

• GameRunningScreen(ScaryMonsters game, Controller[] controllers, int[]
characters, int gameStage)

Access modifier: public
Parameters:
ScaryMonsters game - the ScaryMonsters instance
Controller[] controllers - the controllers that the participating players
use
int[] characters - integers that tell which characters the players have
chosen to play as
int gameStage - an integer that tells which game stage to play on
Return value: None
Description: The constructor of the GameRunningScreen class. In-
stantiates Logic, Physics, Graphics, Input, GameObjects and Camera
and stores a reference to each instance in the fields.

When the GameObjects class is instantiated, the parameters con-
trollers, characters and gameStage is used to create the correct char-
acters and instantiate the correct GameStage.
Data it accesses: None
Preconditions: None
Postconditions: Logic, Physics, Graphics, Audio, Input, GameOb-
jects and Camera have all been instantiated and the instances stored
in the fields of this instance of GameRunningScreen.
Called by: GameStageSelectionScreen.Update()
Calls: None

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Calls Update() on logic, physics, input, gameObjects
and camera.

Also, if the race is over, this method instantiates the GameOverScreen
class, passing informating about finish times and death times to the
GameOverScreen constructor.
Data it accesses: None
Preconditions: None
Postconditions: Update() has been called on logic, physics, input,
gameObjects and camera.
Called by: ScaryMonsters.Update()
Calls: Logic.Update(), Physics.Update(), Input.Update(), GameOb-
jects.Update(), Camera.Update(), GameOverScreen()

• Draw()



5 DESIGN DETAILS 44

Access modifier: public
Parameters: None
Return value: None
Description: Draws the GameRunningScreen by calling Draw(this)
on graphics.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: ScaryMonsters.Draw()
Calls: Graphics.Draw(IScreen)

5.5.6 GameOverScreen

The GameOverScreen class implements the IScreen interface. It represents
the game over screen in the game. It is responsible for providing information
to the players about their finishing and/or death times.

It is also responsible for instantiating the CharacterSelectionScreen class
and making it the active screen in the ScaryMonsters instance game, once
the players are done viewing the results of the last race.

The GameOverScreen class implements requirement 10(a), section 4.1.2
in the Requirements Document.

Fields:

• private ScaryMonsters game

• private Graphics graphics

• private Input input

Properties:

• public ScaryMonsters Game

• public Graphics Graphics

• public Input Input

Methods:

• GameOverScreen(ScaryMonsters game, bool[] finished, int[] times)

Access modifier: public
Parameters:
ScaryMonsters game - the ScaryMonsters instance
bool[] finished - an array with four slots, where true means that the
player associated with that slot finished the race, and false means that
the player died.



5 DESIGN DETAILS 45

int[] times - an array with four slots containing the finish times and/or
death times for each player, measured in ms. If the time is 0 in some
slot, it means that the player associated with the slot did not partici-
pate.
Return value: None
Description: The constructor of the GameOverScreen class. Instan-
tiates Graphics and Input and stores a reference to each instance in
the fields.
Data it accesses: None
Preconditions: None
Postconditions: Input and Graphics have been instantiated and the
instances stored in the fields of this instance of GameStageSelection-
Screen.
Called by: GameRunningScreen.Update()
Calls: None

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Calls Update() on input.

Also, if the players have signified that they are done viewing the results
of the race, this method instantiates the CharacterSelectionScreen
class, and makes it the active screen in the ScaryMonsters instance
game.
Data it accesses: None
Preconditions: None
Postconditions: Update() has been called on input.
Called by: ScaryMonsters.Update()
Calls: Input.Update(), CharacterSelectionScreen()

• Draw()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the GameOverScreen by calling Draw(this) on
graphics.
Data it accesses: None
Preconditions: None
Postconditions:
Called by: ScaryMonsters.Draw()
Calls: Graphics.Draw(IScreen)



5 DESIGN DETAILS 46

5.5.7 Menu

A Menu represents a menu in the game. Each menu has several options that
are represented by MenuItem objects.

Fields:

• private List<MenuItem> menuItems

• private MenuItem currentItem

• private bool done

• private Texture2D arrowGraphic

No properties

Methods:

• Menu()

Access modifier: public
Parameters:
ScaryMonsters game - the ScaryMonsters instance
Return value: None
Description: The constructor of the Menu class. Instantiates a List
of MenuItems.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameRunningScreen.GameRunningScreen(), CharacterS-
electionScreen.CharacterSelectionScreen(), GameStageSelectionScreen.GameStageSelectionScreen(),
GameOverScreen.GameOverScreen()
Calls: None

• AddMenuItem(MenuItem item)

Access modifier: public
Parameters: None
Return value: None
Description: Adds a MenuItem to this Menu
Data it accesses: None
Preconditions: None
Postconditions: item has been added to menuItems.
Called by: GameRunningScreen.GameRunningScreen(), CharacterS-
electionScreen.CharacterSelectionScreen(), GameStageSelectionScreen.GameStageSelectionScreen(),
GameOverScreen.GameOverScreen()
Calls: None



5 DESIGN DETAILS 47

• GetSelectedItem()

Access modifier: public
Parameters: None
Return value: A MenuItem representing the item that was selected
in the menu or null
Description: The getSelectedItem method returns the MenuItem
that was selected in the menu (currentItem) or null in case the user
hasn’t confirmed her selection yet (done is still set to null)
Data it accesses: currentItem
Preconditions: None
Postconditions: The currently selected MenuItem has been returned
Called by: GameRunningScreen.Update(), CharacterSelectionScreen.Update(),
GameStageSelectionScreen.Update(), GameOverScreen.Update()
Calls: None

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Checks wheter the stick on the controller has been
moved or the A button has been pushed. If the stick has been moved,
iterate one step forwards or backwards through the menuItems list
depending on if the stick was moved downwards or upwards. If the A
button has been pushed, set done to true.
Data it accesses: Gains access to player input data from the IS-
creen.Input property
Preconditions: None
Postconditions: None.
Called by: GameRunningScreen.Update(), CharacterSelectionScreen.Update(),
GameStageSelectionScreen.Update(), GameOverScreen.Update()
Calls: None

• Draw()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the Menu and its MenuItems. An arrow is drawn
next to the currently selected menu item (currentItem) to indicate
which item is currently selected.
Data it accesses: None
Preconditions: None
Postconditions: The menu screen has been drawn.
Called by: ScaryMonsters.Draw()
Calls: Graphics.Draw(IScreen)



5 DESIGN DETAILS 48

5.5.8 MenuItem

Fields:

• private String label

• private int value

• private Vector2 position

Properties:

• public String Label

• public int Value

• public Vector2 Position

Methods:

• MenuItem(String label, int value, Vector2 position) Access modifier:
public
Parameters:
String label—The text that will be used to draw the graphical repre-
sentation of this menu item.
int value—An integer representing this menu item. These should map
to constants defined in the class instantiating the menu item.
Vector2 position—A 2D vector representing where on the screen the
menu item should be drawn

Return value: None
Description: The constructor of the MenuItem class.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameRunningScreen.GameRunningScreen(), CharacterS-
electionScreen.CharacterSelectionScreen(), GameStageSelectionScreen.GameStageSelectionScreen(),
GameOverScreen.GameOverScreen()
Calls: None

5.5.9 HUD

The HUD class implements requirement 5(a), section 4.1.2 in the Require-
ments Document.

