
 1 (186)

Course Information Management System

Group 2

David Chang

Linda Chowdhury

Oscar Fitinghoff

Patrik Parberg

Tomas Hansson

 2 (186)

Table of Contents
1 Introduction ... 8

1.1 About the document ... 8

1.2 Glossary.. 8

1.3 Summary .. 9

2 System Overview .. 9

2.1 General Description.. 9

2.2 Overall Architecture Description ... 10

2.3 Detailed Architecture ... 12

Database System .. 12

Entity-relationship model ... 12

T-matrix.. 13

Database Structure.. 13

Block Diagrams.. 14

3 Design Considerations... 23

3.1 Assumptions and Dependencies... 23

3.2 General constraints ... 24

4 Graphical User Interface ... 24

4.1 Design of the System.. 24

4.2 Overview of the User Interface .. 26

4.3 Details of the Graphical User Interface.. 27

Menues ... 27

Start Page Menu ... 27

Personal Page – Logged Out .. 27

Personal Page – Logged In... 28

Course Website – Logged Out ... 29

Course Website – Logged In .. 30

Course Administration ... 32

System Administration... 34

Start Page.. 34

Personal Page ... 35

Front Page (News).. 35

Deadlines .. 36

Results .. 37

Schedule ... 37

Course Website .. 38

Front Page (News).. 38

Assignments ... 39

Apply for Course .. 39

Apply Confirmation ... 40

Deadlines .. 40

Course Description... 41

Files .. 41

Information Pages .. 42

Results .. 42

Schedule ... 43

Course Administration Pages ... 44

Scheduled Activities... 44

Add Activity Preview... 45

Add Activity Confirmation .. 46

 3 (186)

Edit Activity ... 46

Edit Activity Preview ... 47

Activity Edited Confirmation... 47

Confirm Removal of Activity .. 48

Activity Removed Confirmation.. 48

Imported Schedule Confirmation ... 48

Confirm Remove Schedule .. 49

Remove Schedule Confirmation .. 49

Assignments ... 50

Add Assignment Preview... 51

Add Assignment Confirmation .. 51

Edit Assignment ... 52

Edit Assignment Preview ... 53

Edit Assignment Confirmation... 53

Confirm Remove Assignment .. 54

Remove Assignment Confirmation.. 54

Course Assistants ... 55

Confirm Add Course Assistant .. 55

Add Course Assistant Confirmation .. 56

Confirm Remove Course Assistant .. 56

Remove Course Assistant Confirmation .. 56

Edit Course Description ... 57

Edit Course Description Confirmation... 58

Create Course Website – Create Description ... 59

Create Course Website – Import Schedule .. 60

Create Course Website – Import Schedule Confirmation.. 60

Create Course Website –Add Information Pages... 61

Create Course Website – Add Information Pages Preview.. 62

Create Course Website – Add Information Pages Confirmation 62

Create Course Website – Add Deadlines ... 63

Create Course Website – Add Deadlines Preview ... 63

Create Course Website – Add Deadlines Confirmation... 64

Create Course Website Summary .. 65

Create Course Website Confirmation .. 65

Deadlines .. 66

Add Deadline Preview ... 67

Add Deadline Confirmation ... 67

Edit Deadlines .. 68

Edit Deadline Preview.. 68

Edit Deadline Confirmation ... 69

Confirm Deadline Removal ... 69

Deadline Removal Confirmation ... 69

Information Pages .. 70

Add Information Page Preview .. 71

Add Information Page Confirmation.. 71

Edit Information Page .. 72

Edit Existing Information Page Preview.. 73

Information Page Edited Confirmation .. 73

Confirm Removal of Information Page.. 74

Information Page Removed Confirmation ... 74

 4 (186)

News... 75

Add News Preview... 76

Add News Confirmation .. 76

Edit News ... 77

Edit Existing News Preview... 77

News Edited Confirmation... 78

Confirm Removal of News .. 78

News Removed Confirmation.. 78

Registrations... 79

Verified Registrations Confirmation.. 79

Confirm Removal of Student Registration... 80

Student Registration Removed Confirmation .. 80

Register Results.. 81

Results Registered Confirmation ... 81

Files .. 82

Add File Confirmation ... 82

Edit File .. 83

Edit File Confirmation ... 83

Confirm Remove File... 84

Remove File Confirmation... 84

System Administration Pages... 85

Courses ... 85

Course Added Confirmation .. 85

Existing Courses List ... 86

Edit Existing Course... 86

Course Edited Confirmation... 86

Users... 87

Add User Confirmation .. 87

Existing Users .. 88

Edit Password... 88

Edit Password Confirmation .. 89

Edit User Privileges.. 89

Edit User Privileges – Course Privileges – Find Course.. 90

Edit User Privileges – Course Privileges – Select Course ... 90

Confirm Edit User Privileges ... 91

Edit User Privileges Confirmation ... 91

Confirm User Removal .. 91

User Removal Confirmation .. 92

5. Design Details .. 92

5.1 Class Responsibility Collaborator (CRC) Cards.. 92

Activity... 92

ActivityController .. 93

Assignment... 93

AssignmentController .. 93

BaseObject ... 93

BaseController.. 93

Cache.. 94

Course... 94

CourseController .. 94

Deadline ... 94

 5 (186)

DeadlineController ... 95

File.. 95

FileController ... 95

Information Page .. 95

InformationPageController... 96

News... 96

NewsController .. 96

Result.. 96

ResultController ... 96

Session.. 97

Schedule ... 97

ScheduleController... 97

User .. 97

UserController .. 98

5.2 Class Diagram .. 98

5.3 State Charts .. 99

Log In ... 100

Add Post ... 100

Edit Post ... 100

Delete Post.. 101

Create Course Website Guide .. 101

5.4 Interaction Diagrams .. 102

Log In ... 102

Create Database Post .. 102

Edit Database Post.. 103

Delete Database Post .. 103

View Post from Cache.. 104

View Post from Database ... 104

Export Schedule into iCalendar Format ... 104

Upload File ... 105

Edit Uploaded File ... 105

Delete Uploaded File.. 106

Create Course Website ... 107

5.5 Detailed Design .. 108

Database ... 108

Detailed database table definitions... 108

Classes .. 112

Class Activity ... 112

Class ActivityController... 116

Class Assignment ... 117

Class AssignmentController... 120

Class Cache .. 122

Class Course... 123

Class CourseController .. 129

Class Deadline.. 131

Class DeadlineController ... 135

Class File .. 137

Class FileController.. 140

Class InformationPage ... 141

Class InformationPageController ... 144

 6 (186)

Class News ... 145

Class NewsController... 148

Class Result .. 149

Class ResultController.. 152

Class Session .. 153

Class Schedule.. 154

Class ScheduleController ... 155

Class User... 157

Class UserController .. 162

Implementation Index of Requirements ... 166

5.6 Package diagram .. 168

6. Functional Test Cases... 168

Test Case TC1: Authenticate to the System... 168

Test Case TC2: View Personal Page.. 168

Test Case TC3: View Overview of Course News.. 169

Test Case TC4: Create Course Website ... 169

Test Case TC5: Edit Existing Course Description ... 170

Test Case TC6: View Course Description ... 170

Test Case TC7: Add Course News... 170

Test Case TC8: Edit Existing Course News... 171

Test Case TC9: Remove Existing Course News.. 171

Test Case TC10: View Course News ... 172

Test Case TC11: Add Information Page .. 172

Test Case TC12: Edit Existing Information Page .. 172

Test Case TC13: Remove Existing Information Page ... 173

Test Case TC14: View Information Page .. 173

Test Case TC15: Import Course Schedule ... 173

Test Case TC16: Remove Existing Course Schedule .. 174

Test Case TC17: Add Scheduled Activity ... 174

Test Case TC18: Edit Existing Scheduled Activity ... 175

Test Case TC19: Remove Existing Scheduled Acitivity ... 175

Test Case TC20: View Scheduled Activity from Course Schedule............................... 175

Test Case TC21: View Scheduled Activity from Compiled Schedule 176

Test Case TC22: Export Schedule in iCalendar Format .. 176

Test Case TC23: Add Deadline.. 176

Test Case TC24: Edit Existing Deadline.. 177

Test Case TC25: Remove Existing Deadline ... 177

Test Case TC26: View Deadlines .. 178

Test Case TC27: View Overview of Deadlines ... 178

Test Case TC28: Upload File ... 178

Test Case TC29: Edit Existing File.. 179

Test Case TC30: Remove Existing File ... 179

Test Case TC31: Download File .. 179

Test Case TC32: Add Course Assignment... 180

Test Case TC33: Edit Existing Course Assignment... 180

Test Case TC34: Remove Exisiting Course Assignment... 180

Test Case TC35: View Course Assignments ... 181

Test Case TC36: Register Results .. 181

Test Case TC37: View Results... 181

Test Case TC38: View Registered Students... 182

 7 (186)

Test Case TC39: Confirm Application to Get Registered for Course............................ 182

Test Case TC40: Apply for Course .. 182

Test Case TC41: Unregister Registered Student.. 183

Test Case TC42: Add User Account .. 183

Test Case TC44: Remove User Account.. 184

Test Case TC45a: Edit User Privileges .. 184

Test Case TC45b: Edit User Privileges.. 185

Test Case TC46: Add Course Assistant ... 185

Test Case TC47: Remove Course Assistant... 185

Test Case TC48: Add Course... 186

Test Case TC49: Edit Existing Course... 186

 8 (186)

1 Introduction

1.1 About the document
The purpose of this document is to describe the design of the system. While the
requirements document focused on behaviour, the design document is covering the
technical aspects, such as implementation. Mainly, the documentation in the
document is written to make the implementation stages as clear and straight-
forward as possible by designing the system on paper before the actual coding.

Since the intended audience of this document is the developers who are going to
implement the system, the scope includes a system overview (architecture), design
considerations, description of the graphical user interface, design details and
functional test cases.

The system will be named Course Information Management System (abbreviated
CIMS).

To fully understand parts of this document, the reader should have taken part of the
requirements document for this system.

1.2 Glossary
Apache Tomcat

A web container that provides an environment for Java code to run in cooperation
with a web server.

Client-server architecture

An architectural model for distributed systems where the system functionality is
offered as a set of services provided by a server. These are accessed by client
computers that make use of the services.

Cookie

Information stored in the user's web browser by the server-side of the system, used to
maintain certain information regarding that specific web browser.

Database

A computer database is a structured collection of data that is stored in a computer
system so that a computer program or person using a query language can consult it
to answer queries.

Entity-relationship model (ER model)

An Entity-relationship model is a relational schema database modeling method used
to model a system and its requirements, where an entity represents a discrete object
and a relationship captures how two or more entities are related to one another.

iCalendar

A standard for group calendaring and scheduling, which enables calendaring data
to be sent via e-mail or the Web that is automatically entered into the recipient's
schedule.

 9 (186)

JavaServer Pages (JSP)

Enables software developers to create dynamic web pages that run on the web
server. The web pages can for example load and process data from a database
server, as well as receive user input from end-users.

MySQL

A widely used open source relational database management system.

1.3 Summary
The system uses a three-tier client-server architecture consisting of the client (web
browser handling the graphical user interface towards the user), the application
server (containing the business logic) and the database server (storing data for the
business objects).

The system will be implemented in Java ServerPages (JSP), run on a web server set
up with Apache Tomcat software and the data within the system will be stored using
MySQL database software.

The overall design of the system (web page structure) is divided into the four
categories Course Administration, Personal Page, System Administration and Course
Website. These categories have web pages representing different tasks within the
scope of respective category.

The user interface is divided into three sections. The header section at the top of the
web page will contain the name of the system. Below the header section to the left,
the navigation section is located. The last section will be placed to the right of the
navigation section, and will display the main content for that particular web page.

In a web page there will be different controls in the form of text fields, dropboxes,
buttons and links which allows the user to insert data for sending, send data to the
server for saving or redirect to another web page.

To manage the business objects and their data, there will be classes to represent the
business objects themselves and controller classes to manage them (add, edit or
delete). The system also has classes handling sessions and caching.

2 System Overview

2.1 General Description
The system is meant to provide an easy way for lecturers without web design skills to
create and update course websites, while at the same time providing a central
information source for students who are enrolled in these courses.
Since we need to have the data stored on a central server we opted for a web
based solution, allowing for users to access the system without the need to install a
custom client application on the computer. This also allows the system to be
accessed from public terminals, if the user isn’t at home and doesn’t possess a
laptop of their own.

 10 (186)

The design of the system was focused on making the user interface quick to use,
requiring as few steps as possible to use what we expect will be the most commonly
used functions, such as viewing schedules and news.

2.2 Overall Architecture Description
The system uses a three-tier client-server architecture, where the clients are web
browsers and the servers consists of an application server and a database server.

D
a
ta

b
a
s
e
 S

e
rv

e
r

A
p
p
lic

a
ti
o
n
 S

e
rv

e
r

C
lie

n
t

Cookies Input

Session

Client
Communication

Controller

File System

Database
Tables

Cache

Display

 Data

RAM

Objects

Control

 11 (186)

The web browsers contain no business logic and manage the user interface. The web
browser also stores cookies to enable the application server to identify the user. It
also enables the user to send input to the application server.

The application server handles the incoming requests by retrieving and storing data
from the database server. The application server uses caching to limit the number of
database queries.

The application server consists of mainly two logical layers for processing requests.
The first layer (client communication) interprets the user request and calls upon the
appropriate controllers. There is also a cache layer used to lessen the load on the
database server by storing frequently used information in memory.

Controllers are responsible for database communication and perform the
creation/updating/removal of database records corresponding to actual business
objects.

The session is a controller that is used to identify different users. It is used throughout
the system and is therefore illustrated in the diagram.

Objects represent business objects and contain business logic and validation. These
are mainly used to represent data in the database in a domain specific way, and do
little more than allow for this data to be manipulated and making sure that the
objects state obey the rules of the business object it represents.

 12 (186)

2.3 Detailed Architecture

Database System

Entity-relationship model

The above is an entity-relationship model (ER model) of the database structure that
will be used by the system. Primary keys are distinguished by bold font, and foreign
keys are distinguished by italic font.

The central part of data in the system is the Course table where information about
the courses is stored. Much of the rest of data in the system is related to the Course
table. A course can for example have activities, deadlines, news, files, information
pages and assignments. All these must be related to exactly one course.

Users can be in none, one or several courses, and a course can have none, one or
several users in it. Users are in a course when they’re applying to get registered for it,
fully registered or are involved with teaching in the course. The user’s status in a
specific course is available in as a status field in the InCourse relation.

Privileges which are not course specific (system administrator privileges) are stored in
the Privilege table.

Results are stored in the Result table and are related to one user and one
assignment. Each assignment is in turn related to one course.

 13 (186)

Files are stored in the file system, and only their metadata is stored in the database.
No filename is stored in the database since files will be renamed so that their file-ID
can be used to locate the file.

A schedule consists of several activities belonging to a course. A specific user’s
schedule can be found by finding the courses the student is in and then fetching the
activities for that course.

T-matrix

Type Name I-Term(s) E-Term(s)

Object User userID

username,
password,
firstname,
lastname

Object Course courseID

name,
courseCode,
courseLeader,
startYear,
startPeriod,
endYear,
endPeriod,
credits,
description

Object Activity activityID
title, description,
startTime, endTime

Object Deadline deadlineID
title, description,
time

Object News newsID
author, headline,
content, time

Object File fileID
title, description,
filename

Object InformationPage pageID title, content

Object Assignment assignmentID title, description

Object Privilege userID Privileges

1:N ActivityBelongsTo courseID, activityID

1:N DeadlineBelongsTo courseID, deadlineID

1:N NewsBelongsTo courseID, newsID

1:N FileBelongsTo courseID, fileID

1:N nformationPageBelongsTo courseID, pageID

1:N AssignmentBelongsTo courseID, assignmentID

N:N InCourse userID, courseID Status

N:N Result userID, assignmentID Grade

Above is the T-matrix for the database illustrated in the ER model.