Fields:

1. List<Texture2D> powerUpIcons



5 DESIGN DETAILS 49

No properties
Methods:

• HUD()

Access modifier: public
Parameters: None
Return value: None
Description: The constructor for the HUD class. Instantiates a List
of Texture2Ds, and loads the appropriate power-up graphics, storing
them in the powerUpIcons list.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameRunningScreen.GameRunningScreen()
Calls: None

• Draw() Access modifier: public
Parameters: None
Return value: None
Description: Draws the HUD, drawing player lives and icons repre-
senting their available power-ups on the screen.
Data it accesses: GameRunningScreen.GameObjects
Preconditions: None
Postconditions: Up-to-date player information has been drawn to
the screen
Called by: GameRunningScreen.Draw()
Calls: None

5.5.10 Logic

The Logic class handles game rules that are not easily implemented in the
CollisionCallback methods of the GameObjects, such as keeping track of
whether all players have reached the finish point.

The Logic class implements requirement 6(a), section 4.1.2 in the Re-
quirements Document.

Fields:

• private IScreen screen

Properties: None
Methods:

• Update()

Access modifier: public
Parameters: None



5 DESIGN DETAILS 50

Return value: None
Description: This metod is responsible for updating game objects.
Data it accesses: Data in GameObjects.
Preconditions: None
Postconditions: The game has been updated according to the game
rules.
Called by: Update() in the GameRunningScreen instance.
Calls: Update() on all GameObject instances.

5.5.11 Input

Fields:

• private ScaryMonsters game

• private List<Controller> controllers

Properties: None
Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: This metod is responsible for updating the Controllers.
Data it accesses: None
Preconditions: None
Postconditions: The Controllers have been updated.
Called by: Update() in an instance of any of the GameRunningScreen,
CharacterSelectionScreen, GameStageSelectionScreen or GameOver-
Screen classes.
Calls: Update() on the four Controller instances.

• PressedStart()

Access modifier: public
Parameters: None
Return value: A Controller that pressed start, or null if no one
pressed start.
Description: Checks all four controllers for Start button presses, and
returns one that did, or null if no one did.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: Logic.Update()
Calls: None



5 DESIGN DETAILS 51

5.5.12 Controller

The Controller class helps implement requirement 1(d), section 4.1.2 in the
Requirements Document.

Fields:

• private Vector2 stick

• private bool aButton

• private bool leftTrigger

• private bool rightTrigger

• private bool startButton

Properties:

• public Vector2 Stick

• public bool Jump

• public bool Confirm

• public bool PowerupOne

• public bool PowerupTwo

• public bool Start

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the controller by checking the state of the
corresponding gamepad through XNA’s GamePad class, setting the
fields of the controller as appropriate.
Data it accesses: None
Preconditions: None
Postconditions: The controller has been updated.
Called by: Input.Update()
Calls: None



5 DESIGN DETAILS 52

5.5.13 Physics

The Physics class implements requirement 2(c), section 4.1.2 in the Require-
ments Document.

Fields:

• private ScaryMonsters game

Properties:
Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the GameObjects positions, and velocities and
checks for collisions, with the help of Farseer.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: Logic.Update()
Calls: None

5.5.14 GameObjects

Fields:

• private ScaryMonsters game

• private List<GameObject> gameObjects

• private GameStage gameStage

Properties:

• public GameStage GameStage

• public List<GameObject> GameObjects

• public List<SpriteObject> SpriteObjects

• public List<ModelObject> ModelObjects

Methods:



5 DESIGN DETAILS 53

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates all GameObjects.
Data it accesses:
Preconditions: None
Postconditions: All GameObjects are updated for this interation of
the game loop.
Called by: Logic.Update()
Calls: Update() on all GameObjects in gameObjects.

5.5.15 Graphics

Fields:

• private ScaryMonsters game

Properties:
Methods:

• DrawGame()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the GameStage and all GameObjects as well as
the head-up display.
Data it accesses: None
Preconditions: A race is in progress.
Postconditions: The game has been drawn this iteration of the game
loop.
Called by: GameRunningScreen.Draw()
Calls: DrawGameObjects(), DrawGameStage() and DrawHUD() on
itself.

• DrawGameStage()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the platforms and background of the GameStage.
Data it accesses: None
Preconditions: The right settings on the GraphicsDevice has been
set.
Postconditions: The GameStage has been drawn this iteration of
the game loop.



5 DESIGN DETAILS 54

Called by: DrawGame()
Calls: None

• DrawHUD()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the head-up display.
Data it accesses: None
Preconditions: The right settings on the GraphicsDevice has been
set.
Postconditions: The head-up display has been drawn this iteration
of the game loop.
Called by: DrawGame()
Calls: None

• DrawGameObjects()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the GameObjects.
Data it accesses: None
Preconditions: None
Postconditions: The GameObjects has been drawn this iteration of
the game loop.
Called by: DrawGame(), DrawCharacterSelectScreen()
Calls: DrawSpriteObjects(), DrawModelObjects()

• DrawSpriteObjects()

Access modifier: public
Parameters: None
Return value: None
Description: Draws the SpriteObjects in the GameObjects list.
Data it accesses: None
Preconditions: The right settings on the GraphicsDevice has been
set.
Postconditions: The SpriteObjects has been drawn this iteration of
the game loop.
Called by: DrawGameObjects()
Calls: None

• DrawModelObjects()

Access modifier: public
Parameters: None



5 DESIGN DETAILS 55

Return value: None
Description: Draws the ModelObjects in the GameObjects list.
Data it accesses: None
Preconditions: The right settings on the GraphicsDevice has been
set.
Postconditions: The ModelObjects has been drawn this iteration of
the game loop.
Called by: DrawGameObjects()
Calls: None

• Draw(IScreen screen)

Access modifier: public
Parameters:
IScreen screen - the screen that shall be drawn.
Return value: None
Description: Draws the specified screen.
Data it accesses: None
Preconditions: The right settings on the GraphicsDevice has been
set.
Postconditions: None
Called by: IScreen.Draw()
Calls: None

5.5.16 Camera

The Camera class implement requirement 5(b), 5(c) and 5(d), section 4.1.2
in the Requirements Document.

Fields:

• private Vector2 position

Properties:

• public Vector2 Position

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the camera position so that it follows the
player in the lead.
Data it accesses: None
Preconditions: None



5 DESIGN DETAILS 56

Postconditions: None
Called by: Logic.Update()
Calls: None

5.5.17 GameStage

A GameStage holds information about starting points, finish points and sta-
tionary platforms.

Fields:

• private Vector2[] startingPoints

• private int[][] platforms

• public FinishPoint finish

• public List<Monster> monsters

• public List<PowerupDispenser> powerupDispensers

• public List<MovingPlatform> movingPlatforms

• public List<SpringBoard> springBoards

• public List<Trap> traps

Properties:

• public Vector2[] StartingPoints

• public int[][] Platforms

No methods

5.5.18 GameObject

The GameObject class is an abstract class. It extends Geometry from the
Farseer physics engine.

Fields:

• protected ScaryMonsters game

Properties: None

Methods:



5 DESIGN DETAILS 57

• Update() (abstact method)

Access modifier: public
Parameters: None
Return value: None
Description: Updates the GameObject.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)
(abstract method)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: None
Description: Takes care of collisions with other objects in an ap-
properiate way.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

5.5.19 ModelObject

The ModelObject class is an abstract class. It extends the GameObject
class.

Fields:

• protected Model model

Properties:

• public Model Model

Methods: None



5 DESIGN DETAILS 58

5.5.20 SpriteObject

The SpriteObject class is an abstract class. It extends the GameObject class.

No fields

• protected Texture2D sprite

Properties:

• public Texture2D Sprite

Methods: None

5.5.21 Effect

The Effect class is an abstract class that effects such as StunEffect or
ShrinkEffect extends.

Fields:

• protected int timeLeft

No properties

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the timeLeft.
Data it accesses: timeLeft
Preconditions: None
Postconditions: None
Called by: Player.Update(), Monster.Update()
Calls: None

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None
Description: Applies the effect to the specified game object.
Data it accesses: None
Preconditions: None



5 DESIGN DETAILS 59

Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.22 StunEffect

The StunEffect class extends the Effect class. It helps implement require-
ments 2(g)iii and 3(g) of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None
Description: Makes the target game object become stunned.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.23 ShrinkEffect

The ShrinkEffect class extends the Effect class. It helps implement require-
ment 4(d)vi.B of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the ef-
fect shall apply itself.
Return value: None
Description: Shrinks the target game object, slows its movment
speed and lowers its jumping height.



5 DESIGN DETAILS 60

Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.24 SpeedEffect

The SpeedEffect class extends the Effect class. It helps implement require-
ment 4(d)iii.A of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None
Description: Increase the speed of the target.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.25 LevitationEffect

The LevitationEffect class extends the Effect class. It helps implement re-
quirement 4(d)iv.A of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None



5 DESIGN DETAILS 61

Description: Reduce the gravitational forces on the target.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.26 InvulnerabilityEffect

The InvulnerabilityEffect class extends the Effect class. It helps implement
requirement 3(f) of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None
Description: Makes the target game object invulnerable.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.27 FetterEffect

The FetterEffect class extends the Effect class. It helps implement require-
ments 4(f)v.C and 4(f)v.E of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.



5 DESIGN DETAILS 62

Return value: None
Description: Slows the movement speed and reduces the jumping
height of the target game object.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.28 ClawEffect

The ClawEffect class extends the Effect class. It helps implement require-
ment 4(d)ii.C of section 4.1.2 in the Requirements Document.

Fields:

1. private Player clawOwner

No properties

Methods:

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None
Description: Pulls the target game object towards the clawOwner.
When the target game object has reached the clawOwner it sticks to
the clawOwner and follows the her around.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.29 SlipEffect

The SlipEffect class extends the Effect class. It helps implement require-
ments 2(a)viii and 4(d)vii.C of section 4.1.2 in the Requirements Document.

No fields

No properties

Methods:



5 DESIGN DETAILS 63

• Apply(GameObject target)

Access modifier: public
Parameters: GameObject target - the game object to which the
effect shall apply itself.
Return value: None
Description: Decreases the rate of acceleration and deceleration of
the target game object.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: GameObject.Update()
Calls: None

5.5.30 Player

The Player class represents the player in the game, as specified in require-
ment 1(b), section 4.1.2 in the Requirements Document.

The Player class extends the ModelObject class.

Fields:

• private Enum Powerup None, Fetter, BoxingGlove, ...

• private Controller controller

• private Powerup powerup1

• private Powerup powerup2

• private List<Effect> effects

• private int lives

• private bool active

No properties

Methods:

• Update()
Access modifier: public
Parameters: None
Return value: None
Description: Updates the player and takes approperiate action ac-
cording to what buttons the player has pressed
Data it accesses: effects, controller, powerup1, powerup2
Preconditions: None



5 DESIGN DETAILS 64

Postconditions: The player position and speed has been updated.
Called by:
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

• FirePowerup(int slot)

Access modifier: private
Parameters: slot - the slot which the power-up we want to fire is in
Return value: None
Description: Fires a powerup.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: Player.Update()
Calls: None

• Run(int direction)

Access modifier: Private
Parameters: direction - the direction the player wants to run in
Return value: None
Description: Makes the player run.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: Player.Update()
Calls: None

• Jump()



5 DESIGN DETAILS 65

Access modifier: private
Parameters: None
Return value: None
Description: Makes the player jump.
Data it accesses: Geometry data field for speed
Preconditions: None
Postconditions: None
Called by: Player.Update()
Calls: None

• Respawn()

Access modifier: private
Parameters: None
Return value: None
Description: Takes care of everything that has do to with respawning
(see Requirements Document, section 4.1.2, item 3(k)).
Data it accesses: Geometry data field for position, active field
Preconditions: None
Postconditions: None
Called by: Player.Update()
Calls: None

5.5.31 Monster

The Monster class extends the ModelObject class.
The Monster class implement requirement 2(g), section 4.1.2 in the Re-

quirements Document.

Fields:

• private List<Effect> effects

• bool stunnable

Properties: None

Methods:

• Monster(bool stunnable)

Access modifier: public
Parameters: bool stunnable - true if the monster can get stunned by
a player when landed on
Return value: None
Description: Constructor for the Monster class.
Data it accesses: It sets the stunnable field



5 DESIGN DETAILS 66

Preconditions: None
Postconditions: None
Called by: Called once (for each monster) when the game stage is
created. The game stage, along with monsters, is then stored on the
hard drive and loaded each time a new race is going to be take place
on the game stage.
Calls: None

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the monster and takes approperiate action
Data it accesses: effects
Preconditions: None
Postconditions: The monster position and speed has been updated.
Called by:
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

• Run(int direction)

Access modifier: Private
Parameters: direction - the direction the monster wants to run
Return value: None
Description: Makes the monster run.
Data it accesses: None
Preconditions: None
Postconditions: None



5 DESIGN DETAILS 67

Called by: Monster.Update()
Calls: None

5.5.32 PowerupDispenser

The PowerupDispenser represents a power-up dispenser in the game. It
extends the SpriteObject class.

The PowerupDispenser class implement requirement 2(d), section 4.1.2
in the Requirements Document.

Fields:

• private Enum Powerup Fetter, BoxingGlove, ...

• private List<Powerup> powerups

• private int current

• private int duration

• private int timeLeft

Properties: None

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the power-up dispenser, changing the current
power-up after the specified time
Data it accesses: current, timeLeft
Preconditions: None
Postconditions: The power-up dispenser has been updated
Called by:
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and



5 DESIGN DETAILS 68

let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

5.5.33 Trap

The Trap class extends the ModelObject class.
The Trap class implement requirement 2(f), section 4.1.2 in the Require-

ments Document.