Database Structure

Table Attribute

 14 (186)

User ((userID), username, password, firstname, lastname)

Course
((courseID), name, courseCode, courseLeader, startYear,
startPeriod, endYear, endPeriod, credits, description)

Activity ((activityID), courseID, title, description, startTime, endTime)

Deadline ((deadlineID), courseID, title, description, time)

News ((newsID), courseID, author, headline, content, time)

File ((fileID), courseID, title, description, filename)

InformationPage ((pageID), courseID, title, content)

Assignment ((assignmentID), courseID, title, description)

Privilege ((userID), privilege)

InCourse ((userID, courseID), status)

Result ((userID, assignmentID), grade)

This is the database structure after normalizing it from the T-matrix. Privileges which
are not course specific are stored in a separate table to avoid wasting space since
very few users (system administrators) will have any special privileges.

Block Diagrams
A block diagram is a type of flowchart, which quickly gives you an overview of the
major process steps in the system. The processes to add course description, add
news, add assignment etc. are very similar and therefore they are represented by
the block diagram “Create Database Post”. The exception is to upload a file
because of the interaction with the file system. The same goes for “Edit Database
Post” and “Delete Database Post”.

Figure 1 displays the major processes when a client requests to log in.

 15 (186)

Figure 2 displays the processes to create a database post.

 16 (186)

Figure 3 displays the processes to edit a database post.

 17 (186)

Figure 4 displays the processes to create a database post.

 18 (186)

Figure 5 displays the processes when a client requests to view a database post.

Figure 6 displays the processes to export a schedule into iCalendar format.

 19 (186)

Figure 7 displays the processes when a client requests to upload a file.

 20 (186)

Figure 8 displays the processes when a client requests to edit an uploaded file.

 21 (186)

Figure 9 displays the processes when a client requests to delete an uploaded file

 22 (186)

Figure 10 displays the processes when a client requests to create website (part 1).

 23 (186)

Figure 11 displays the processes when a client requests to create website (part 2).

3 Design Considerations

3.1 Assumptions and Dependencies
The software will be implemented using Java ServerPages (JSP) without the use of
Enterprise Java Beans (EJB). In theory it should be possible to run on any operating
system that supports the Apache Tomcat webserver, however it will only be tested to
work with Apache Tomcat running on Linux. The version of Apache Tomcat that will
be supported is version 6.0.
The system is designed to be used with the MySQL Relational Database
Management System (RDBMS) version 5.0
Users of the system will be running the Mozilla Firefox web browser version 2.0 when
using the system. They will not need any specific training in order to use the system.

 24 (186)

3.2 General constraints
One of the more likely bottlenecks of the system will be the database server, since it’s
used to store most of the information in the system it will be queried frequently, which
could cause a high load on the server. To mitigate this the system will cache
information in memory and reduce the amount of queries needed to the database
server

4 Graphical User Interface

4.1 Design of the System
The overall design of the system is described by the figure below, where there are
four major categories; Course Administration, Personal Page, System Administration
and Course Website, which are represented by the rounded shadowed rectangles.
The webpages in each category is represented by rounded rectangles and an
element of a webpage is represented by a rectangle, e.g. “Export into iCalendar
format” is an element of the Schedule webpage.

When accessing the Personal Page and the Course Website the default page is the
News webpage. The default page when accessing the Registration webpage, in the
category Course Administration, is View Registered Students page.

The design of the system has been centered on the so called Personal Page. The
personal page will provide logged in users with access to the features their user
privileges allow, such as viewing ones results if they are a student, or administrating of
course websites if they are a course leader.

 25 (186)

Figure 5 describes the overall design of the system.

 26 (186)

4.2 Overview of the User Interface

The graphical user interface (GUI) is divided into three sections:

1. The header (at the top), with the name of the system.

2. To the left, the navigation menu (listing of links). The content of the navigation
menu will depend on the status of the user (whether the user is logged in or not, and
what privileges the user is assigned). The menu available to users when logged in will
remain mostly the same as they navigate to different parts of the system, and they’ll
have quick access to both functions related to the current page they’re at, and at
the same time be able to navigate to other parts of the system. Also, login/logout-
related objects will be placed at the top of the navigation menu.

3. To the right, the main content is displayed. The page displayed in this section will
correspond to the part of the system being used by the user.

General notes:

Users who are not logged in will still be able to access their, and others, personal
page. When not logged in the menu items available are more limited, such as that
one can’t view results unless logged in, and they will not “follow” the user as they
navigate to different parts of the system.

 27 (186)

4.3 Details of the Graphical User Interface

Menues

Start Page Menu

Functional Requirements:

1.1

Controls:

1. txtUsername – textfield to get username from user.
2. txtPassword – textfield to get password from user.
3. btnLogin – Button to start the login procedure by invoking the authenticate
method.

Methods:

authenticate – Validates the provided username/password combination against
what is stored in the database.

Personal Page – Logged Out

Functional Requirements:

1.1
2.2
2.3
7.4
8.3

Controls:

1. lnkCourseNews – Redirects the user to the news overview page.
2. lnkSchedule – Redirects the user to the compiled schedule page.
3. lnkDeadlines – Redirects the user to the deadlines overview page.
4. lnkCourse1 – Redirects the user to the specific course website.

 28 (186)

Methods:

None

Personal Page – Logged In

Functional Requirements:

2.3
7.4
8.3
11.2

Controls:

1. lnkLogOut – Invokes the logout method.
2. lnkCourseNews – Redirects the user to the news overview page.
3. lnkSchedule – Redirects the user to the compiled schedule page.
4. lnkDeadlines – Redirects the user to the deadlines overview page.
5. lnkResults – Redirects the user to the results page.
6. lnkCourse1 – Redirects the user to the specific course website.
7. lnkCourse2 – Redirects the user to the specific course website.
8. lnkCourse3 – Redirects the user to the specific course website.
9. lnkCourse4 – Redirects the user to the specific course website.

Methods:

Logout – Logs out the user.

 29 (186)

Course Website – Logged Out

Functional Requirements:

1.1
4.2
5.2
6.2
7.3
8.2
10.2
12.3

Controls:

1. lnkNews – Redirects the user to the news page for the specific course.
2. lnkDescription – Redirects the user to the description page for the specific course.
3. lnkSchedule – Redirects the user to the schedule page for the specific course.
4. lnkDeadlines – Redirects the user to the deadline page for the specific course.
5. lnkAssignments – Redirects the user to the assignment page for the specific course.
6. lnkApply – Redirects the user to the apply page for the specific course.
7. lnkInformationPage – Redirects the user to a information page for the specific
course.

Methods:

None

 30 (186)

Course Website – Logged In

Functional Requirements:

2.3
4.2
5.2
6.2
7.3
7.4
8.2
9.2
10.2
11.2
12.3

Controls:

1. lnkLogOut – Invokes the logout method.
2. lnkNews – Redirects the user to the news page for the specific course.
3. lnkDescription – Redirects the user to the description page for the specific course.
4. lnkSchedule – Redirects the user to the schedule page for the specific course.
5. lnkDeadlines – Redirects the user to the deadline page for the specific course.
6. lnkAssignments – Redirects the user to the assignment page for the specific course.

 31 (186)

7. lnkUploadedFiles – Redirects the user to the upload files page for the course.
8. lnkApply – Redirects the user to the apply page for the specific course.
9. lnkInformationPage – Redirects the user to a information page for the specific
course.
10. lnkAllNews – Redirects the user to the news overview page.
11. lnkAllSchedule – Redirects the user to the compiled schedule page.
12. lnkAllDeadlines – Redirects the user to the deadlines overview page.
13. lnkAllResults – Redirects the user to the results page.
14. lnkCourse1 – Redirects the user to the specific course website.
15. lnkCourse2 – Redirects the user to the specific course website.
16. lnkCourse3 – Redirects the user to the specific course website.
17. lnkCourse4 – Redirects the user to the specific course website.

Methods:

logout – Logs out the user.

 32 (186)

Course Administration

Functional Requirements:

2.3
4.1
4.2
5.1
5.2
6.1
6.2
7.2
7.3
7.4
8.1

 33 (186)

8.2
8.3
9.1
9.2
10.1
10.2
11.1
12.1
12.2
12.3
12.4
13.2

Controls:

1. lnkLogOut – Invokes the logout method.
2. lnkNews – Redirects the user to the news page for the specific course.
3. lnkDescription – Redirects the user to the description page for the specific course.
4. lnkSchedule – Redirects the user to the schedule page for the specific course.
5. lnkDeadlines – Redirects the user to the deadline page for the specific course.
6. lnkAssignments – Redirects the user to the assignment page for the specific course.
7. lnkUploadedFiles – Redirects the user to the upload files page for the course.
8. lnkApply – Redirects the user to the apply page for the specific course.
9. lnkInformationPage – Redirects the user to a information page for the specific
course.
10. lnkManageAssignment – Redirects the user to the manage assignment page for
the specific course.
11. lnkManageCourseAssistant – Redirects the user to the manage course assistant
page for the specific course.
12. lnkManageDescription – Redirects the user to the manage description page for
the specific course.
13. lnkManageDeadline – Redirects the user to the manage deadlines page for the
specific course.
14. lnkManageInformationPage – Redirects the user to the manage information
page for the specific course.
15. lnkManageFile – Redirects the user to the manage file page for the specific
course.
16. lnkManageNews – Redirects the user to the manage news page for the specific
course.
17. lnkManageRegistration – Redirects the user to the manage registration page for
the specific course.
18. lnkManageResults – Redirects the user to the mange results page for the specific
course.
19. lnkManageSchedule – Redirects the user to the manage schedule page for the
specific course.
20. lnkAllNews – Redirects the user to the news overview page.
21. lnkAllSchedule – Redirects the user to the compiled schedule page.
22. lnkAllDeadlines – Redirects the user to the deadlines overview page.
23. lnkCourse1 – Redirects the user to the specific course website.

Methods:

logout – Logs out the user.

 34 (186)

System Administration

Functional Requirements:

13.1
13.3
13.4

Controls:

1. lnkLogOut – Invokes the logout method.
2. lnkAddCourse – Redirects the user to the add course page.
3. lnkAddUser – Redirects the user to the add user page.

Methods:

logout – Logs out the user.

Start Page

Functional requirements:

1.1

Controls:

None

Methods:

None

 35 (186)

Personal Page

Front Page (News)

Functional Requirements

2.1
2.2
2.3

Controls

None

Methods

printCompiledNews – Prints compiled news from all courses the student is enrolled in.

 36 (186)

Deadlines

Functional Requirements

2.2
8.3

Controls

None

Methods

printOverviewDeadlines – Prints all relevant deadlines from all the courses the student
is enrolled in.

 37 (186)

Results

Functional Requirements

2.2
11.2

Controls

None

Methods

printResults – Prints all results assigned to the course assignments from all the courses
the student is enrolled in.

Schedule

Functional Requirements

2.2
7.4

 38 (186)

7.5

Controls

1. lnkExportSchedule – Invokes the method exportCompiledSchedule.

Methods

printCompiledSchedule – Prints the compiled schedule where activities, from all
courses the student is enrolled in, are included.
exportCompiledSchedule – Exports the compiled schedule into iCalendar format.

Course Website

Front Page (News)

Functional Requirements

5.2

Controls

None

Methods

printNews – Prints all news for the course.

 39 (186)

Assignments

Functional Requirements

10.2

Controls

None

Methods

printCourseAssignments – Prints all assignments from the course in question.

Apply for Course

Functional Requirements

12.3

Controls

1. Apply – Button to confirm applying to a course.

Methods

applyForCourse – Updates the student’s status for the course in question to reflect
the student applying for the course.

 40 (186)

Apply Confirmation

Functional Requirements

12.3

Controls

1. btnCourseWebsite – Redirects the user to the course website.

Methods

None

Deadlines

Functional Requirements

8.2

Controls

None

Methods

printDeadlines – Prints all the current deadlines for the course in question.

 41 (186)

Course Description

Functional Requirements

4.2

Controls

None

Methods

printCourseDescription – Prints the description of the course

Files

Functional Requirements

9.2

Controls

1-6. lnkFile1-lnkFile6 – Invokes the viewFile method.

Methods

viewFile – Gives a view of the selected file.
printFile – Prints the selected file.

 42 (186)

saveFile – Saves the selected file to a specified directory.

Information Pages

Functional Requirements

6.2

Controls

None

Methods

printInformationPage – prints the information for the course.

Results

Functional Requirements

11.2

Controls

None

Methods

printCourseResults – Prints all results assigned to the course assignments from the
course in question.

 43 (186)

Schedule

Functional Requirements

7.3
7.5

Controls

1. lnkExportSchedule- Invokes the printCourseSchedule method.

Methods

printCourseSchedule – Prints the schedule where activities, from the specific course
the
student selected.
printSchedule – Prints the schedule for the course.

 44 (186)

Course Administration Pages

Scheduled Activities

Functional Requirements

7.1
7.2

Controls

1. txtActivityTitle – The title of the activity.
2. drpBeginDay – The day the activity starts.
3. drpBeginMonth – The month the activity starts.
4. drpBeginYear – The year the activity starts.
5. drpBeginHour – The hour the activity starts.
6. drpBeginMinute – The minute the activity starts.
7. drpEndDay – The day the activity ends.
8. drpEndMonth – The month the activity ends.

 45 (186)

9. drpEndYear – The year the activity ends.
10. drpEndHour – The hour the activity ends.
11. drpEndMinute – The minute the activity ends.
12. txtActivityDescription – The description of the activity.
13. btnPreviewActivity – Shows a preview of the activity with provided information.
14. txtiCalFileLoc – The location of the iCal file.
15. btnBrowseFiles – A graphic alternative to control 14 which lets the user navigate
through local files.
16. btnImportSchedule – Invokes the method importSchedule.
17-21. lnkEditActivity1 - lnkEditActivity5 – Invokes the editActivity method.
22-26. lnkRemoveActivity1 - lnkRemoveActivity5 – Invokes the removeActivity
method.

Methods

importSchedule – Uploads the provided iCal schedule to the file system.
editActivity – Retrieves the data for the specified activity and allows the user to edit
that data.
removeActivity – Removes the specified activity.

Add Activity Preview

Functional Requirements

7.2

Controls

1. btnBack – Returns the user to the previous page.
2. btnAddActivity - Invokes the method addActivity.

Methods

addActivity – Adds the activity with the provided information to the database.

 46 (186)

Add Activity Confirmation

Functional Requirements

7.2

Controls

1. btnAddActivity – Redirects the user to the add activity page.

Methods

None

Edit Activity

Functional Requirements

7.2

Controls

1. txtActivityTitle – The title of the activity.
2. drpBeginDay – The day the activity starts.
3. drpBeginMonth – The month the activity starts.
4. drpBeginYear – The year the activity starts.
5. drpBeginHour – The hour the activity starts.
6. drpBeginMinute – The minute the activity starts.
7. drpEndDay – The day the activity ends.
8. drpEndMonth – The month the activity ends.
9. drpEndYear – The year the activity ends.

 47 (186)

10. drpEndHour – The hour the activity ends.
11. drpEndMinute – The minute the activity ends.
12. txtActivityDescription – The description of the activity.
13. btnPreviewEditedActivity – Shows a preview of the edited activity.