Fields:

• private bool active

• private int duration

• private int timeLeft

Properties: None

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the Trap, deciding whether it is going to be
turned on or off.
Data it accesses: active, timeLeft
Preconditions: None
Postconditions: The Trap has been updated.
Called by: None
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided



5 DESIGN DETAILS 69

Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

5.5.34 MovingPlatform

The MovingPlatform class represents a platform moving cyclically along a
path in the Game Stage described by a collection of XNA.FrameWork.Points.

The MovingPlatform class implement requirement 2(b)iv, section 4.1.2
in the Requirements Document.

Fields:

• private List<Point> path

Properties:

• public List<Point> Path

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the MovingPlatform, adjusting its movement
direction to keep it moving towards the next node on the path.
Data it accesses: None
Preconditions: None
Postconditions: The MovingPlatform has updated its movement di-
rection
Called by: None
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)



5 DESIGN DETAILS 70

g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by:
Calls: None

5.5.35 Springboard

The Springboard class represents a springboard object in the game stage,
as specified in the Requirements Document, section 4.1.2, item 2(b).

Springboard extends the ModelObject class.

No fields

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the animation of the springboard.
Data it accesses: None
Preconditions: None
Postconditions: The animation of the springboard has been up-
dated.
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.



5 DESIGN DETAILS 71

Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player or monster, then it sets
the speed of the player/monster upwards to the speed specified in the
Requirements Document, section 6, item 1(b)i.
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: PhysicsSimulator collision event
Calls: None

5.5.36 FinishPoint

The FinishPoint class represents a finishing point in a game stage, as spec-
ified in the Requirements Document, section 4.1.2, item 2(a)iv.

FinishPoint extends the SpriteObject class.

No fields

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the animation of the FinishPoint
Data it accesses: None
Preconditions: None
Postconditions: The animation of the FinishPoint has been updated
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player then play a special
animation and play a sound.
Data it accesses: None



5 DESIGN DETAILS 72

Preconditions: None
Postconditions: The animation and sounds effects are played.
Called by: PhysicsSimulator collision event
Calls: None

5.5.37 BananaPeel

The BananaPeel class represents a banana peel from the Banana Peels
power-up, as specified in the Requirements Document, section 4.1.2, item
4(d)vii.

BananaPeel extends the SpriteObject class.

Fields:

• private Player owner

No properties

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the animation of the object
Data it accesses: None
Preconditions: None
Postconditions: The animation has been updated
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player/monster that player will
have it’s acceleration/deceleration reduced and that player/monster
will be stunned (6.4(g)iii).
Data it accesses: None



5 DESIGN DETAILS 73

Preconditions: None
Postconditions: None
Called by: PhysicsSimulator collision event
Calls: None

5.5.38 Fetter

The Fetter class represents a fetter from the Fetter power-up, as specified
in the Requirements Document, section 4.1.2, item 4(d)v.

Fetter extends the ModelObject class.

Fields:

• private int placedBy

No properties

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the animation of the object
Data it accesses: None
Preconditions: None
Postconditions: The animation has been updated
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player/monster the fetter will
attach itself to it and slow it down (6.4(e)ii).
Data it accesses: None
Preconditions: None
Postconditions: None



5 DESIGN DETAILS 74

Called by: PhysicsSimulator collision event
Calls: None

5.5.39 BoxingGlove

The BoxingGlove class represents a boxing glove from the Boxing Glove
power-up, as specified in the Requirements Document, section 4.1.2, item
4(d)i.

BoxingGlove extends the ModelObject class.

No fields

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the position of the glove
Data it accesses: None
Preconditions: None
Postconditions: The position has been updated
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player/monster, it will get a
vertical speed in the same direction the glove was going. (6.4(a)ii).
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: PhysicsSimulator collision event
Calls: None



5 DESIGN DETAILS 75

5.5.40 ShrinkingRay

The ShrinkingRay class represents a shrinking ray from the Shrinking Ray
power-up, as specified in the Requirements Document, section 4.1.2, item
4(d)vi.

ShrinkingRay extends the SpriteObject class.

No fields

Methods:

• Update()

Access modifier: public
Parameters: None
Return value: None
Description: Updates the position of the shrinking ray
Data it accesses: None
Preconditions: None
Postconditions: The position has been updated
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player/monster, it will be-
come shrunk and have its maximum speed and jumping height reduced
(4(d)vi.(b)).
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: PhysicsSimulator collision event
Calls: None

5.5.41 Claw

The Claw class represents a claw from the Claw power-up, as specified in
the Requirements Document, section 4.1.2, item 4(d)ii.



5 DESIGN DETAILS 76

Claw extends the SpriteObject class.

No fields

Methods:

• Update() Access modifier: public
Parameters: None
Return value: None
Description: Updates the position of the claw
Data it accesses: None
Preconditions: None
Postconditions: The position has been updated
Called by: Logic.Update()
Calls: None

• CollisionCallback(Geometry g1, Geometry g2, ContactList contactList)

Access modifier: public
Parameters:
g1 - this object (needed because of the format of the delegate methods
that can register to the collision event)
g2 - the object that this object collided with
contactList - a list of locations where they collided
Return value: bool - false if Farseer should ignore the collision and
let the objects pass through each other.
Description: Takes care of collisions with other objects in an ap-
properiate way. If the collision is with a player/monster the claw
will grab it to itself (6.4(b)ii(b)) and the player becomes stunned
(6.4(b)ii(a))).
Data it accesses: None
Preconditions: None
Postconditions: None
Called by: PhysicsSimulator collision event
Calls: None

5.5.42 Path

The Path class represents a path that an object, such as a moving platform
(see Requirements Document, section 4.1.2, item 2(b)) or moving traps (see
Requirements Document, section 4.1.2, item 2(f)) can follow. It includes
nodes (positions) and speeds (the object following the path can change its
speed between nodes).

Fields:



5 DESIGN DETAILS 77

• private List<Vector2> points

• private List<double> speeds

Properties:

• private List<Vector2> points

• private List<double> speeds

No methods



5 DESIGN DETAILS 78

5.6 Table of References

The following is a table showing where the functional requirements (found
in the Requirements Document) are being implemented. If a functional
requirement is listed more than once, it is because it is being implemented
by more than one class or method.