Methods

None

Edit Activity Preview

Functional Requirements

7.2

Controls

1. btnBack – Returns the user to the previous page
2. btnEditActivity – Invokes the method editActivity.

Methods

editActivity – Updates the activity in the database, with the information provided.

Activity Edited Confirmation

Functional Requirements

7.2

Controls

1. btnEditAnotherActivity – Redirects the user to the Sheduled activities page.

Methods

None

 48 (186)

Confirm Removal of Activity

Functional Requirements

7.2

Controls

1. btnConfirmActivityRemoval - Invokes removeActivity.

Methods

removeActivity – Removes the scheduled activity from the database.

Activity Removed Confirmation

Functional Requirements

7.2

Controls

btnRemoveAnotherActivity – Redirects the user to the Scheduled activities page.

Methods

None

Imported Schedule Confirmation

Functional Requirements

7.1

 49 (186)

Controls

1. btnImportAnotherSchedule – Redirects the user to the Scheduled activities page.

Methods

None

Confirm Remove Schedule

Functional Requirements

7.1

Controls

1. btnConfirmRemoveSchedule – Confirms that the schedule should be removed.

Methods

None

Remove Schedule Confirmation

Functional Requirements

7.1

Controls

1. btnAdministrateSchedule – Redirects the user to the schedule page.

Methods

None

 50 (186)

Assignments

Functional Requirements

10.1

Controls

1. txtAddAssignmentTitle – The title of the new assignment.
2. txtAddAssignmentDescription – A text that describing the new assignment.
3. btnPreviewAddAssignment – Invokes the displayAddAssignment method.
4-5. lnkEditAssignment1 - lnkEditAssignment2 – Invokes the editAssignment method.
6-7. lnkRemveAssignment1 - lnkRemoveAssignment2 – Invokes the removeAssignment
method.

Methods

displayAddAssignment - Validates the input and displays a preview of the new
assignment.
editAssignment – Retrieves the data for the specified assignment and allows the user
to edit the data.
removeAssignment – Deletes the specified assignment from the database.

 51 (186)

Add Assignment Preview

Functional Requirements

10.1

Controls

1. btnBackAddAssignment – Redirect the user to the previous page (Add
Assignment) and allows the user to edit the input.
2. btnSaveAddAssignment – Invokes the method addAssignment.

Methods

addAssignment – Saves the new assignment.

Add Assignment Confirmation

Functional Requirements

10.1

Controls

1. btnAddAssignment – Redirects the user to the add assignment page.

Methods

None

 52 (186)

Edit Assignment

Functional Requirements

10.1

Controls

1. txtEditAssignmentTitle – The title of the new assignment.
2. txtEditAssignmentDescription – A text that describing the new assignment.
3. btnPreviewEditAssignment – Invokes the displayEditAssignment method.

Methods

displayEditAssignment - Validates the input and displays a preview of the edited
assignment.

 53 (186)

Edit Assignment Preview

Functional Requirements

10.1

Controls

1. btnBackEditAssignment – Redirect the user to the previous page (Edit Assignment)
and allows the user to edit the input.
2. btnSaveEditAssignment – Invokes the method saveEditAssignment.

Methods

saveEditAssignment – Saves the edited assignment.

Edit Assignment Confirmation

Functional Requirements

10.1

Controls

1. btnEditAssignment – Redirects the user to the assignment page.

Methods

None

 54 (186)

Confirm Remove Assignment

Functional Requirements

10.1

Controls

1. btnConfirmRemoveAssignment - Confirms that the selected assignment should be
removed.

Methods

None

Remove Assignment Confirmation

Functional Requirements

10.1

Controls

1. btnRemoveAssignment – Redirects the user to the assignment page.

Methods

None

 55 (186)

Course Assistants

Functional Requirements

13.2

Controls

1. txtUsername – Username of the user to add.
2. btnAddCourseAssistant – Invokes the checkUser method.
3. lnkRemoveCourseAssistant1 - lnkRemoveCourseAssistant2 – Invokes the
removeCourseAssistant method.

Methods

checkUser – Determines whether the user account exists or not, if the user account
exist it redirects the user to the confirmation page.
removeCourseAssistant – Removes the specified course assistant.

Confirm Add Course Assistant

Functional Requirements

13.2

Controls

1. btnConfirmCourseAssistant – Invokes the addCourseAssistant method.

Methods

addCourseAssistant – Adds a new course assistant for the course.

 56 (186)

Add Course Assistant Confirmation

Functional Requirements

13.2

Controls

1. btnAddAnotherCourseAssistant – Redirects the user to the add course assistant
page.

Methods

None

Confirm Remove Course Assistant

Functional Requirements

13.2

Controls

1. btnConfirmRemoveCourseAssistant – Invokes the removeCourseAssistant method.

Methods

removeCourseAssistant – Removes a course assistant from the course.

Remove Course Assistant Confirmation

 57 (186)

Functional Requirements

13.2

Controls

1. btnRemoveAnotherCourseAssistant – Redirects the user to the remove course
assistant page.

Methods

None

Edit Course Description

Functional Requirements

4.1

Controls

1. txtCourseName – The name of the course.
2. txtCourseCredit – The credit of the course.
3. drpCourseBeginYear – The year that the course starts.
4. drpCourseBeginPeriod – The period that the course starts..

 58 (186)

5. drpCourseEndYear – The year that the course ends.
6. drpCourseEndPeriod – The period that the course ends.
7. txtCourseDescription – The descriptions of the course.
8. btnSaveCourseDescription – Invokes the saveCourseDescription method.

Methods

saveCourseDescription – Saves the changes to the course description.

Edit Course Description Confirmation

Functional Requirements

4.1

Controls

1. btnEditCourseDescription – Redirects the user to the edit course description page.

Methods

None

 59 (186)

Create Course Website – Create Description

Functional Requirements

3.1
4.1

Controls

1. txtCourseName – The name of the course.
2. txtCourseCredit – The credit of the course.
3. drpCourseBeginYear – The year that the course starts.
4. drpCourseBeginPeriod – The period that the course starts..
5. drpCourseEndYear – The year that the course ends.
6. drpCourseEndPeriod – The period that the course ends.
7. txtCourseDescription – The descriptions of the course.
8. btnSaveCourseDescription – Invokes the saveCourseDescription method.

Methods

btnContinueToSchedule – Saves the course description and continues to the next
step in the creation guide (Import Schedule).

 60 (186)

Create Course Website – Import Schedule

Functional Requirements

3.1
7.1

Controls

1. txtScheduleDirectory – The directory of the schedule in iCalendar format.
2. btnBrowseSchedule – Selects the schedule the user selects to import.
3. btnSkipSchedule – Redirects the user to the next step in the creation guide (Add
information Page).
4. btnImportSchedule – Invokes the importSchedule method.

Methods

importSchedule – Validates the input, generates a schedule that can be viewed
through the system and saves it.

Create Course Website – Import Schedule Confirmation

Functional Requirements

3.1
7.1

Controls

1. btnContinueToAddInformationPage – Redirects the user to the add information
page.

Methods

None

 61 (186)

Create Course Website –Add Information Pages

Functional Requirements

3.1
6.1

Controls

1. txtInformationPageTitle – The title of the information page.
2. txtInformationPageContent – The content of the information page.
3. btnSkipInformationPage – Redirects the user to the next step (Add Deadlines) in
the creation guide.
4. btnPreviewInformationPage – Invokes the displayAddInformationPage method.

Methods

displayAddInformationPage - Validates the input and displays a preview of the new
information page.

 62 (186)

Create Course Website – Add Information Pages Preview

Functional Requirements

3.1
6.1

Controls

1. btnBackAddInformationPage - Redirect the user to the previous page (Add
Information Page) and allows the user to edit the input.
2. btnSaveAddInformationPage – Invokes the method addInformationPage.

Methods

addInformationPage – Saves the information page.

Create Course Website – Add Information Pages Confirmation

Functional Requirements

3.1
6.1

Controls

1. btnContinueToAddDeadlines – Redirects the user to the next step (Add Deadlines)
in the creation guide.

 63 (186)

Methods

None

Create Course Website – Add Deadlines

Functional Requirements

3.1
8.1

Controls

1. txtTitleAddDeadline – The title of the new deadline.
2. drpDateDay – The day part of the date the deadline is for.
3. drpDateMonth – The month part of the date the deadline is for.
4. drpDateYear – The year part of the date the deadline is for.
5. drpTimeMinutes – The minutes part of the time the deadline is for.
6. drpTimeHour – The hour part of the time the deadline is for.
7. txtDescriptionAddDeadline – A text describing the new deadline.
8. btnPreviewDeadline – Invokes the displayAddDeadline method.

Methods

displayAddDeadline– Validates input and displays a preview of the new deadline.

Create Course Website – Add Deadlines Preview

Functional Requirements

3.1
8.1

 64 (186)

Controls

1. btnBackAddDeadline - Redirect the user to the previous page (Add Deadline)
and allows the user to edit the input.
2. btnSaveAddDeadline – Invokes the method addDeadline.

Methods

addDeadline – Saves the deadline.

Create Course Website – Add Deadlines Confirmation

Functional Requirements

3.1
8.1

Controls

1. btnContinueToCreationGuidePreview – Invokes displayCreationGuide

Methods

displayCreationGuide - Displays a summary of the objects created by the user
throughout the creation guide.

 65 (186)

Create Course Website Summary

Functional Requirements

3.1
8.1

Controls

1. btnBackCreationGuide - Redirect the user to the add deadline page and allows
the user to edit the input.
2. btnCreateCourseWebsite – Invokes the createCourseWebsite method.

Methods

createCourseWebsite – Creates the course website.

Create Course Website Confirmation

Functional Requirements

3.1

 66 (186)

Controls

1. btnCourseWebsite – Redirects the user to the new course website.

Methods

None

Deadlines

Functional Requirements

8.1

Controls

1. txtTitle – The title of the new deadline.
2. drpDateDay – The day part of the date the deadline is for.
3. drpDateMonth – The month part of the date the deadline is for.
4. drpDateYear – The year part of the date the deadline is for.
5. drpTimeMinutes – The minutes part of the time the deadline is for.
6. drpTimeHour – The hour part of the time the deadline is for.
7. txtDescription – A text describing the new deadline.
8. btnPreviewDeadline – Shows a preview of the deadline with the provided
content..
9-11 lnkEditDeadline1 - lnkEditDeadline3 – Invokes the editDeadline method.
12-14. lnkRemoveDeadline1 - lnkRemoveDeadline3 – Invokes the removeDeadline
method.

Methods

editDeadline – Retrieves the data for the specified deadline and allows the user to
edit that data.
removeDeadline – Removes the specified deadline.

 67 (186)

Add Deadline Preview

Functional Requirements

8.1

Controls

1. btnBackAddDeadline – Redirect the user to the previous page (Add Deadline)
and allows the user to edit the input.
2. btnSaveAddDeadline – Invokes the method addDeadline.

Methods

addDeadline – Saves the new deadline.

Add Deadline Confirmation

Functional Requirements

8.1

Controls

1. btnAddDeadline – Redirects the user to the add deadline page.

Methods

None

 68 (186)

Edit Deadlines

Functional Requirements

8.1

Controls

1. txtTitle – The title of the new deadline.
2. drpDateDay – The day part of the date the deadline is for.
3. drpDateMonth – The month part of the date the deadline is for.
4. drpDateYear – The year part of the date the deadline is for.
5. drpTimeMinutes – The minutes part of the time the deadline is for.
6. drpTimeHour – The hour part of the time the deadline is for.
7. txtDescription – A text describing the new deadline.
8. btnPreviewDeadline – Shows a preview of the deadline with the provided content.

Methods

None

Edit Deadline Preview

Functional Requirements

8.1

Controls

1. btnBackEditDeadline – Redirect the user to the previous page (Edit Deadline) and
allows the user to edit the input.
2. btnSaveEditAssignment – Invokes the method saveEditDeadline.

 69 (186)

Methods

saveEditDeadline – Saves the edited deadline.

Edit Deadline Confirmation

Functional Requirements

8.1

Controls

1. btnEditAnotherDeadline – Redirects the user to the list of existing deadlines.

Methods

None

Confirm Deadline Removal

Functional Requirements

8.1

Controls

1.btnConfirm – Confirms that the selected deadline should be removed.

Methods

None

Deadline Removal Confirmation

 70 (186)

Functional Requirements

8.1

Controls

1. btnDeleteAnotherDeadline – Redirects the user to the list of existing deadlines.

Methods

None

Information Pages

Functional Requirements

6.1

Controls

1. txtInfoPageTitle – The title of the information page.
2. txtInfoPageContent – The content of the information page.
3. btnPreviewInfoPage – Shows a preview of the information page with the provided
content.
4. lnkEditInfoPage – Invokes the editInfoPage method.

 71 (186)

5. lnkRemoveÌnfoPage – Invokes the removeInfoPage method.

Methods

editInfoPage – Retrieves the data for the specified information page and allows the
user to edit the data.
removeInfoPage – Removes the specified information page.

Add Information Page Preview

Functional Requirements

6.1

Controls

1. btnBack – Returns the user to the previous page.
2. btnAddInfoPage – Invokes the method addInfoPage.

Methods

addInfoPage – Adds the information page to the database.

Add Information Page Confirmation

Functional Requirements

6.1

 72 (186)

Controls

1. btnAddInformationPage – Redirects the user to the add information page.

Methods

None

Edit Information Page

Functional Requirements

6.1

Controls

1. txtInfoPageTitle – The title of the information page.
2. txtInfoPageContent – The content of the information page.
3. btnPreviewInfoPage – Shows a preview of the information page with the provided
content.

Methods

None

 73 (186)

Edit Existing Information Page Preview

Functional Requirements

6.1

Controls

1. btnBack – Returns the user to the previous page.
2. btnEditInfoPage – Invokes the method editInfoPage.

Methods

editInfoPage – Updates the information page in the database, with the provided
information.

Information Page Edited Confirmation

Functional Requirements

6.1

Controls

1. btnEditAnotherInfoPage – Redirects the user to the ”Information pages” page.

Methods

None

 74 (186)

Confirm Removal of Information Page

Functional Requirements

6.1

Controls

1. btnConfirmInfoPageRemoval – Invokes the method removeInfoPage.

Methods

removeInfoPage – Removes the information page in question from the database.

Information Page Removed Confirmation

Functional Requirements

6.1

Controls

1. btnRemoveAnotherInfoPage – Redirects the user to the ”Information pages” page.

Methods

None

 75 (186)

News

Functional Requirements

5.1

Controls

1. txtNewsHeadline – The headline of the news post.
2. txtNewsContent – The content of the news post.
3. btnPreviewAddNews – Shows a preview of the activity, with the provided
information.
4-6. lnkEditNews1 - lnkEditNews3 – Invokes the editNews method.
7-8. lnkRemoveNews1 - lnkRemoveNews3 – Invokes the removeNews method.

Methods

editNews – Retrieves the data for the specified news and allows the user to edit the
data.
removeNews – Removes the specified news.

 76 (186)

Add News Preview

Functional Requirements

5.1

Controls

1. btnBack – Returns the user to the previous page.
2. btnAddNews – Invokes the method addNews.

Methods

addNews – Adds the news post to the database.

Add News Confirmation

Functional Requirements

5.1

Controls

1. btnAddNews – Redirects the user to the add news page.

Methods

None

 77 (186)

Edit News

Functional Requirements

5.1

Controls

1. txtNewsHeadline – The headline of the news post.
2. txtNewsContent – The content of the news post.
3. btnPreviewEditNews – Shows a preview of the updated news post, with the
provided information.

Methods

None

Edit Existing News Preview

Functional Requirements

5.1

Controls

1. btnBack – Returns the user to the previous page.
2. btnEditNews – Invokes the method editNews.

Methods

editNews – Updates the news post in the database, with the information provided.

 78 (186)

News Edited Confirmation

Functional Requirements

5.1

Controls

1. btnEditAnotherNews – Redirects the user to the news management page for
system administrators.

Methods

None

Confirm Removal of News

Functional Requirements

5.1

Controls

1. btnConfirmNewsRemoval – Invokes the method removeNews.

Methods

removeNews – Removes the news post in question from the database.

News Removed Confirmation

 79 (186)

Functional Requirements

5.1

Controls

1. btnRemoveAnotherNews – Redirects the user to the news management page for
system administrators.

Methods

None

Registrations

Functional requirements

12.1
12.2
12.4

Controls

1. chkX_1 – Checkbox to select user1 (Olle Johansson) for verification.
2. chkX_2 – Checkbox to select user4 (Johan Olofsson) for verification.
3. btnSelectAll – Checks all the checkboxes.
4. btnVerifySelected – Invokes the method verifyRegistrations.
5-6. lnkRemoveStudent1 - lnkRemoveStudent2 – Invokes the removeStudent method.

Methods

verifyRegistrations – Updates the status for the selected students.
removeStudent – Removes the student from the specified course.

Verified Registrations Confirmation

 80 (186)

Functional requirements

12.2

Controls

1. btnVerifyAnotherStudent – Redirects the user to the Registrations page.

Methods

None

Confirm Removal of Student Registration

Functional requirements

12.4

Controls

1. btnConfirmRegistrationRemoval – Invokes the method removeStudentReg.

Methods

removeStudentReg – Removes the student registration in question from the
database.

Student Registration Removed Confirmation

Functional requirements

12.4

Controls

1. btnRemoveAnotherStudent – Redirects the user to the Registrations page.

Methods

None

 81 (186)

Register Results

Functional requirements

11.1

Controls

1. txtGrade_UserAssign_1_1 – The grade of the first assignment (POD) for the first
student.
2. txtGrade_UserAssign_1_2 – The grade of the second assignment (Use Cases) for the
first student.
3. txtGrade_UserAssign_2_1 – The grade of the first assignment (POD) for the second
student.
4. txtGrade_UserAssign_2_2 – The grade of the second assignment (Use Cases) for the
second student.
5. btnSaveRes – Invokes the method saveResults.

Methods

saveResults – Updates the results in the database.

Results Registered Confirmation

Functional requirements

11.1

Controls

1. btnRegisterMoreResults – Redirects the user to the Register results page.

Methods

None

 82 (186)

Files

Functional Requirements

9.1

Controls

1. txtAddFileTitle – The title of the file.
2. txtAddFileDescription – The description of the file.
3. txtAddFileSource – The directory of the file.
4. btnSelectAddFile – Selects the file the user specified for upload.
5. btnSaveAddFile – Invokes the uploadAddFile method.
6-11. lnkEditFile1 - lnkEditFile6 – Invokes the editFile method.
12-17. lnkRemoveFile1 - lnkRemoveFile6 – Invokes the removeFile method.

Methods

uploadAddFile – Uploads the file and saves the title and description.
editFile – Retrieves the data for the specified file and allows the user to edit the data.
emoveFile – Removes the file.

Add File Confirmation

 83 (186)

Functional Requirements

9.1

Controls

1. btnAddFile – Redirects the user to the add files page.

Methods

None

Edit File

Functional Requirements

9.1

Controls

1. txtEditFileTitle – The new title of the file.
2. txtEditFileDescription – The new description of the file.
3. txtEditFileSource – The directory of the new file, if the user wants a new file.
4. btnSelectEditFIle – Selects the new file the user specified for upload.
5. btnSaveEditFile – Invokes the uploadAddFile method.

Methods

uploadEditFile – Uploads the new file, if specified, and saves the changes.

Edit File Confirmation

Functional Requirements

9.1

 84 (186)

Controls

1. btnEditFile – Redirects the user to the add files page.

Methods

None

Confirm Remove File

Functional Requirements

9.1

Controls

1. btnConfirmRemoveFile – Confirm that the selected file should be removed.

Methods

None

Remove File Confirmation

Functional Requirements

9.1

Controls

1. btnRemoveFile - Redirects the user to the add files page.

Methods

None

 85 (186)

System Administration Pages

Courses

Functional Requirements

13.3

Controls

1. txtCourseCode – Course code for the course to be added.
2. btnAddCourse – Invokes the addCourse method.
3. txtCourseCode – Course code for the course to edit.
4. btnSearchCourse – Invokes the searchCourse method.

Methods

addCourse - Adds the course with the given course code to the system.
searchCourse – Searches for the course with the given course code.

Course Added Confirmation

Functional Requirements

13.3

Controls

1. btnAssignCourseLeader – Redirects the user to the user privileges page for courses.
2. btnAddAnotherCourse – Redirects the user to the course management page for
system administrators.

Methods

None

 86 (186)

Existing Courses List

Functional Requirements

13.3

Controls

1-3. lnkEditCourse1 - lnkEditCourse3 – Invokes the editCourse method.

Methods

editCourse – Retrieves the data for the specified course and allows the user to edit
the data.

Edit Existing Course

Functional Requirements

13.3

Controls

1. txtCourseCode – The new desired course code for the course.
2. btnSaveCourseCode – Invokes the method setCourseCode.

Methods

setCourseCode – Saves the given course code to the database.

Course Edited Confirmation

 87 (186)

Functional Requirements

13.3

Controls

1. btnEditAnotherCourse – Redirects to the course management page for system
administrators.

Methods

None

Users

Functional Requirements

13.4

Controls

1. txtUsername – Username of the user to add.
2. txtPassword – Password of the user to add.
3. btnAdd – Invokes the addUser method.
4. txtSearchString – Search string used for finding a user.
5. btnSearch – Invokes the findUser method.

Methods

addUser – Adds a new user using the provided username and password
findUser – Attempts to find a user using the given search string.

Add User Confirmation

 88 (186)

Functional Requirements

13.4

Controls

btnAssignUserPrivileges – Redirects the user to the edit user privileges page.
btnAddAnotherUser – Redirects the user to the add user page.

Methods

None

Existing Users

Functional Requirements

13.1
13.4

Controls

1-3. lnkEditPrivileges1 - lnkEditPrivileges3 – Invokes the editPrivileges method.
4-6. lnkEditPassword1 - lnkEditPassword3 – Invokes the editPassword method.
7-9. lnkRemoveUser1 - lnkRemoveUser3 – Invokes the removeUser method.

Methods

editPrivileges – Let the user edit the specified users privileges.
editPassword – Let the user edit the specified users password.
removeUser – Let the user remove the specified user.

Edit Password

Functional Requirements

13.4

Controls

1. txtPassword – The new password for the user.

 89 (186)

2. btnSavePassword – Invokes the savePassword method.

Methods

savePassword – Saves the new password for the user in the database.

Edit Password Confirmation

Functional Requirements

13.4

Controls

1. btnEditAnotherUser – Redirects the user to the existing users page.

Methods

None

Edit User Privileges

Functional Requirements

13.1

Controls

1. chkCourseLeader – Indicates whether the user should have course leader
privileges.
2. chkCourseAssistant – Indicates whether the user should have course assistant
privileges.
3. chkSystemAdministrator – Indicates whether the user should have system
administrator privileges.
4. btnSavePrivileges – Invokes the checkPrivileges method.

 90 (186)

Methods

checkPrivileges – Determines whether more input is required to assign the selected
privileges (happens if course leader or assistant has been selected), if not sends the
user to the ask for confirmation screen.

Edit User Privileges – Course Privileges – Find Course

Functional Requirements

13.1

Controls

1. txtCourseCode – Course code of the course for which to give the user privileges.
2. btnSearch – invokes the findCourse method.

Methods

findCourse – Attempts to find courses matching the given course code.

Edit User Privileges – Course Privileges – Select Course

Functional Requirements

13.1

Controls

1-3. lnkSelectCourse1 - lnkSelectCourse3 – Invokes the editPrivileges method.

Methods

editPrivileges – Adds the specified course to the specified users privileges.

 91 (186)

Confirm Edit User Privileges

Functional Requirements

13.1

Controls

1. btnConfirmPrivileges – Invokes the savePrivileges method.

Methods

savePrivileges – Saves the new privileges in the database.

Edit User Privileges Confirmation

Functional Requirements

13.1

Controls

1. btnEditAnotherUser – Redirects the user to the existing users page.

Methods

None

Confirm User Removal

 92 (186)

Functional Requirements

13.4

Controls

1. btnConfirm – Invokes the removeUser method.

Methods

removeUser – Removes the user and sends the user a confirmation.

User Removal Confirmation

Functional Requirements

13.4

Controls

1. btnRemoveAnotherUser – Redirects the user to the existing users page.

Methods

None

5. Design Details

5.1 Class Responsibility Collaborator (CRC) Cards

Activity

Responsibilities Collaborators

Knows course it belongs to
Knows title
Knows description
Knows start day
Knows start month
Knows start year
Knows start hour
Knows start minute
Knows end day
Knows end month
Knows end year
Knows end hour
Knows end minute

ActivityController

 93 (186)

Validate data

ActivityController

Responsibilities Collaborators

Add activity
Remove activity
Update activity
Fetching an activity from the database

Activity

Assignment

Responsibilities Collaborators

Knows course it belongs to
Knows title
Knows description
Knows deadline
Validate data

AssignmentController

AssignmentController

Responsibilities Collaborators

Add assignment
Remove assignment
Update assignment
Fetching an assignment from the
database

Assignment

BaseObject

Responsibilities Collaborators

Defines common methods for all business
objects

BaseController

Responsibilities Collaborators

Defines common methods for all
controllers

 94 (186)

Cache

Responsibilities Collaborators

Cache object (save to primary memory)
Retrieve cached object
Check if valid cache exists
Manage cache item timeout

Course

Responsibilities Collaborators

Knows course name
Knows course code
Knows news
Knows deadlines
Knows results
Knows assignment
Knows information pages
Knows users
Knows files
Validate data

CourseController

CourseController

Responsibilities Collaborators

Add course
Update course description
Register a user for a course
Unregister a user from a course
Apply a user for a course
Fetching a course from the database

Course
User

Deadline

Responsibilities Collaborators

Knows course it belongs to
Knows title
Knows description
Knows day
Knows month
Knows year
Knows hour
Knows minute
Validate data

DeadlineController

 95 (186)

DeadlineController

Responsibilities Collaborators

Add deadline
Remove deadline
Update deadline
Generate a list of all deadlines for a
course
Generate a list of all deadlines for a user
Fetching a deadline from the database

Course
Deadline
User

File

Responsibilities Collaborators

Knows course it belongs to
Knows title
Knows description
Knows filename
Validate data

FileController

FileController

Responsibilities Collaborators

Add file metadata to database
Remove file metadata from database
Update file metadata in database
Save file to file system
Remove file from file system
Update file in file system
Fetching a file from the database

File

Information Page

Responsibilities Collaborators

Knows course it belongs to
Knows title
Knows content
Validate data

InformationPageController

 96 (186)

InformationPageController

Responsibilities Collaborators

Add information page
Remove information page
Update information page
Fetching an information page from the
database

InformationPage

News

Responsibilities Collaborators

Knows course it belongs to
Knows headline
Knows content
Validate data

NewsController

NewsController

Responsibilities Collaborators

Add news
Remove news
Update news
Generate a list of all news for a course
Generate a list of all news for a user
Fetching a news post from the database

Course
News
User

Result

Responsibilities Collaborators

Knows the result associated to a
assignment and user
Validate data
Fetching a result from the database

ResultController

ResultController

Responsibilities Collaborators

Add result
Remove result
Update result

Assignment
Result
User

 97 (186)

Session

Responsibilities Collaborators

Knows logged-in status
Creates user-session
Ends user-session

User
Privilege

Schedule

Responsibilities Collaborators

Knows all activities related to a course ScheduleController

ScheduleController

Responsibilities Collaborators

Generate a list of all activities for a
course
Generate a list of all activities for a user
Export a list of activities to iCalendar
format
Import activities from the iCalendar
format
Remove all activities for a course

Activity
Course
Schedule
User

User

Responsibilities Collaborators

Knows username
Knows password
Knows firstname
Knows lastname
Knows privileges
Validate data

Course
UserController

 98 (186)

UserController

Responsibilities Collaborators

Add user
Update user password
Remove user
Fetching a user from the database
Add system administrator privilege for a
user
Remove system administrator privilege
for a user
Add course leader privilege for a user
Remove course leader privilege for a
user
Add course assistant privilege for a user
Remove course assistant privilege for a
user

Course
User

5.2 Class Diagram

 99 (186)

5.3 State Charts
Description of the different components in the State Charts are described in this box.

 100 (186)

Log In

Add Post

Edit Post

 101 (186)

Delete Post

Create Course Website Guide

 102 (186)

5.4 Interaction Diagrams
The sequence diagram models the flow of logic within the
system where a horizontal arrow represents the interaction
between two objects. The dotted vertical lines represents the
time, where the time flows from top to bottom. The solid lines
represent data flow in the system, and the dashed lines
represent a transfer of control.
We decided to create one sequence diagram, “Create Database Post”, for the use
cases add course description, add deadline, add course leader, add privileges, etc.
because they have similar sequence of actions. The same goes for the sequence
diagrams “Edit Database Post”, “Delete Database Post” and the view sequence
diagrams. There are two view sequence diagrams, one that describes the flow if a
post can be retrieved from the cache and the other if the post can’t be retrieved
from the cache and has to get it from the database server.

Log In

Figure 6 displays the sequence of action when a client requests to log in.

Create Database Post

Figure 7 displays the sequence of actions to create a database post.

 103 (186)

Edit Database Post

Figure 8 displays the sequence of actions to edit a database post.

Delete Database Post

Figure 9 displays the sequence of actions to create a database post.

 104 (186)

View Post from Cache

Figure 10 displays the sequence of actions to view a database post from cache.

View Post from Database

Figure 11 displays the sequence of actions to view a post from the database server when the post isn't

available in the cache.

Export Schedule into iCalendar Format

Figure 12 displays the sequence of actions to export a schedule into iCalander format.

 105 (186)

Upload File

Figure 13 displays the sequence of actions when a client requests to upload a file.

Edit Uploaded File

Figure 14 displays the sequence of actions when a client requests to edit an uploaded file.

 106 (186)

Delete Uploaded File

Figure 15 displays the sequence of actions when a client requests to delete an uploaded file.

 107 (186)

Create Course Website

 108 (186)

Figure 16 displays the sequence of actions when a client uses the guide for creating a course website.