Requirement Class Method
2(a)viii GameStage -
2(a)viii Player Update()
2(a)viii SlipEffect Apply()
2(b)i Monster Update()
2(b)i Player Update()
2(b)ii GameStage -
2(b)iii GameStage -
2(b)iv MovingPlatform -
2(b)iv Path -
2(b)iv GameStage -
2(b)v GameStage -
2(c) Physics Update()
2(d)i PowerupDispenser Update()
2(d)ii PowerupDispenser CollisionCallback()
2(d)iii PowerupDispenser CollisionCallback()
2(e) GameStage -
2(f)i Player CollisionCallback
2(f)ii Trap Update()
2(f)iii Trap Update()
2(f)iii Path -
2(g)i Monster Update()
2(g)ii Physics Update()
2(g)iii StunEffect Apply()
2(g)iii Monster -
2(g)iv.A Physics Update()
2(g)iv.B Player CollisionCallback()
2(g)iv.C Player CollisionCallback()
2(g)iv.C Monster CollisionCallback()
2(g)iv.C StunEffect Apply()
2(g)iv.D Player CollisionCallback()
2(g)v Monster CollisionCallback()
3(a)i Player Update()
3(a)ii Player CollisionCallback()
3(a)iii Player Update()
3(a)iv Player Update()
3(a)v Physics Update()



5 DESIGN DETAILS 79

Requirement Class Method
3(b) Player Run()
3(c) Player Jump()
3(d) Player CollisionCallback()
3(e) Player FirePowerup()
3(f) InvulnerabilityEffect Apply()
3(f) Player Update()
3(g) StunEffect Apply()
3(g) Player Update()
3(h) Player CollisionCallback()
3(i) Player CollisionCallback()
3(j) Player Update()
3(k) Player Respawn()
4(a) PowerupDispenser -
4(b) Player FirePowerup()
4(c) Player FirePowerup()
4(d)i BoxingGlove -
4(d)i.A BoxingGlove Update()
4(d)i.B BoxingGlove CollisionCallback()
4(d)i.B Player CollisionCallback()
4(d)i.C BoxingGlove CollisionCallback()
4(d)i.C BoxingGlove Update()
4(d)ii Claw -
4(d)ii.A Claw Update()
4(d)ii.B Claw CollisionCallback()
4(d)ii.B Claw Update()
4(d)ii.C ClawEffect Apply()
4(d)ii.C Player CollisionCallback()
4(d)ii.D Player Update()
4(d)ii.E Player Update()
4(d)ii.F ClawEffect -
4(d)iii.A Player FirePowerup()
4(d)iii.A SpeedEffect Apply()
4(d)iv.A Player FirePowerup()
4(d)iv.A LevitationEffect Apply()
4(d)v.A Player FirePowerup()
4(d)v.B Physics Update()
4(d)v.C Fetter Update()
4(d)v.D Fetter Update()
4(d)v.E FetterEffect Apply()



5 DESIGN DETAILS 80

Requirement Class Method
4(d)vi.A ShrinkingRay Update()
4(d)vi.B ShrinkingRay CollisionCallback()
4(d)vi.B ShrinkEffect Apply()
4(d)vi.C ShrinkingRay CollisionCallback()
4(d)vi.C ShrinkingRay Update()
4(d)vii.A Player FirePowerup()
4(d)vii.B Physics Update()
4(d)vii.C BananaPeel CollisionCallback()
4(d)vii.C StunEffect Apply()
4(d)vii.C SlipEffect Apply()
4(d)vii.D BananaPeel CollisionCallback()
5(a) HUD -
5(b) Camera -
5(c) Camera Update()
5(d) Camera Update()
5(e) Player Update()
6(a) Logic Update()
6(b) Logic Update()
6(b) Player -
6(c) Logic Update()
8(a) CharacterSelectionScreen -
8(d) GameStageSelectionScreen -
8(e) GameStageSelectionScreen -
9(a) GameRunningScreen Update()
9(b) GameRunningScreen Update()
9(c) GameRunningScreen -
10(a) GameOverScreen -



6 FUNCTIONAL TEST CASES 81

6 Functional Test Cases

Since almost all of the functional requirements in our software have to do
with graphical representations of the game state and user interaction we will
not use regular automated assertion tests. Rather, all tests will need to be
performed by a tester who monitors and interacts with the game in order to
assert that the test is successful. Our source code will include a preprocessor
debug switch—activating the switch and compiling and running the game
will result in starting a special debug version of the game.

The debug version of the game has all the features of the regular game,
but with a few changes an additional features:

• The regular game stages are not available in the debug version. In-
stead, a selection of game stages constructed especially for debugging
purposes are made available to the tester.

• The debug version skips all menus, instead starting directly on a de-
fault debug game stage. The tester can change between the available
debug game stages by pressing buttons on the keyboard or the Xbox
360 gamepad.

• By default two players are instantiated, both of which can be controlled
by the tester.

• The debug version is designed to be able to run on both the PC and
the Xbox 360 console. The game shall run in windowed mode on the
PC.

• The debug version can receive input from the keyboard and Xbox 360
gamepads. Several players can be controlled by the same keyboard, but
two Xbox 360 controllers are needed in order to control both players.

• A player can be given additional lives at any time by pushing a button
on the keyboard or the Xbox 360 gamepad

• A player can switch the contents of her first power-up slot between all
available power-ups by pushing a button on the keyboard or the Xbox
360 gamepad, giving the tester unlimited access to all power-ups

• The debug game stage can be reinitialized at any time by pushing a
button on the keyboard or the Xbox 360 gamepad

• The debug version displays the average time it took to render the last
couple of frames. The amount of frames to be averaged is defined as
a constant.

The test cases are distributed across several different debug game stages,
designed to make testing convenient.



6 FUNCTIONAL TEST CASES 82

6.1 Any Test Game Stage

The following test cases can be performed on any test game stage.

• Functionality being tested: A player is always able to change her
horizontal direction except while stunned.
Functional requirement: 3(a)iv.
Expected output: The horizontal direction changes, except when
stunned.
Procedure: While running/walking/standing still/falling/jumping try
to change the horizontal direction of the player, verify that it is possi-
ble. Get stunned (for example, let the second player jump fire a boxing
glove at the first player) and try to change the horizontal direction of
the player and verify that it is not possible.

• Functionality being tested: When a player does not receive any
horizontal input the player’s horizontal speed decreases until she has
come to a standstill.
Functional requirement: 3(a)iii.
Expected output: The horizontal speed is decreased to 0 when no
horizontal input is received from the player.
Procedure: While in a horizontal movement (for example running)
let go of the game pad and verify that the player comes to a standstill.

• Functionality being tested: Two players can not occupy the same
space
Functional requirement: 3(a)ii.
Expected output: The player trying to occupy the other players
space will be pushed back in the same way as if she was colliding with
a wall.
Procedure: Verify that when running/walking/jumping into another
player, the two players do not overlap.

• Functionality being tested: Vertical and horizontal movement shall
be independent
Functional requirement: 3(a)i.
Expected output: The horizontal speed of a player is not affected
by jumping or falling off a platform.
Procedure: While running, jump or fall of a platform and verify that
the player maintains her horizontal movement speed.

• Functionality being tested: That platforms are unaffected by grav-
ity.
Functional requirement: 2(b)ii.
Expected output: The platforms remain suspended in the air.
Procedure: Verify that the platforms remain suspended in the air.



6 FUNCTIONAL TEST CASES 83

• Functionality being tested: Player being affected by gravity.
Functional requirement: 3(a)v.
Expected output: Players that are airborne will fall downwards.
Procedure: Walk off of the edge of a platform and verify that the
player starts falling downwards. Jump and verify that the player even-
tually decelerates and starts falling.

• Functionality being tested: Maximum running speed.
Functional requirement: 3(b)i.
Expected output: Running players will stop accelerating when they
have reached their maximum running speed.
Procedure: Start running in any direction and verify that the player
eventually ceases to accelerate.