5.5 Detailed Design

Database

Detailed database table definitions

Table: User

Columns:

Key Column name Data type Not null Unique Index Extra

Primary userID integer X X X auto_increment

 username varchar(50) X X

 password varchar(64) X

 firstname varchar(50) X

 lastname varchar(50) X

 109 (186)

Table: Course

Columns:

Key Column name Data type Not null Unique Index Extra

Primary courseID integer X X X auto_increment

 courseCode varchar(20) X X

Foreign courseLeader integer

 courseName varchar(50) X

 startYear integer

 startPeriod smallint

 endYear integer

 endPeriod smallint

 credits float

 description text X

Table: Activity

Columns:

Key Column name Data type Not null Unique Index Extra

Primary activityID integer X X X auto_increment

Foreign courseID integer X X X

 title varchar(100) X

 description text X

 startTime DateTime X

 endTime DateTime X

 110 (186)

Table: Deadline

Columns:

Key Column name Data type Not null Unique Index Extra

Primary deadlineID integer X X X auto_increment

Foreign courseID integer X X X

 headline varchar(100) X

 content text X

 time DateTime X

Table: News

Columns:

Key Column name Data type Not null Unique Index Extra

Primary newsID integer X X X auto_increment

Foreign courseID integer X X X

Foreign author integer X

 headline varchar(100) X

 content text X

 time DateTime X

Table: File

Columns:

Key Column name Data type Not null Unique Index Extra

Primary fileID integer X X X auto_increment

Foreign courseID integer X X X

 title varchar(100) X

 description text X

 filename varchar(50) X

Table: Information Page

Columns:

Key Column name Data type Not null Unique Index Extra

Primary pageID integer X X X auto_increment

Foreign courseID integer X X X

 title varchar(100) X

 content text X

 111 (186)

Table: Assignment

Columns:

Key Column name Data type Not null Unique Index Extra

Primary assignmentID integer X X X auto_increment

Foreign courseID integer X X X

 title varchar(100) X

 description text X

Table: InCourse

Columns:

Key Column name Data type Not null Unique Index Extra

Primary userID integer X X X

Primary courseID integer X X X

 status enum X

Table: Result

Columns:

Key Column name Data type Not null Unique Index Extra

Primary userID integer X X X

Primary assignmentID integer X X X

 grade enum X

Table: Privilege

Columns:

Key Column name Data type Not null Unique Index Extra

Primary userID integer X X X

 privilege enum X

 112 (186)

Classes

Class Activity

Field activityID

The ID that uniquely identifies the activity.

Type: Integer
Access level: Private

Field belongToCourse

The ID of the course that the activity belongs to.

Type: Integer
Access level: Private

Field description

The description of the activity.

Type: String
Access level: Private

Field endDateTime

The date and time that the activity ends.

Type: Date
Access level: Private

Field startDateTime

The date and time that the activity starts.

Type: Date
Access level: Private

Field title

The title of the activity.

Type: String
Access level: Private

Method getActivityID

Retrieves the value of the activityID field.

Requirements: 7.2-7.4
Parameters: N/A
Return: Integer (ID of the activity)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A

 113 (186)

Post-conditions: N/A
Caller: - ActivityController::Update
Calls: N/A

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 7.2
Parameters: N/A
Return: Integer (ID of the course that the activity belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ActivityController::update
Calls: N/A

Method getDescription

Retrieves the value of the description field.

Requirements: 7.2
Parameters: N/A
Return: String (description of the activity)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ActivityController::update
Calls: N/A

Method getEndDateTime

Retrieves the value of the endDateTime field.

Requirements: 7.2
Parameters: N/A
Return: Date (Date and time for the end of the activity)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ActivityController::update
 - Activity::setStartDateTime
Calls: N/A

Method getStartDateTime

Retrieves the value of the startDateTime field.

Requirements: 7.2
Parameters: N/A
Return: Date (Date and time for the start of the activity)
Data access: N/A

 114 (186)

Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ActivityController::update
 - Activity::setEndDateTime
Calls: N/A

Method getTitle

Retrieves the value of the title field.

Requirements: 7.2
Parameters: N/A
Return: String (title of the activity)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ActivityController::update
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 7.2
Parameters: - Integer (ID of the course that the activity belongs to)
Return: Boolean (true if the ID was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: - ActivityController::add
 - ActivityController::update
Calls: N/A

Method setDescription

Stores a String in the description field.

Requirements: 7.2
Parameters: - String (description of the activity)
Return: Boolean (true if the description was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The description is a string no longer than 100 characters
Post-conditions: N/A
Caller: - ActivityController::add
 - ActivityController::update
Calls: N/A

 115 (186)

Method setEndDateTime

Stores a Date object in the endDateTime field.

Requirements: 7.2
Parameters: - Timestamp (Date and time for the end of the activity)
Return: Boolean (true if the date and time of an activity was

successfully stored and validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The endDateTime is a Date object, representing date and

time where the year has to be at least 1900, and if
startDateTime is defined then the endDateTime has to
occur after startDateTime.

Post-conditions: N/A
Caller: - ActivityController::add
 - ActivityController::update
 - Activity::setStartDateTime
Calls: - Activity::setStartDateTime

Method setStartDateTime

Stores a Date object in the startDateTime field.

Requirements: 7.2
Parameters: - Date (Date and time for the start of the activity)
Return: Boolean (true if the date and time of an activity was

successfully stored and validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The startDateTime is a Date object, representing date and

time where the year has to be at least 1900, and if
endDateTime is defined and startDateTime is defined to
occur after endDateTime, the endDateTime is changed
into the same as startDateTime.

Post-conditions: N/A
Caller: - ActivityController::add
 - ActivityController::update
Calls: - Activity::getEndDateTime
 - Activity::setEndDateTime

Method setTitle

Stores a String in the title field.

Requirements: 7.2
Parameters: - String (title of the activity)
Return: Boolean (true if the title was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The title is a string no longer than 50 characters
Post-conditions: N/A
Caller: - ActivityController::add

 116 (186)

 - ActivityController::update
Calls: N/A

Class ActivityController

Method add

The method stores an activity in the database.

Requirements: 7.2
Parameters: - Activity (the activity to be stored)
Return: Boolean (true if activity was successfully stored in the

database)
Data access: Inserts a row in the database table Activity
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the Activity table in the

database
Caller: - JSP page for adding a scheduled activity
Calls: - Activity get methods

Method get

The method gets an activity from the database.

Requirements: 7.2-7.3
Parameters: - Integer (the activity ID to be fetched)
Return: Activity (the activity corresponding to the activity ID)
Data access: Fetches a row in the database table Activity
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing a scheduled activity
Calls: - Activity set methods

Method remove

The method removes an activity from the database.

Requirements: 7.2
Parameters: - Activity (the activity to be removed)
Return: Boolean (true if activity was successfully removed from the

database)
Data access: Deletes a row in the database table Activity
Pre-conditions: - A connection to the database is established
 - The activity exists in the database
Validity Check: N/A
Post-conditions: - The activity’s row is removed from the Activity table in the

database
Caller: - JSP page for removing a scheduled activity
Calls: N/A

Method update

The method updates an activity in the database.

 117 (186)

Requirements: 7.2
Parameters: - Activity (the activity to be updated)
Return: Boolean (true if activity was successfully updated in the

database)
Data access: Update a row in the database table Activity
Pre-conditions: - A connection to the database is established
 - The activity exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the Activity table in the database
Caller: - JSP page for updating a scheduled activity
Calls: - Activity get methods

Class Assignment

Field assignmentID

The ID that uniquely identifies the assignment.

Type: Integer
Access level: Private

Field belongToCourse

The ID of the course that the assignment belongs to.

Type: Integer
Access level: Private

Field deadline

The deadline of the assignment.

Type: Deadline
Access level: Private

Field description

The description of the assignment.

Type: String
Access level: Private

Field title

The title of the assignment.

Type: String
Access level: Private

Method getAssignmentID

Retrieves the value of the assignmentID field.

Requirements: 10.1
Parameters: N/A
Return: Integer (ID of the assignment)

 118 (186)

Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 10.1
Parameters: N/A
Return: String (name of the course that the activity belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method getDeadline

Retrieves the Deadline object in the deadline field.

Requirements: 10.1
Parameters: N/A
Return: Deadline (the deadline of the activity)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method getDescription

Retrieves the value of the description field.

Requirements: 10.1
Parameters: N/A
Return: String (description of the assignment)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method getTitle

Retrieves the value of the title field.

Requirements: 10.1
Parameters: N/A

 119 (186)

Return: String (title of the assignment)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 7.2
Parameters: - Integer (ID of the course that the assignment belongs to)
Return: Boolean (true if the ID was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: - AssignmentController::add
 - AssignmentController::update
Calls: N/A

Method setDeadline

Stores a Deadline object in the deadline field.

Requirements: 10.1
Parameters: - Deadline (the deadline of the activity)
Return: Boolean (true if the deadline was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The deadline is a Deadline object.
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method setDescription

Stores a String in the description field.

Requirements: 7.2
Parameters: - String (description of the assignment)
Return: Boolean (true if the description was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The description is a string no longer than 100 characters
Post-conditions: N/A
Caller: - AssignmentController::add
 - AssignmentController::update

 120 (186)

Calls: N/A

Method setTitle

Stores a String in the title field.

Requirements: 7.2
Parameters: - String (title of the assignment)
Return: Boolean (true if the title was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The title is a string no longer than 50 characters
Post-conditions: N/A
Caller: - AssignmentController::add
 - AssignmentController::update
Calls: N/A

Class AssignmentController

Method add

The method stores an assignment in the database.

Requirements: 10.1
Parameters: - Assignment (the assignment to be stored)
Return: Boolean (true if assignment was successfully stored in the

database)
Data access: Inserts a row in the database table Assignment
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the Assignment table in the

database
Caller: - JSP page for adding an assignment
Calls: - Assignment get methods

Method get

The method gets an assignment from the database.

Requirements: 10.1-10.2
Parameters: - Integer (the assignment ID to be fetched)
Return: Assignment (the assignment corresponding to the

assignment ID)
Data access: Fetches a row in the database table Assignment
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing an assignment
Calls: - Assignment set methods

Method getAssignmentByCourse

The method generates a list of all assignments for a specific course.

 121 (186)

Requirements: 10.1
Parameters: - Course (the course for which assignments shall be

retrieved)
Return: ArrayList (containing all assignments for the course)
Data access: Retrieve rows from the database table Assignment

Pre-conditions: - A connection to the database is established
 - The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying assignments for a course
 - JSP page for displaying a list of existing assignments
Calls: - Assignment set methods

Method remove

The method removes an assignment from the database. It also removes all results
associated to the assignment.

Requirements: 10.1
Parameters: - Assignment (the assignment to be removed)
Return: Boolean (true if assignment was successfully removed from

the database)
Data access: Deletes a row in the database table Assignment and all

rows in the database table Result that are associated to
the deleted row in Assignment

Pre-conditions: - A connection to the database is established
 - The assignment exists in the database
Validity Check: N/A
Post-conditions: - The assignment’s row is removed from the Assignment

table in the database and all rows in Result that were
associated to that row has been removed

Caller: - JSP page for removing an assignment
Calls: N/A

Method update

The method updates an assignment in the database.

Requirements: 10.1
Parameters: - Assignment (the assignment to be updated)
Return: Boolean (true if assignment was successfully updated in the

database)
Data access: Update a row in the database table Assignment
Pre-conditions: - A connection to the database is established
 - The assignment exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the Assignment table in the

database
Caller: - JSP page for updating an assignment
Calls: - Assignment get methods

 122 (186)

Class Cache

Field cache

Stores the cached objects and the keys needed to retrieve them.

Type: HashMap<Object, BaseObject>
Access level: Private

Field timeout

The current cache timeout value.

Type: Integer
Access level: Private

Method add

Adds an object to the object cache for later retrieval.

Requirements: 14.1-14.3
Parameters: - Object (The key used to later retrieve the object)
 - BaseObject (the object to cache)
Return: void
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: - The object has been added to the object cache.
Caller: - Any page or object that loads BaseObject type objects.
Calls: N/A

Method get

Retrieves a previously cached object.

Requirements: 14.1-14.3
Parameters: - Object (The key to which the object is mapped)
Return: Object (Object mapped to the key, or null if no object

found)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: - An object reference is returned, or null if there was no

object found.
Caller: - Any page or object that loads a BaseObject type object.
Calls: N/A

Method getCacheTimeout

Gets the amount of time before cached objects become invalid.

Requirements: 14.1-14.3
Parameters: N/A
Return: Integer (representing the amount of minutes before cache

items are considered invalid)
Data access: N/A

 123 (186)

Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method remove

Removes an object from the object cache.

Requirements: 14.1-14.3
Parameters: - Key
Return: Boolean (true if the item was found and removed from the

cache)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: - The object mapped to the specified key can no longer be

retrieved.
Caller: - Any controller object.
Calls: N/A

Method setCacheTimeout

Sets the amount of minutes before cached items are considered invalid.

Requirements: 14.1-14.3
Parameters: - Integer (representing the amount of minutes before

cache items are considered invalid)
Return: void
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: - The cache timeout time has been updated.
Caller: N/A
Calls: N/A

Class Course

Field assignments

A collection of Assignment objects representing assignments of this course.

Type: ArrayList<Assignment>
Access level: Private

Field courseCode

The course code of the course.

Type: String
Access level: Private

Field courseID

The ID that uniquely identifies the course.

 124 (186)

Type: Integer
Access level: Private

Field deadlines

A collection of Deadline objects representing deadlines of this course.

Type: ArrayList<DeadLine>
Access level: Private

Field files

A collection of File objects representing files of this course.

Type: ArrayList<File>
Access level: Private

Field informationPages

A collection of InformationPage objects representing information pages of this
course.

Type: ArrayList<InformationPage>
Access level: Private

Field news

A collection of News objects representing news of this course.

Type: ArrayList<News>
Access level: Private

Field results

A collection of Result objects representing results of this course.

Type: ArrayList<Result>
Access level: Private

Field users

A collection of User objects representing the students registered for this course.

Type: ArrayList<User>
Access level: Private

Method addAssignment

Stores an Assignment object in the assignments ArrayList.

Requirements: 10.1
Parameters: - Assignment (the assignment that’s added to the course)
Return: Boolean (true if the Assignment object is successfully stored

and validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be an Assignment object.

 125 (186)

Post-conditions: N/A
Caller: N/A
Calls: N/A

Method addDeadline

Stores a deadline object in the deadlines ArrayList.

Requirements: 8.1
Parameters: - Deadline (the deadline that’s added to the course)
Return: Boolean (true if the Deadline object is successfully stored

and validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be a Deadline object.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method addFile

Stores a File object in the files ArrayList.

Requirements: 9.1
Parameters: - File (the file that’s added to the course)
Return: Boolean (true if the Files object is successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be a File object.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method addInformationPage

Stores an InformationPage object in the InformationPage ArrayList.

Requirements: 6.1
Parameters: - InformationPage (the InformationPage that’s added to

the course)
Return: Boolean (true if the InformationPage object is successfully

stored and validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be an InformationPage object.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method addNews

Stores a News object in the news ArrayList.

Requirements: 5.1

 126 (186)

Parameters: - News (the news that’s added to the course)
Return: Boolean (true if the News object is successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be a News object.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method addResult

Stores a Result object in the results ArrayList.

Requirements: 11.1
Parameters: - Result (the result that’s added to the course)
Return: Boolean (true if the Result object is successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be a Result object.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method addUser

Stores a User object in the users ArrayList. Register a student for the course.

Requirements: 12.2
Parameters: - User (the student that’s registered for the course)
Return: Boolean (true if the User object is successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input is a User object. The user isn’t already registered

for the course.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getAllAssignments

Retrieves all assignments for this course.

Requirements: 10.1-10.2
Parameters: N/A
Return: ArrayList<Deadline> (all deadlines for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

 127 (186)

Method getAllDeadlines

Retrieves all deadlines for this course.

Requirements: 8.1-8.3
Parameters: N/A
Return: ArrayList<Deadline> (all deadlines for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getAllFiles

Retrieves all files for this course.

Requirements: 9.1-9.2
Parameters: N/A
Return: ArrayList<File> (all files for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getAllInformationPages

Retrieves all information pages for this course.

Requirements: 6.1-6.2
Parameters: N/A
Return: ArrayList<InformationPages> (all information pages for this

course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getAllNews

Retrieves all news for this course.

Requirements: 5.1-5.2
Parameters: N/A
Return: ArrayList<News> (all the news for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A

 128 (186)

Calls: N/A

Method getAllResults

Retrieves all results for this course.

Requirements: 11.1-11.2
Parameters: N/A
Return: ArrayList<Results> (all results for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getAllUsers

Retrieves all students that are registered for this course.

Requirements: 12.1
Parameters: N/A
Return: ArrayList<Users> (all students registered for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getCourseCode

Retrieves the value of the courseCode field.

Requirements: N/A
Parameters: N/A
Return: String (the course code for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getCourseID

Retrieves the value of the courseID field.

Requirements: 13.3
Parameters: N/A
Return: Integer (ID of the course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A

 129 (186)

Caller: - CourseController::update
Calls: N/A

Method setCourseCode

Updates the value of the course code field.

Requirements: 13.3
Parameters: - String (the course code for this course)
Return: N/A
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Class CourseController

Method add

The method stores a course in the database.

Requirements: 13.3
Parameters: - Course (the course to be stored)
Return: Boolean (true if course was successfully stored in the

database)
Data access: Inserts a row in the database table Course
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the Course table in the

database
Caller: - JSP page for adding a course
Calls: - Course get methods

Method GetDescription

The method gets a course description from the database.

Requirements: 4.1-4.2
Parameters: - Integer (the course ID of the course to be fetched)
Return: Course (the course corresponding to the course ID)
Data access: Fetches a row in the database table Course
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing a course description
Calls: - Course set methods

Method getDescriptionByCourseCode

The method gets a course description from the database using a course code. The
course code has to match exactly.

Requirements: 4.1

 130 (186)

Parameters: - String (the course code of the course to be fetched)
Return: Course (the course corresponding to the course code)
Data access: Fetches a row in the database table Course
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing user privileges for a course
Calls: - Course set methods

Method update

The method updates a course stored in the database.

Requirements: 13.3
Parameters: - Course (the course to be stored)
Return: Boolean (true if course was successfully stored in the

database)
Data access: Update a row in the database table Course
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One row is updated in the Course table in the database
Caller: - JSP page for editing a course
Calls: - Course get methods

Method updateDescription

The method updates a course with a course description in the database.

Requirements: 4.1, 13.3
Parameters: - Course (the course to be updated)
Return: Boolean (true if course description was successfully

updated in the database)
Data access: Update a row in the database table Course
Pre-conditions: - A connection to the database is established
 - The course exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the Course table in the database
Caller: - JSP page for updating a course description
Calls: - Course get methods

Method Apply

The method applies a user for a course in the database. This is done by inserting a
row in table InCourse with status field APPLYING.

Requirements: 12.3
Parameters: - Course (the course to which the user is applying for)
 - User (the user to apply)
Return: Boolean (true if the user was successfully applied for the

course in the database)
Data access: Update a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The course exists in the database

 131 (186)

 - The user exists in the database
Validity Check: N/A
Post-conditions: - One row is inserted in the InCourse table in the database
Caller: - JSP page for applying for a course
Calls: N/A

Method register

The method registers a user for a course in the database. This is done by updating
the status field in table InCourse to REGISTERED, from the previous state APPLYING.

Requirements: 12.2
Parameters: - Course (the course to which the user shall be registered

for)
 - User (the user to register)
Return: Boolean (true if the user was successfully registered for the

course in the database)
Data access: Update a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The course exists in the database
 - The user exists in the database

 - The user has applied for the course
Validity Check: N/A
Post-conditions: - One row is updated in the InCourse table in the database
Caller: - JSP page for updating a course description
Calls: N/A

Method unregister

The method unregisters a user from a course in the database. This is done deleting
the row in table InCourse corresponding to the given course and user.

Requirements: 12.4
Parameters: - Course (the course to which the user shall be unregistered

from)
 - User (the user to unregister)
Return: Boolean (true if the user was successfully unregistered from

the course in the database)
Data access: Delete a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The course exists in the database
 - The user exists in the database

 - The user has been registered for the course
Validity Check: N/A
Post-conditions: - One row is deleted in the InCourse table in the database
Caller: - JSP page for updating a course description
Calls: N/A

Class Deadline

Field belongToCourse

The ID of the course that the deadline belongs to.

 132 (186)

Type: Integer
Access level: Private

Field deadlineDateTime

The date and time that of the deadline.

Type: Date
Access level: Private

Field deadlineID

The ID that uniquely identifies the deadline.

Type: Integer
Access level: Private

Field description

The description of the deadline.

Type: String
Access level: Private

Field title

The title of the deadline.

Type: String
Access level: Private

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 8.1-8.3
Parameters: N/A
Return: Integer (ID of the course that the deadline belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - DeadlineController::update
 - DeadlineController::getCourseDeadlines
 - DeadlineController::getUserDeadlines
Calls: N/A

Method getDeadlineDateTime

Retrieves the value of the deadlineDateTime field.

Requirements: 8.1-8.3
Parameters: N/A
Return: Date (Date and time for when the deadline expire)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A

 133 (186)

Post-conditions: N/A
Caller: - DeadlineController::update
 - DeadlineController::getCourseDeadlines
 - DeadlineController::getUserDeadlines
Calls: N/A

Method getDeadlineID

Retrieves the value of the deadlineID field.

Requirements: 8.1
Parameters: N/A
Return: Integer (ID of the deadline)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - DeadlineController::update
Calls: N/A

Method getDescription

Retrieves the value of the description field.

Requirements: 8.1-8.3
Parameters: N/A
Return: String (description of the deadline)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - DeadlineController::update
 - DeadlineController::getCourseDeadlines
 - DeadlineController::getUserDeadlines
Calls: N/A

Method getTitle

Retrieves the value of the title field.

Requirements: 8.1-8.3
Parameters: N/A
Return: String (title of the deadline)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - DeadlineController::update

- DeadlineController::getCourseDeadlines
 - DeadlineController::getUserDeadlines
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

 134 (186)

Requirements: 8.1-8.3
Parameters: - Integer (ID of the course that the deadline belongs to)
Return: Boolean (true if the ID was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: - DeadlineController::add
 - DeadlineController::update
Calls: N/A

Method setDeadlineDateTime

Stores a Date object in the deadlineDateTime field.

Requirements: 8.1-8.3
Parameters: - Date (Date and time for when the deadline expire)
Return: Boolean (true if the date and time of a deadline was

successfully stored and validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input has to be a Date object and the year has to be

at least 1900.
Post-conditions: N/A
Caller: - DeadlineController::update
 - DeadlineController::add
Calls: N/A

Method setDescription

Stores a String in the description field.

Requirements: 8.1-8.3
Parameters: - String (description of the deadline)
Return: Boolean (true if the description was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The description is a string no longer than 100 characters
Post-conditions: N/A
Caller: - DeadlineController::add
 - DeadlineController::update
Calls: N/A

Method setTitle

Stores a String in the title field.

Requirements: 8.1-8.3
Parameters: - String (title of the deadline)

 135 (186)

Return: Boolean (true if the title was successfully stored and
validated)

Data access: N/A
Pre-conditions: N/A
Validity Check: - The title is a string no longer than 50 characters
Post-conditions: N/A
Caller: - DeadlineController::add
 - DeadlineController::update
Calls: N/A

Class DeadlineController

Method add

The method stores a deadline in the database.

Requirements: 8.1
Parameters: - Deadline (the deadline to be stored)
Return: Boolean (true if deadline was successfully stored in the

database)
Data access: Inserts a row in the database table Deadline
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the Deadline table in the

database
Caller: - JSP page for adding a deadline
Calls: - Deadline get methods

Method get

The method gets a deadline from the database.

Requirements: 8.1-8.2
Parameters: - Integer (the deadline ID of the deadline to be fetched)
Return: Deadline (the deadline corresponding to the deadline ID)
Data access: Fetches a row in the database table Deadline
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing a deadline
Calls: - Deadline set methods

Method getDeadlinesByCourse

The method generates a list of all deadlines for a specific course.

Requirements: 2.1-2.2
Parameters: - Course (the course for which deadlines shall be retrieved)
Return: ArrayList (containing all deadlines for the course)
Data access: Retrieve rows from the database table Deadline

Pre-conditions: - A connection to the database is established
 - The deadline exists in the database
Validity Check: N/A
Post-conditions: N/A

 136 (186)

Caller: - JSP page for displaying deadlines for a course
Calls: - Deadline set methods

Method getDeadlinesByUser

The method generates a list of all deadlines for courses that a specific user is
registered for.

Requirements: 8.3
Parameters: - User (the user for which deadlines shall be retrieved)
Return: ArrayList (containing all deadlines for the user’s courses)
Data access: Retrieves row from the database table Deadline

Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying deadlines for a user
Calls: - Deadline set methods

Method remove

The method removes a deadline from the database.

Requirements: 8.1
Parameters: - Deadline (the deadline to be removed)
Return: Boolean (true if deadline was successfully removed from

the database)
Data access: Deletes a row in the database table Deadline
Pre-conditions: - A connection to the database is established
 - The deadline exists in the database
Validity Check: N/A
Post-conditions: - The deadline’s row is removed from the Deadline table in

the database
Caller: - JSP page for removing a deadline
Calls: N/A

Method update

The method updates a deadline in the database.

Requirements: 8.1
Parameters: - Deadline (the deadline to be updated)
Return: Boolean (true if deadline was successfully updated in the

database)
Data access: Update a row in the database table Deadline
Pre-conditions: - A connection to the database is established
 - The deadline exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the Deadline table in the database
Caller: - JSP page for updating a deadline
Calls: - Deadline get methods

 137 (186)

Class File

Field belongToCourse

The ID of the course that the file belongs to.

Type: Integer
Access level: Private

Field description

The description of the file.

Type: String
Access level: Private

Field fileID

The ID that uniquely identifies the file.

Type: Integer
Access level: Private

Field filename

The name of the file.

Type: String
Access level: Private

Field title

The title of the file.

Type: String
Access level: Private

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 9.1-9.2
Parameters: N/A
Return: Integer (ID of the course that the file belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - FileController::update
Calls: N/A

Method getDescription

Retrieves the value of the description field.

Requirements: 9.1-9.2
Parameters: N/A
Return: String (description of the file)

 138 (186)

Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - FileController::update
Calls: N/A

Method getFileID

Retrieves the value of the fileID field.

Requirements: 9.1
Parameters: N/A
Return: Integer (ID of the file)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - FileController::update
Calls: N/A

Method getFilename

Retrieves the value of the filename field.

Requirements: 9.1-9.2
Parameters: N/A
Return: String (name of the file)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - FileController::update
Calls: N/A

Method getTitle

Retrieves the value of the title field.

Requirements: 9.1-9.2
Parameters: N/A
Return: String (title of the file)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - FileController::update
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 9.1-9.2
Parameters: - Integer (ID of the course that the file belongs to)

 139 (186)

Return: Boolean (true if the ID was successfully stored and
validated)

Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: - FileController::add
 - FileController::update
Calls: N/A

Method setDescription

Stores a String in the description field.

Requirements: 9.1-9.2
Parameters: - String (description of the file)
Return: Boolean (true if the description was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The description is a string no longer than 100 characters
Post-conditions: N/A
Caller: - FileController::add
 - FileController::update
Calls: N/A

Method setFilename

Stores a String in the filename field.

Requirements: 9.1-9.2
Parameters: - String (name of the file)
Return: Boolean (true if the name was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The name is a string no longer than 50 characters
Post-conditions: N/A
Caller: - FileController::add
 - FileController::update
Calls: N/A

Method setTitle

Stores a String in the title field.

Requirements: 9.1-9.2
Parameters: - String (title of the file)
Return: Boolean (true if the title was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The title is a string no longer than 50 characters

 140 (186)

Post-conditions: N/A
Caller: - FileController::add
 - FileController::update
Calls: N/A

Class FileController

Method add

The method stores a file on the file system and its metadata in the database.

Requirements: 9.1
Parameters: - File (the file object to be stored)
Return: Boolean (true if file was successfully stored in the database)
Data access: Inserts a row in the database table File
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the File table in the database

and a new file is saved on the file system
Caller: - JSP page for adding a file
Calls: - File get methods

Method get

The method gets a file from the database.

Requirements: 9.1
Parameters: - Integer (the file ID of the file to be fetched)
Return: File (the file corresponding to the file ID)
Data access: Fetches a row in the database table File
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing a file
Calls: - File set methods

Method getFileByCourse

The method generates a list of all files for a specific course.

Requirements: 9.1
Parameters: - Course (the course for which files shall be retrieved)
Return: ArrayList (containing all files for the course)
Data access: Retrieve rows from the database table File

Pre-conditions: - A connection to the database is established
 - The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying files for a course
 - JSP page for displaying a list of existing files
Calls: - File set methods

Method remove

The method removes a file from the file system and its metadata from the database.

 141 (186)

Requirements: 9.1
Parameters: - File (the file object to be removed)
Return: Boolean (true if file was successfully removed from the

database)
Data access: Deletes a row in the database table File and a file from the

file system
Pre-conditions: - A connection to the database is established
 - The file exists on the file system and its metadata exists in

the database
Validity Check: N/A
Post-conditions: - The file’s row is removed from the File table in the

database and the file is removed from the file system
Caller: - JSP page for removing a file
Calls: N/A

Method update

The method updates a file on the file system and its metadata in the database.

Requirements: 9.1
Parameters: - File (the file object to be updated)
Return: Boolean (true if file was successfully updated in the

database)
Data access: Update a row in the database table File
Pre-conditions: - A connection to the database is established
 - The file exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the File table in the database
Caller: - JSP page for updating a file
Calls: - File get methods

Class InformationPage

Field belongToCourse

The ID of the course that the information page belongs to.

Type: Integer
Access level: Private

Field content

The content of the information page.

Type: String
Access level: Private

Field pageID

The ID that uniquely identifies the information page.

Type: Integer
Access level: Private

 142 (186)

Field title

The title of the information page.

Type: String
Access level: Private

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 6.1-6.2
Parameters: N/A
Return: Integer (ID of the course that the information page belongs

to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - InformationPageController::update
Calls: N/A

Method getContent

Retrieves the value of the content field.

Requirements: 6.1-6.2
Parameters: N/A
Return: String (content of the information page)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - InformationPageController::update
Calls: N/A

Method getPageID

Retrieves the value of the pageID field.

Requirements: 6.1-6.2
Parameters: N/A
Return: Integer (ID of the information page)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - InformationPageController::update
Calls: N/A

Method getTitle

Retrieves the value of the title field.

Requirements: 6.1-6.2
Parameters: N/A

 143 (186)

Return: String (title of the information page)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - InformationPageController::update
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 6.1-6.2
Parameters: - Integer (ID of the course that the information page

belongs to)
Return: Boolean (true if the ID was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: - InformationPageController::add
 - InformationPageController::update
Calls: N/A

Method setContent

Stores a String in the content field.

Requirements: 6.1-6.2
Parameters: - String (content of the information page)
Return: Boolean (true if the content was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The content is a string
Post-conditions: N/A
Caller: - FileController::add
 - FileController::update
Calls: N/A

Method setTitle

Stores a String in the title field.

Requirements: 6.1-6.2
Parameters: - String (title of the information page)
Return: Boolean (true if the title was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The title is a string no longer than 50 characters
Post-conditions: N/A

 144 (186)

Caller: - InformationPageController::add
 - InformationPageController::update
Calls: N/A

Class InformationPageController

Method add

The method stores an information page in the database.