• Functionality being tested: Players accelerate and decelerate.
Functional requirement: 3(b)ii.
Expected output: When standing still and starting to run the speed
shall increase constantly until the maximum speed is reached. When
a player changes horizontal direction she should first decelerate to a
standstill and then start accelerating in the new direction.
Procedure: Start running in any direction and verify that the player’s
horizontal speed increases linearly. While running, change direction
and verify that the player decelerates to a standstill and then starts
accelerating in the new direction.

• Functionality being tested: Player must be on a platform to be
able to jump.
Functional requirement: 3(c)i.
Expected output: Players are only able to jump when standing on
platforms.
Procedure: Try to jump while airborne and verify that the player
does not gain any vertical speed.

• Functionality being tested: Players shall be able to jump.
Functional requirement: 3(c)ii.
Expected output: When a player jumps she instantly get an up-
wards velocity, which diminishes linearly and eventually makes the
player fall downwards.
Procedure: While moving or standing still push the jump button
on the game pad and verify that it instantly affects the vertical up-
wards speed of the player. Also verify that the players vertical speed
decreases, eventually making her fall downwards.

• Functionality being tested: Player shall be able to use a power-up
from the inventory at any moment, except while stunned.
Functional requirement: 3(e).



6 FUNCTIONAL TEST CASES 84

Expected output: The player uses the power-up in case she is not
stunned.
Procedure: Try using a power-up and verify that the power-up is
activated in all situations except when stunned.

• Functionality being tested: While stunned a player is unable to
affect her own movement.
Functional requirement: 3(g)i and 3(g)iii.
Expected output: When stunned all player inputs are ignored.
Procedure: Get stunned (for example, let the second player jump
fire a boxing glove at the first player) and verify that the player does
not respond to input.

• Functionality being tested: While stunned a player starts deceler-
ating.
Functional requirement: 3(g)ii.
Expected output: Stunned players decelerate.
Procedure: Start running with the first player and have the second
player fire a boxing glove that will hit the first player. Verify that the
first player starts decelerating after being hit by the boxing glove.

• Functionality being tested: Players should be able to stun each
other by jumping on each others head.
Functional requirement: 3(h).
Expected output: When a player jumps upon another player’s head
the target becomes stunned.
Procedure: Jump on a player’s head and verify that she becomes
stunned.

• Functionality being tested: If a player ends up outside the screen,
she shall lose a life and then respawn. Functional requirement:
3(j).
Expected output: The player will respawn and lose a life when
ending up outside the screen.
Procedure: Move one player towards the right end of the screen and
verify that the camera starts following her. Continue doing so until
the other player ends up outside the screen. Verify that this causes
the player that ended up outside the screen to lose a life. Verify that
the player that ended up outside the screen respawns.

• Functionality being tested: That the fetter power-up is placed
close to the player.
Functional requirement: 4(d)v.A and 4(d)v.B.
Expected output: The fetter is spawned at the player’s position and
is affected by gravity.



6 FUNCTIONAL TEST CASES 85

Procedure: Use a Fetter power-up and verify that the fetter is spawned
at the position of the player.

• Functionality being tested: That the speed boost power-up makes
the player run faster.
Functional requirement: 4(d)iii.
Expected output: The player can run faster, but the time to accel-
erate to maximum speed, and the time it takes to stop is the same as
before.
Procedure: Have the first player use a Speed Boost power-up and
start running with both players. Verify that the first player moves
faster than the second player.

• Functionality being tested: Fetter is affected by gravity.
Functional requirement: 4(d)v.B.
Expected output: When dropping a fetter from the air it shall fall.
Procedure: Use a Fetter power-up while in mid-air. Verify that the
fetter is spawned at the position of the player and that it falls to the
ground

• Functionality being tested: The fetter shall not catch the player
who activated it.
Functional requirement: 4(d)v.D.
Expected output: When colliding with a fetter you yourself have
activated nothing should happen.
Procedure: Activate a Fetter and collide with it. Verify that nothing
changes.

• Functionality being tested: That the amount of lives a player has
is presented on the screen.
Functional requirement: 5(a).
Expected output: The right amount of lives a player has is presented
on the screen.
Procedure: Collide with a monster and verify that you now have one
life less than before. Give the player an extra life and verify that you
now have one more life.

• Functionality being tested: That a players power-ups are shown
on the screen.
Functional requirement: 5(a), 4(a), 4(b) and 4(c).
Expected output: The right power-ups are shown on the screen.
Procedure: Take two power-ups from the power-up dispenser and
verify that they are both shown. Use both power-ups. Do this pro-
cedure for all power-ups in the game, and verify that the icons for all
the power-ups are right.



6 FUNCTIONAL TEST CASES 86

• Functionality being tested: That the camera follows the player in
the lead, but gives a buffer of 1/3 of screen.
Functional requirement: 5(d)
Expected output: The camera moves only if the leader moves, and
it maintains a distance of one third of a screen between the player in
the lead and the rightmost edge of the screen.
Procedure: Spawn another player, and run with one of the players
to the right. Verify that the camera follows the player in the lead, and
that it keeps a buffer of 1/3 of the screen to the right.

• Functionality being tested: That a player dies if she gets outside
the screen.
Functional requirement: 5(e)
Expected output: The player dies when she is outside the screen.
Procedure: Have the first player run to the right until the second
player ends up outside the screen. Verify that the second player loses
a life and respawns.

• Functionality being tested: That players start with 3 lives.
Functional requirement: 6(b) and system requirement 6(a).
Expected output: Each player has three lives at the start of the
game.
Procedure: Verify that each player starts with 3 lives by looking at
how many lives are displayed on the screen and checking if the game
ends after both players have died three times.

• Functionality being tested: That a player dies if he doesn’t have
any lives left.
Functional requirement: 6(b) and system requirement 6(a).
Expected output: The player dies after losing all her lives.
Procedure: Walk into a monster 3 times and validate that the player
has died, and forfeited the race.

• Functionality being tested: If a player is the only one left alive she
wins the race.
Functional requirement: 6(c)
Expected output: The only player left wins.
Procedure: Make the second player lose all of her lives and verify
that this causes the first player to win the race.

6.2 Debug Game Stage 1

This game stage features a monster and a moving platform. The game stage
is constructed in a manner so that the monster’s path is blocked by short
walls on its left and right hand side. There is also a moving platform on the
game stage that will occasionally intercept the monster in its path.



6 FUNCTIONAL TEST CASES 87

• Functionality being tested: The Shrinking Ray
Functional requirement: 4(d)vi
Expected output: The shrinking ray travels horizontally, disappears
when it hits a player/monster/wall and shrinks players/monsters. Play-
ers that are shrunk have a slower maximum speed, and shorter jumping
height.
Procedure: Shoot a Shrinking Ray at a wall and verify that it dis-
appears. Shoot a Shrinking Ray at a monster and verify that its
behaviour changes as expected. Shoot the second player with the
Shrinking Ray, walk/jump around with the other player and verify
that the player’s behaviour is changed as expected.

• Functionality being tested: The effect of the Fetter power-up.
Functional requirement: 4(d)v.A and 4(d)v.E.
Expected output: A player/monster with a fetter attached has a
slower maximum running speed than normal and can not jump as
high as usual.
Procedure: Have the first player use a Fetter power-up and make the
second player collide with the Fetter. Verify that the Fetter becomes
attached to the second player. Jump with the second player and verify
that the height of her jump is less than without the fetter. Run with
the second player and verify that her maximum running speed is slower
than usual. Make a monster collide with a Fetter and verify that the
speed of the monster is less when the Fetter is attached.