Requirements: 6.1
Parameters: - InformationPage (the information page to be stored)
Return: Boolean (true if information page was successfully stored in

the database)
Data access: Inserts a row in the database table InformationPage
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the InformationPage table in

the database
Caller: - JSP page for adding an information page
Calls: - InformationPage get methods

Method Get

The method gets an information page from the database.

Requirements: 6.1-6.2
Parameters: - Integer (the information page ID of the information page

to be fetched)
Return: InformationPage (the information page corresponding to

the file ID)
Data access: Fetches a row in the database table InformationPage
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing an information page
Calls: - InformationPage set methods

Method getInformationPageByCourse

The method generates a list of all information pages for a specific course.

Requirements: 6.1-6.2
Parameters: - Course (the course for which information pages shall be

retrieved)
Return: ArrayList (containing all information pages for the course)
Data access: Retrieve rows from the database table InformationPage

Pre-conditions: - A connection to the database is established
 - The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying a course website
 - JSP page for displaying a list of existing information pages
Calls: - InformationPage set methods

 145 (186)

Method remove

The method removes an information page from the database.

Requirements: 6.1
Parameters: - InformationPage (the information page to be removed)
Return: Boolean (true if information page was successfully removed

from the database)
Data access: Deletes a row in the database table InformationPage
Pre-conditions: - A connection to the database is established
 - The information page exists in the database
Validity Check: N/A
Post-conditions: - The information page’s row is removed from the

InformationPage table in the database
Caller: - JSP page for removing an information page
Calls: N/A

Method update

The method updates an information page in the database.

Requirements: 6.1
Parameters: - InformationPage (the information page to be updated)
Return: Boolean (true if information page was successfully updated

in the database)
Data access: Update a row in the database table InformationPage
Pre-conditions: - A connection to the database is established
 - The information page exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the InformationPage table in the

database
Caller: - JSP page for updating an information page
Calls: - InformationPage get methods

Class News

Field belongToCourse

The ID of the course that the news belongs to.

Type: Integer
Access level: Private

Field content

The content of the news.

Type: String
Access level: Private

Field headline

The headline of the news.

Type: String
Access level: Private

 146 (186)

Field newsID

The ID that uniquely identifies the news.

Type: Integer
Access level: Private

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 5.1-5.2
Parameters: N/A
Return: Integer (ID of the course that the news belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - NewsController::update
 - NewsController::getCourseNews
 - NewsController::getUserNews
Calls: N/A

Method getContent

Retrieves the value of the content field.

Requirements: 5.1-5.2
Parameters: N/A
Return: String (content of the news)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - NewsController::update
 - NewsController::getCourseNews
 - NewsController::getUserNews
Calls: N/A

Method getHeadline

Retrieves the value of the headline field.

Requirements: 5.1-5.2
Parameters: N/A
Return: String (headline of the news)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - NewsController::update
 - NewsController::getCourseNews
 - NewsController::getUserNews
Calls: N/A

 147 (186)

Method getNewsID

Retrieves the value of the newsID field.

Requirements: 5.1
Parameters: N/A
Return: Integer (ID of the news)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - NewsController::update
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 5.1-5.2
Parameters: - Integer (ID of the course that the news belongs to)
Return: Boolean (true if the ID was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: - NewsController::add
 - NewsController::update
Calls: N/A

Method setContent

Stores a String in the content field.

Requirements: 5.1-5.2
Parameters: - String (content of the news)
Return: Boolean (true if the content was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The description is a string
Post-conditions: N/A
Caller: - NewsController::add
 - NewsController::update
Calls: N/A

Method setHeadline

Stores a String in the headline field.

Requirements: 5.1-5.2
Parameters: - String (headline of the news)
Return: Boolean (true if the headline was successfully stored and

validated)

 148 (186)

Data access: N/A
Pre-conditions: N/A
Validity Check: - The headline is a string no longer than 50 characters
Post-conditions: N/A
Caller: - NewsController::add
 - NewsController::update
Calls: N/A

Class NewsController

Method add

The method stores a news post in the database.

Requirements: 5.1
Parameters: - News (the news post to be stored)
Return: Boolean (true if news post was successfully stored in the

database)
Data access: Inserts a row in the database table News
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One new row is inserted into the News table in the

database
Caller: - JSP page for adding a news post
Calls: - News get methods

Method get

The method gets a news post from the database.

Requirements: 5.1
Parameters: - Integer (the news ID of the news to be fetched)
Return: News (the news post corresponding to the news ID)
Data access: Fetches a row in the database table News
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing a news post
Calls: - News set methods

Method getNewsByCourse

The method generates a list of all news for a specific course.

Requirements: 5.2
Parameters: - Course (the course for which news shall be retrieved)
Return: ArrayList (containing all news for the course)
Data access: Retrieve rows from the database table News

Pre-conditions: - A connection to the database is established
 - The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying news for a course
Calls: - News set methods

 149 (186)

Method getNewsByUser

The method generates a list of all news for courses that a specific user is registered
for.

Requirements: 2.1-2.3
Parameters: - User (the user for which news shall be retrieved)
Return: ArrayList (containing all news for the user’s courses)
Data access: Retrieves row from the database table News

Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying news for a user
Calls: - News get methods

Method remove

The method removes a news post from the database.

Requirements: 5.1
Parameters: - News (the news post to be removed)
Return: Boolean (true if news post was successfully removed from

the database)
Data access: Deletes a row in the database table News
Pre-conditions: - A connection to the database is established
 - The news post exists in the database
Validity Check: N/A
Post-conditions: - The news post’s row is removed from the News table in the

database
Caller: - JSP page for removing a news post
Calls: N/A

Method update

The method updates a news post in the database.

Requirements: 5.1
Parameters: - News (the news post to be updated)
Return: Boolean (true if news post was successfully updated in the

database)
Data access: Update a row in the database table News
Pre-conditions: - A connection to the database is established
 - The news post exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the News table in the database
Caller: - JSP page for updating a news post
Calls: - News set methods

Class Result

Field belongToAssignment

The assignment the result is registered for.

 150 (186)

Type: Assignment
Access level: Private

Field belongToCourse

The ID of the course that the result belongs to.

Type: Integer
Access level: Private

Field grade

The grade of the assignment.

Type: String
Access level: Private

Field user

The user that the result belongs to.

Type: User
Access level: Private

Method getBelongToAssignment

Retrieves the value of the belongToAssignment field.

Requirements: 11.1-11.2
Parameters: N/A
Return: Assignment (assignment that the result belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ResultController::update
Calls: N/A

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 11.1-11.2
Parameters: N/A
Return: String (name of the course that the result belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ResultController::update
Calls: N/A

Method getGrade

Retrieves the value in the grade field.

Requirements: 11.1-11.2

 151 (186)

Parameters: N/A
Return: String (grade of an assignment for a specific course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method getUser

Retrieves the value of the user field.

Requirements: 11.1-11.2
Parameters: N/A
Return: User (user that the result belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ResultController::update
Calls: N/A

Method setBelongToAssignment

Stores an Assignment object in the belongToAssignment field.

Requirements: 11.1-11.2
Parameters: - Assignment (Assignment the result belongs to)
Return: Boolean (true if the assignment was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The assignment is an Assignment object and identifies an

existing assignment for the specified course in the
belongToCourse field.

Post-conditions: N/A
Caller: - ResultController::add
 - ResultController::update
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 11.1-11.2
Parameters: - Integer (ID of the course that the result belongs to)
Return: Boolean (true if the ID was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists

 152 (186)

Post-conditions: N/A
Caller: - ResultController::add
 - ResultController::update
Calls: N/A

Method setGrade

Stores a String in the grade field.

Requirements: 11.1-11.2
Parameters: - String (the grade of a specified assignment for a specified

course)
Return: Boolean (true if the grade was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The grade has to be one of the letters A-F, the letter P or

the string “Fx”
Post-conditions: N/A
Caller: - AssignmentController::add
 - AssignmentController::update
Calls: N/A

Method setUser

Stores a User object in the user field.

Requirements: 11.1-11.2
Parameters: - User (user that the result belongs to)
Return: Boolean (true if the user was successfully stored and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The input is a User object and identifies a user that exists
Post-conditions: N/A
Caller: - ResultController::add
 - ResultController::update
Calls: N/A

Class ResultController

Method getResultByUser

The method gets all results for a user from the database.

Requirements: 11.2
Parameters: - Integer (the user ID of the user whose results are to be

fetched)
Return: ArrayList<Result> (the results corresponding to the user)
Data access: Fetches rows from the database table Result
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for viewing results for a user

 153 (186)

Calls: - Result set methods

Method getResultByUserAndCourse

The method gets all results for a user and a course from the database.

Requirements: 11.2
Parameters: - Integer (the user ID of the user whose results are to be

fetched)
 - Integer (the course ID of the course which’s results are to

be fetched)
Return: ArrayList<Result> (the results corresponding to the user and

course)
Data access: Fetches rows from the database table Result
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for viewing results for a user and course
Calls: - Result set methods

Method update

The method updates a user’s result for an assignment in the database. If no result
previously exists for the user, a new result is created. If no result is given, any previous
result is deleted.

Requirements: 11.1
Parameters: - Result (the result to be saved, contains an assignment, a

user and a grade)
Return: Boolean (true if the result for the assignment was

successfully changed in the database)
Data access: Update, inserted or deleted a row in the database table

Result
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - One row is updated, inserted or deleted in the Result table

in the database
Caller: - JSP page for updating a result for an assignment
Calls: - Result get methods

Class Session

Method authenticate

Authenticates a user with the system.

Requirements: 1.1
Parameters: - String (username)

- String (password)
Return: Boolean (true if authentication was successful)
Data access: Retrieves values from database table User
Pre-conditions: - User is not logged in

- A connection to the database is established
Validity Check: N/A

 154 (186)

Post-conditions: - The user state in the current session is set to logged in
Caller: - Any page that allows the user to log in.
Calls: - UserController::getUserByUsername

- Cache::add
- Cache::get

Method logout

Logs out a user from the system.

Requirements: 1.1
Parameters: N/A

Return: Void
Data access: N/A
Pre-conditions: - User is logged in.
Validity Check: N/A
Post-conditions: - The user state in the current session is set to logged out

- Any temporarily saved user data is removed.
Caller: - Any page.
Calls: N/A

Class Schedule

Field activities

Type: ArrayList<Activity>
Access level: Private

Field belongToCourse

The ID of the course that the schedule belongs to.

Type: Integer
Access level: Private

Method addActivity

The method adds an Activity object in the activities ArrayList.

Requirements: 7.1-7.5
Parameters: - Activity (activity to be added in the schedule that

belongs to the specified course)
Return: Boolean (true if activity was successfully added and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The activity has to be an existing Activity object belonging

to the course specified in the belongToCourse field.
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getAllActivities

The method retrieves all activities

 155 (186)

Requirements: 7.1-7.5
Parameters: N/A
Return: ArrayList<Activity> (All the activities for a course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ScheduleController::getCourseSchedule
 - ScheduleController::getUserSchedule
Calls: N/A

Method getBelongToCourse

Retrieves the value of the belongToCourse field.

Requirements: 7.1-7.5
Parameters: N/A
Return: Integer (ID of the course that the schedule belongs to)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ScheduleController::getCourseSchedule
 - ScheduleController::getUserSchedule
Calls: N/A

Method setBelongToCourse

Stores an integer in the belongToCourse field.

Requirements: 7.1-7.5
Parameters: - Integer (ID of the course that the schedule belongs to)
Return: Boolean (true if course ID was successfully added and

validated)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course ID is an integer and identifies a course that

exists
Post-conditions: N/A
Caller: N/A
Calls: N/A

Class ScheduleController

Method export

The method exports a schedule into the iCalendar format.

Requirements: 7.5, 13.3
Parameters: N/A
Return: String (representing schedule in iCalendar format)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A

 156 (186)

Post-conditions: - Scheduled activities are represented in iCalendar format
Caller: - JSP page for viewing a schedule
Calls: - Activity get methods.

Method getScheduleByCourse

The method generates a list of all activities for a specific course.

Requirements: 7.3
Parameters: - Course (the course for which news shall be retrieved)
Return: ArrayList (containing all scheduled activities for the course)
Data access: Retrieve rows from the database table News

Pre-conditions: - A connection to the database is established
 - The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying a schedule for a course
Calls: - Activity get methods

Method getScheduleByUser

The method generates a list of all scheduled activities for courses that a specific user
is registered for.

Requirements: 2.1-2.2
Parameters: - User (the user for which a schedule shall be retrieved)
Return: ArrayList (containing all scheduled activities for the user’s

courses)
Data access: Retrieves row from the database table News

Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying a schedule for a user
Calls: - Activity get methods

Method import

The method imports a schedule and stores it in the database.

Requirements: 7.1
Parameters: - Schedule (represented in iCalendar format)
Return: Boolean (true if schedule was successfully stored in the

database)
Data access: Inserts new rows into the Activity database table.
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - Scheduled activities are inserted into the Activity table in

the database
Caller: - JSP page for importing a schedule
Calls: - N/A

Method removeScheduleByCourse

The method removes all scheduled activities belonging to a course.

 157 (186)

Requirements: 7.1, 13.3
Parameters: - String (containing course code)
Return: Void
Data access: All rows in table Activity containing activities for the course

are removed.
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: - There are no activities in the database table Activity for

the course
Caller: - JSP page for removing a schedule
Calls: N/A

Class User

Field courseAssistant

The course assistant privilege of a user. Contains course ID’s for the courses for which
the user has the privilege course assistant.

Type: HashSet<Integer>
Access level: Private

Field courseLeader

The course leader privilege of a user. Contains course ID’s for the courses for which
the user has the privilege course leader.

Type: HashSet<Integer>
Access level: Private

Field firstname

The firstname of a user.

Type: String
Access level: Private

Field lastname

The lastname of a user.

Type: String
Access level: Private

Field password

The password of a user.

Type: String
Access level: Private

Field sysadmin

The system administrator privilege of a user. If true then the user has the privilege
“System Administrator”.

 158 (186)

Type: boolean
Access level: Private

Field userID

The ID that uniquely identifies the user.

Type: Integer
Access level: Private

Field username

The username of a user.

Type: String
Access level: Private

Method getCourseAssistantForCourse

The method returns true if the user has the course assistant privilege for the given
course.

Requirements: 11.1
Parameters: - Course (the course to check privilege for)
Return: Boolean (true if the user has the privilege)
Data access: Retrieve rows from the table Privilege if the privileges

haven’t been previously fetched.
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - Any JSP page where the course assistant privilege is

sufficient
Calls: N/A

Method getCourseLeaderForCourse

The method returns true if the user has the course leader privilege for the given
course.

Requirements: 3.1, 4.1, 5.1, 6.1, 7.1, 7.2, 8.1, 9.1, 10.1, 11.1, 12.1, 12.2, 12.4

and 13.2
Parameters: - Course (the course to check privilege for)
Return: Boolean (true if the user has the privilege)
Data access: Retrieve rows from the table Privilege if the privileges

haven’t been previously fetched.
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - Any JSP page where the course leader privilege is

sufficient
Calls: N/A

Method getFirstName

The method retrieves a first name.

 159 (186)

Requirements: 13.4
Parameters: N/A
Return: String (first name of the user)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - UserController::update
Calls: N/A

Method getLastName

The method retrieves a last name.

Requirements: 13.4
Parameters: N/A
Return: String (Last name of the user)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - UserController::update
Calls: N/A

Method getPassword

The method retrieves a password.