• Functionality being tested: That the Boxing Glove power-up trav-
els horizontally in the direction the player is facing, that the player/monster
it hits gets a horizontal speed in the same direction and that the glove
disappears when it hits an object.
Functional requirement: 4(d)i.
Expected output: The Boxing Glove travels horizontally in the di-
rection the player is facing. When it hits a monster/ player it gives
them a horizontal speed in the traveling direction and then disappears.
If it hits a wall it shall only disappear.
Procedure: Spawn a player with a Boxing Glove power-up and shoot
it at a monster/player/wall and very that the expected output hap-
pens.

• Functionality being tested: If a player lands on another player or
a monster she shall automatically jump.
Functional requirement: 3(i).
Expected output: When landing on a opponent or monster the
player will automatically jump.
Procedure: Jump on a player or a monster that gets stunned when



6 FUNCTIONAL TEST CASES 88

jumped on, verify that the player jumps directly after landing on the
monster or player.

• Functionality being tested: Graphical representation of the stun
effect.
Functional requirement: 3(f)iii and 3(g)iv.
Expected output: Invulnerability and stunned status are graphically
represented.
Procedure: Run into a monster. Verify that is is visible that the
player is stunned and invulnerable.

• Functionality being tested: Using power-ups on monsters.
Functional requirement: 2(f)v.
Expected output: Power-ups affect the monsters in the same way
they would a player.
Procedure: Using the same procedure as when testing power-ups on
a player, test all power-ups on a monster and confirm that they have
the same effect as they would have on a player.

• Functionality being tested: Losing life when running into mon-
sters.
Functional requirement: 2(f)iv.B.
Expected output: The player loses a life when touching the mon-
ster.
Procedure: Run into a monster and confirm that a life was sub-
tracted from the player’s life total.

• Functionality being tested: That players or monsters can’t pass
through platforms in any way.
Functional requirement: 2(b)i
Expected output: The players and monster(s) don’t pass through
the platforms in any way.
Procedure: Verify that the player or monster(s) do not fall through
the platforms. Try to run through a wall and verify that the player
doesn’t pass through it. Verify that the monster does not move through
the platforms. Shoot the other player or the monster with the Boxing
Glove power-up and verify that the player or monster does not pass
through platforms when hit by the Boxing Glove power-up.

• Functionality being tested: That moving platforms move along a
path correctly.
Functional requirement: 2(b)iv
Expected output: The moving platform moves along its path.
Procedure: Verify that the platform moves along its path.



6 FUNCTIONAL TEST CASES 89

• Functionality being tested: That players or monsters can not pass
through moving platforms in any way.
Functional requirement: 2(b)i
Expected output: The player ad monster do not pass through the
moving platform in any way.
Procedure: Jump onto the moving platform. Verify that the player
does not fall through the moving platform. Try to run through a wall
on the moving platform. Verify that the player cannot run through
the moving platform.

• Functionality being tested: Players shall be able to stun monsters.
Functional requirement: 2(f)iii.
Expected output: The monster gets stunned. The monster stops
for the duration of the stun and the player does not lose life as a result
of touching the stuenned monster.
Procedure: Fire a Boxing Glove at the monster and confirm that it
stops moving and that the visual stun effect is displayed. Touch the
monster and confirm that this does not cause the player to lose life.

6.3 Debug Game Stage 2

A game stage with several monsters next to each other. The game stage is
constructed in a manner so that the monsters’ paths are blocked by walls
on their left and side and by a bottomless pit at their right. Some of the
monsters will initially start by moving to the right while the others will
be moving to the left, which means that the monsters will eventually start
colliding with each other.

• Functionality being tested: Banana Peels stunning power.
Functional requirement: 4(d)vii.C.
Expected output: When a player or a monster trips on a Banana
Peel they will become stunned and have a lower acceleration and de-
celeration than usual.
Procedure: Equip one player with a Banana Peel power-up. Activate
the power-up and make the player and the monster collide with the
banana peels. Verify that the player and the monster become stunned
and that their acceleration / deceleration is affected in the manner
intended.

• Functionality being tested: Banana peels
Functional requirement: 4(d)vii.A, 4(d)vii.B and 4(d)vii.D.
Expected output: When activating the Banana Peel power-up 3
small Banana Peels will appear near the player who activated it. If
the player is in the air the peels will fall down due to gravity. When the



6 FUNCTIONAL TEST CASES 90

player who activated the power-up steps on the peels nothing happens.
Procedure: Spawn a player with the Banana Peel power-up. Jump
with the player and activate the power-up while in the air. Verify that
three banana peels appear and are positioned near the player. Verify
that the peels fall down to the ground. Also verify that when stepping
on the peels nothing changes.

• Functionality being tested: A player shall respawn near the middle
of the screen.
Functional requirement: 3(k).
Expected output: When a player falls down a bottomless pit or ends
up outside the screen she shall respawn somewhere in the middle of
the screen.
Procedure: Fall down a bottomless pit and verify that the player
respawns near the middle of the screen. End up outside the screen
and verify that the player respawns near the middle of the screen.

• Functionality being tested: Monsters move back and forth on plat-
forms.
Functional requirement: 2(g)i.A.
Expected output: The monster moves back and forth, turning around
when reaching an obstruction or the end of the platform.
Procedure: Observe the monster and confirm that it changes direc-
tion when reaching an obstruction or the end of the platform.

• Functionality being tested: Players should not be able to pass
through monsters and monsters should not be able to pass through
other monsters.
Functional requirement: 2(f)iv.A.
Expected output: Players and monsters do not pass through each
other.
Procedure: Observe two monsters moving towards each other and
confirm that they change direction when they reach each other. Try
running through a monster and confirm that this is not possible. Shoot
a Boxing Glove at a monster and confirm that the monster does not
move through the other monster or a player when moved by the Box-
ing Glove.

• Functionality being tested: Jumping on monsters.
Functional requirement: 2(f)iv.C.
Expected output: The player loses a life when landing on the mon-
ster or the monster gets stunned, depending on the type of monster.
Procedure: Jump on a monster. If it is a type of monster that



6 FUNCTIONAL TEST CASES 91

the player can jump on without losing life, confirm that the player
did not lose life and that the monster was stunned. If the monster
was a type of monster that causes players to lose life when jumping
on them, confirm that a life was subtracted from the player’s life total.

6.4 Debug Game Stage 3

A game stage that starts with a monster suspended in the air above the first
players’ starting points. (When the game starts the monster should begin
to fall.)

• Functionality being tested: Gravitation in the game
Functional requirement: 2(c)
Expected output: Players and monsters fall towards the bottom of
the screen when in midair.
Procedure: Let the player walk off the platform and observe if the
player starts falling. Observe wheter the monster falls down or not.

• Functionality being tested: Losing life from monsters located above
the player.
Functional requirement: 2(f)ivD.
Expected output: The player loses a life when touching the mon-
ster.
Procedure: Let a monster higher up than the player touch the player
and confirm that a life was subtracted from the player’s life total.

6.5 Debug Game Stage 4

A game stage with a power-up dispenser placed close to the players’ starting
points.

• Functionality being tested: The power-up dispenser shall cycle
through available power-ups
Functional requirement: 2(d)i.
Expected output: The power-up dispenser cycles through all avail-
able power-ups, both in respect to the icons displayed and the power-
up the player gets when touching the dispenser.
Procedure: Observe the power-up dispenser and check if it cycles
through all the power-up icons.

• Functionality being tested: The player shall gain the power-up
that is currently shown on the power-up dispenser



6 FUNCTIONAL TEST CASES 92

Functional requirement: 2(d)ii.
Expected output: The player gets the power-up that is shown on
the power-up dispenser when she touches the power-up dispenser
Procedure: For each power-up displayed on the power-up dispenser,
touch the power-up dispenser and confirm that you got the power-up
corresponding to the power-up icon that was currently shown.

• Functionality being tested: The player shall only be able to use
the same power-up dispenser once
Functional requirement: 2(d)iii.
Expected output: The player gets a power-up from the power-up
dispenser the first time she touches it and no power-ups from touching
it subsequent times.
Procedure: Touch the power-up dispenser several times and confirm
that the player got only one power-up.

A game stage with a power-up dispenser placed close to the players’
starting points.

• Functionality being tested: The power-up dispenser shall cycle
through available power-ups
Functional requirement: 2(d)i.
Expected output: The power-up dispenser cycles through all avail-
able power-ups, both in respect to the icons displayed and the power-
up the player gets when touching the dispenser.
Procedure: Observe the power-up dispenser and check if it cycles
through all the power-up icons.

• Functionality being tested: The player shall gain the power-up
that is currently shown on the power-up dispenser
Functional requirement: 2(d)ii.
Expected output: The player gets the power-up that is shown on
the power-up dispenser when she touches the power-up dispenser
Procedure: For each power-up displayed on the power-up dispenser,
touch the power-up dispenser and confirm that you got the power-up
corresponding to the power-up icon that was currently shown.

• Functionality being tested: The player shall only be able to use
the same power-up dispenser once
Functional requirement: 2(d)iii.
Expected output: The player gets a power-up from the power-up
dispenser the first time she touches it and no power-ups from touching
it subsequent times.
Procedure: Touch the power-up dispenser several times and confirm
that the player got only one power-up.



6 FUNCTIONAL TEST CASES 93

6.6 Debug Game Stage 5

A game stage containing a static trap and a moving trap, and a monster.

• Functionality being tested: Whenever a player loses a life it shall
become invulnerable for a short time, in that time she may not lose
any lives.
Functional requirement: 3(f)i and 3(f)ii.
Expected output: When a player is invulnerable nothing except
ending up outside the screen may cause her to lose a life.
Procedure: Become invulnerable (by colliding with a monster, for
example) and verify that colliding with monsters

• Functionality being tested: Traps shall cause the player to lose a
life when touching them.
Functional requirement: 2(f)i.
Expected output: The player loses a life when touching the trap.
Procedure: Touch a trap and confirm that a life was subtracted from
the player’s life total.

• Functionality being tested: Traps shall be able to turn themselves
on and off.
Functional requirement: 2(f)ii.
Expected output: The player does not lose life when touching a trap
in its off state.
Procedure: Touch a trap in its off state and verify that no life was
subtracted from the player’s life total.

• Functionality being tested: Traps shall either move along a set
path or have a fixed location
Functional requirement: 2(f)iii.
Expected output: Traps that move move along their paths correctly,
traps that are not supposed to move stay stationary
Procedure: Observe moving and non-moving traps and confirm that
they move in the manner intended.

6.7 Debug Game Stage 6

A game stage with a finish point close to the players’ starting point.

• Functionality being tested: That the game ends if all players have
finished or died.
Functional requirement: 6(a)



6 FUNCTIONAL TEST CASES 94

Expected output: The game ends.
Procedure: Go into the finishing point with both players. Verify that
the game ends. Restart the game stage. Go into the finish point with
one player. Die with the other (lose all of the player’s lives). Verify
that the game ends.

6.8 Regular Game Stages

The following test cases can be performed on any regular game stage.

• Functionality being tested: That two players cannot select the
same character
Functional requirement: 8(a)
Expected output: After one player has chosen a character, another
player cannot choose the same character.
Procedure: Start the game with two gamepads. Choose the first
character with the first gamepad and verify that the same character
cannot be chosen with the other gamepad.

• Functionality being tested: There are at least 3 game stages to
choose from.
Functional requirement: 8(b)
Expected output: In the game stage selecting screen, you are able
to select at least 3 different game stages.
Procedure: Start the game with two gamepads, choose characters
for both players and on the next screen, verify that there are at least
3 different game stages available.

• Functionality being tested: Any player can pause the game.
Functional requirement: 9(a)
Expected output: Both players can pause the game.
Procedure: Start a race with two players. Verify that both players
can pause the game.

• Functionality being tested: Only the player who has paused the
game can unpause it.
Functional requirement: 9(b)
Expected output: Only the player who has paused the game can
unpause it.
Procedure: Start a race with two players. Pause the game with one
gamepad. Verify that the other gamepad cannot be used to unpause
the game.

• Functionality being tested: That the pause-screen contains “Re-
sume”, “Restart” and “Abort”.
Functional requirement: 9(c)



6 FUNCTIONAL TEST CASES 95

Expected output: The pause-screen contains “Resume”, “Restart”
and “Abort”.
Procedure: Start a race with two players. Pause the game and verify
that “Resume”, “Restart” and “Abort” are all options.

• Functionality being tested: That there is a screen which shows
finish times and places after the race has finished.
Functional requirement: 10(a)
Expected output: There is a screen which shows finish times and
places after the race has finished.
Procedure: Finish a race and verify that there is a screen showing
finish times and places.

• Functionality being tested: That there are sound effects in the
game.
Functional requirement: 7(b)
Expected output: There are sound effects for jumping, losing a life,
reaching the goal, using a power-up, landing on another player, landing
on a platform, landing on a monster.
Procedure: Verify that there is a sound effect after these procedures:

– Jump with the player

– Walk into a monster

– Take a power-up from a power-up dispenser, and use it.

– Jump and land on a platform

– Jump and land on a monster

– Spawn another player and jump on him

– Jump into the finishing portal

• Functionality being tested: Players shall be able to avoid monsters
either by jumping over them, waiting or going around them.
Functional requirement: 2(f)vi.
Expected output: A player can go through the game stage without
losing any lives from touching monsters.
Procedure: Play each game stage and verify that it would be possible
to reach the finish point without losing any lives by colliding with a
monster.

• Functionality being tested: Players shall be able to avoid traps
either by jumping over them, waiting them out or going around them.
Functional requirement: 2(f)iv.
Expected output: A player can go through the game stage without
losing any lives from touching traps.



6 FUNCTIONAL TEST CASES 96

Procedure: Play each game stage and verify that it would be possi-
ble to reach the finish point without losing any lives by means of traps.