Requirements: 13.4
Parameters: N/A
Return: Char (password of the user)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - UserController::update
Calls: N/A

Method getStudentInCourse

The method returns true if the user is registered in the course.

Requirements: 9.2
Parameters: - Course (the course to check privilege for)
Return: Boolean (true if the user is registered for the course)
Data access: Retrieve rows from the table InCourse if the privileges

haven’t been previously fetched.
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - Any JSP page where the being registered for a specific

course is sufficient
Calls: N/A

 160 (186)

Method getSysAdmin

The method retrieves the system administrator privilege for a user.

Requirements: 13.1, 13.3, 13.4
Parameters: N/A
Return: Boolean (true if the user is a system administrator)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - UserController::update
Calls: N/A

Method getUserID

Retrieves the value of the userID field.

Requirements: 12.2, 12.4, 13.1-13.2, 13.4
Parameters: N/A
Return: Integer (ID of the user)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - UserController::update
Calls: N/A

Method getUsername

The method retrieves a username.

Requirements: 13.4
Parameters: N/A
Return: String (username of the user)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - UserController::update
Calls: N/A

Method setCourseAssistantForCourse

Stores the course assistant privilege. Adds an integer representing the course (course
ID) to the courseAssistant HashSet.

Requirements: 13.1
Parameters: - Integer (course ID for the course to assign the privilege for)
Return: N/A
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course has to exist.
Post-conditions: N/A
Caller: - UserController::assignCourseAssistant

 161 (186)

Calls: N/A

Method setCourseLeaderForCourse

Stores the course leader privilege. Adds an integer representing the course (course
ID) to the courseLeader HashSet.

Requirements: 13.1
Parameters: - Integer (course ID for the course to assign the privilege for)
Return: N/A
Data access: N/A
Pre-conditions: N/A
Validity Check: - The course has to exist.
Post-conditions: N/A
Caller: - UserController::assignCourseLeader
Calls: N/A

Method setFirstName

The method sets a first name.

Requirements: 13.4
Parameters: - Firstname (the first name to be stored)
Return: Boolean (true if first name was successfully stored in the

database)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The username is a string
Post-conditions: N/A
Caller: - UserController::update
 - UserController::add
Calls: N/A

Method setLastName

The method sets a last name.

Requirements: 13.4
Parameters: - Lastname (the last name to be stored)
Return: Boolean (true if last name was successfully stored in the

database)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The lastname is a string
Post-conditions: N/A
Caller: - UserController::update
 - UserController::add
Calls: N/A

Method setPassword

The method sets a password.

Requirements: 13.4
Parameters: - Password (the password to be stored)

 162 (186)

Return: Boolean (true if password was successfully stored in the
database)

Data access: N/A
Pre-conditions: N/A
Validity Check: - The password is at least 5 chars
Post-conditions: N/A
Caller: - UserController::update
 - UserController::add
Calls: N/A

Method setSysAdmin

Stores a Boolean in the system administrator privilege field.

Requirements: 13.1
Parameters: - Boolean (true if the user is a system administrator)
Return: N/A
Data access: N/A
Pre-conditions: N/A
Validity Check: - The privilege has to be a Boolean.
Post-conditions: N/A
Caller: - UserController::add
 - UserController::update
Calls: N/A

Method setUsername

The method sets a username.

Requirements: 13.4
Parameters: - Username (the username to be stored)
Return: Boolean (true if username was successfully stored in the

database)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The username is a string and is at least 5 chars long
Post-conditions: N/A
Caller: - UserController::update
 - UserController::add
Calls: N/A

Class UserController

Method add

The method stores a user in the database.

Requirements: 13.4
Parameters: - User (the user to be stored)
Return: Boolean (true if user was successfully stored in the

database)
Data access: Inserts a row in the database table User
Pre-conditions: - A connection to the database is established
Validity Check: N/A

 163 (186)

Post-conditions: - One new row is inserted into the User table in the
database

Caller: - JSP page for adding a user
Calls: - User get methods

Method assignCourseAssistant

The method assigns a user the course assistant privilege in the database by updating
the status field of the InCourse table to ASSISTANT.

Requirements: 13.1
Parameters: - User (the user to assign the privilege to)
 - Course (the course to assign the privilege to)
Return: Boolean (true if privilege was successfully assigned in the

database)
Data access: Update a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The user exists in the database
 - The course exists in the database
Validity Check: N/A
Post-conditions: - One row is updated or inserted in the InCourse table in the

database with value of the status field set to ASSISTANT
Caller: - JSP page for assigning the course assistant privilege
Calls: N/A

Method assignCourseLeader

The method assigns a user the course leader privilege in the database by updating
the status field of the InCourse table to LEADER.

Requirements: 13.1
Parameters: - User (the user to assign the privilege to)
 - Course (the course to assign the privilege to)
Return: Boolean (true if privilege was successfully assigned in the

database)
Data access: Update a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The user exists in the database
 - The course exists in the database
Validity Check: N/A
Post-conditions: - One row is updated or inserted in the InCourse table in the

database with value of the status field set to LEADER
Caller: - JSP page for assigning the course leader privilege
Calls: N/A

Method assignSysAdmin

The method assigns a user the system administrator privilege in the database.

Requirements: 13.1
Parameters: - User (the user to assign the privilege to)
Return: Boolean (true if privilege was successfully assigned in the

database)
Data access: Update a row in the database table Privilege

 164 (186)

Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: - One row is inserted in the Privilege table in the database
Caller: - JSP page for assigning the system administrator privilege
Calls: N/A

Method get

The method gets a user from the database.

Requirements: 13.4
Parameters: - Integer (the user ID of the user to be fetched)
Return: User (the user corresponding to the user ID)
Data access: Fetches a row in the database table User
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for editing or viewing a user
Calls: - User set methods

Method getUserByUsername

The method gets a user from the database using a username. The username has to
match exactly.

Requirements: 1.1
Parameters: - String (the username of the user to be fetched)
Return: User (the user corresponding to the username)
Data access: Fetches a row in the database table User
Pre-conditions: - A connection to the database is established
Validity Check: N/A
Post-conditions: N/A
Caller: - Session::authenticate
Calls: - User set methods

Method remove

The method removes a user from the database.

Requirements: 13.4
Parameters: - User (the user to be removed)
Return: Boolean (true if user was successfully removed from the

database)
Data access: Deletes a row in the database table User
Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: - The user’s row is removed from the User table in the

database
Caller: - JSP page for removing a user
Calls: N/A

 165 (186)

Method revokeCourseAssistant

The method revokes the course assistant privilege for a user in the database by
removing the row for the user and course in the InCourse database table.

Requirements: 13.1
Parameters: - User (the user to revoke the privilege from)
 - Course (the course to revoke the privilege from)
Return: Boolean (true if privilege was successfully revoked in the

database)
Data access: Delete a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The user exists in the database
 - The course exists in the database
Validity Check: N/A
Post-conditions: - The user is no longer course assistant for the specified

course
Caller: - JSP page for revoking the course assistant privilege
Calls: N/A

Method revokeCourseLeader

The method revokes the course assistant privilege for a user in the database by
removing the row for the user and course in the InCourse database table.

Requirements: 13.1
Parameters: - User (the user to revoke the privilege from)
 - Course (the course to revoke the privilege from)
Return: Boolean (true if privilege was successfully revoked in the

database)
Data access: Delete a row in the database table InCourse
Pre-conditions: - A connection to the database is established
 - The user exists in the database
 - The course exists in the database
Validity Check: N/A
Post-conditions: - The user is no longer course leader for the specified course
Caller: - JSP page for revoking the course leader privilege
Calls: N/A

Method revokeSysAdmin

The method revokes a user the system administrator privilege in the database.

Requirements: 13.1
Parameters: - User (the user to revoke the privilege from)
Return: Boolean (true if privilege was successfully revoked in the

database)
Data access: Delete a row in the database table Privilege
Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: - The user is no longer system administrator
Caller: - JSP page for revoking the system administrator privilege
Calls: N/A

 166 (186)

Method update

The method updates a user in the database.

Requirements: 13.4
Parameters: - User (the user to be updated)
Return: Boolean (true if user was successfully updated in the

database)
Data access: Update a row in the database table User
Pre-conditions: - A connection to the database is established
 - The user exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the User table in the database
Caller: - JSP page for updating a user
Calls: - User get methods

Implementation Index of Requirements

Requirement Implemented in

1.1 Session::Authenticate
 Session::Logout
2.1 DeadlineController::GetDeadlinesByUser
 NewsController::GetNewsByUser
 ScheduleController::GetScheduleByUser
 ResultController::GetResultByUser
2.2 Display implemented in JSP page
 DeadlineController::GetDeadlinesByUser
 NewsController::GetNewsByUser
 ScheduleController::GetScheduleByUser
2.3 NewsController::GetNewsByUser
3.1 JSP Page for the creation guide
4.1 CourseController::UpdateDescription
4.2 CourseController::GetDescription
5.1 NewsController::Add
 NewsController::GetNewsByCourse
 NewsController::Update
 NewsController::Remove
5.2 NewsController::GetNewsByCourse
6.1 InformationPageController::Add
 InformationPageController::Update
 InformationPageController::Remove
 InformationPageController::GetInformationPageByCourse
6.2 InformationPageController::Get
7.1 ScheduleController::Import
7.1 ScheduleController::RemoveScheduleByCourse
7.2 ActivityController::Add
 ActivityController::Update
 ActivityController::Remove
7.3 ScheduleController::GetScheduleByCourse

 167 (186)

 ActivityController::Get
7.4 ScheduleController::GetScheduleByUser
7.5 ScheduleController::Export
8.1 DeadlineController::Add
 DeadlineController::Update
 DeadlineController::Remove
8.2 DeadlineController::Get
8.3 DeadlineController::GetDeadlinesByUser
9.1 FileController::Add
 FileController::Update
 FileController::Remove
9.2 FileController::Get
 Course::GetAllUsers
10.1 AssignmentController::Add
 AssignmentController::Update
 AssignmentController::Remove
10.2 AssignmentController::GetAssignmentByCourse
11.1 ResultController::Add
11.2 ResultController::GetResultByUser
12.1 Course::GetAllUsers
12.2 CourseController::Register
 Course::AddUser
12.3 CourseController::Apply
12.4 CourseController::Unregister
13.1 UserController::AssignCourseLeader
 UserController::AssignCourseAssistant
 UserController::AssignSysAdmin
13.2 UserController::AssignCourseAssistant
 UserController::RevokeCourseAssistant
13.3 CourseController::Add
 CourseController::Update
13.4 UserController::Add
 UserController::Update
 UserController::Remove
14.1 Cache::Add
 Cache::Get
14.2 Cache::Add
 Cache::Get
14.3 Cache::Add
 Cache::Get

 168 (186)

5.6 Package diagram

The system can be roughly divided into two packages, one being the controller
package. These classes handle loading and saving of information to the database.
The other package is the business object package, where the classes represent
relevant domain entities such as news, assignments etc. These objects encapsulate
all the data of the related entities and are also responsible for all data validation.

6. Functional Test Cases

Test Case TC1: Authenticate to the System
Functionality to Test: The user shall be able to log in.
Functional Requirement: 1.1
Inputs: - Username
 - Password
Expected Outputs: - User session

- Confirmation

Instructions for Tester

1. Input username and password.
2. Select log in.
3. Verify that the page has a log out button.

Test Case TC2: View Personal Page
Functionality to Test: The user shall be able to view his or hers personal page.
Functional Requirement: 2.1

 169 (186)

Inputs: None
Expected Outputs: - Personal Page

Instructions for Tester

1. Navigate to the “News” under “Personal Links” section of the website.
2. Verify that the personal page is displayed.

Test Case TC3: View Overview of Course News
Functionality to Test: The user shall be able to view an overview of the user’s

courses news.
Functional Requirement: 2.3
Inputs: None
Expected Outputs: - List of course news for the courses the student is registered

for

Instructions for Tester

1. Navigate to the “News” under “Personal Links” section of the website.
2. Verify that the course news for the courses the user is registered for is

displayed.

Test Case TC4: Create Course Website
Functionality to Test: The user shall, if assigned as course leader for a course, be

able to create a course website with the help of a guide.
Functional Requirement: 3.1
Inputs: - Course name
 - Credits
 - Start period
 - End period
 - Description of course
 - Schedule
 - Title of information page
 - Content of information page
 - Title of deadline
 - Time of deadline
 - Description of deadline
Expected Outputs: - Course website and confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website creation guide.
3. Input course name, credits, start period, end period and description.
4. Select Continue.
5. Select a schedule to import.
6. Select Import.
7. Select Continue.
8. Input title and content of an information page.
9. Select Preview.

 170 (186)

10. Select Save.
11. Select Continue.
12. Input title, time and description of a deadline.
13. Select Preview.
14. Select Save.
15. Select Continue.
16. Select Create Course Website.
17. Verify that the course website is available by selecting to the course website.

Test Case TC5: Edit Existing Course Description
Functionality to Test: The user shall, if assigned course leader for the course, be

able to edit the existing course description.
Functional Requirement: 4.1
Inputs: - Course Name
 - Credits
 - Begin Period
 - End Period
 - Description
Expected Outputs: - Course description

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to a course website.
3. Navigate to the “Course Description” under “Course Leader Links” section of a

course website.
4. Edit the course description.
5. Select Save.
6. Verify that the course description is available from the course description

page (TC6).

Test Case TC6: View Course Description
Functionality to Test: The user shall be able to view a course description.
Functional Requirement: 4.2
Inputs: None
Expected Outputs: - Course description

Instructions for Tester

1. Navigate to a course website.
2. Navigate to the “Course Description” page of a course website.
3. Verify that the course description for the course is displayed.

Test Case TC7: Add Course News
Functionality to Test: The user shall, if assigned course leader for the course, be

able to add course news to the course.
Functional Requirement: 5.1
Inputs: - Headline

 171 (186)

- Content
Expected Outputs: - Course news

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to a course website.
3. Navigate to the “News” under “Course Leader Links” section of a course

website.
4. Input headline and content of a news.
5. Select Preview.
6. Select Save.
7. Verify that the news is available from the news page (TC10).

Test Case TC8: Edit Existing Course News
Functionality to Test: The user shall, if assigned course leader for the course, be

able to edit existing course news.
Functional Requirement: 5.1
Inputs: - Headline
 - Content
Expected Outputs: - Course news

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to a course website.
3. Navigate to the “News” under “Course Leader Links” section of a course

website.
4. Select news to edit.
5. Edit the news.
6. Select Preview.
7. Select Save.
8. Verify that the news is available from the news page (TC10).

Test Case TC9: Remove Existing Course News
Functionality to Test: The user shall, if assigned course leader for the course, be

able to remove existing course news.
Functional Requirement: 5.1
Inputs: - Course news to be removed
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to a course website.
3. Navigate to the “News” under “Course Leader Links” section of a course

website.
4. Select news to remove.

 172 (186)

5. Verify that the news is removed from the news page (TC10).

Test Case TC10: View Course News
Functionality to Test: The user shall be able to view course news.
Functional Requirement: 5.2
Inputs: None
Expected Outputs: - The course news for a course order by date in descending

order

Instructions for Tester

1. Navigate to a course website.
2. Navigate to the “News” section of a course website.
3. Verify that the course news for the course is displayed.

Test Case TC11: Add Information Page
Functionality to Test: The user shall be able to add an information page to the

course website for courses he or she is assigned the
privilege course leader if he or she is authenticated.

Functional Requirement: 6.1
Inputs: - Title
 - Content
Expected Outputs: - Information page
 - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Information pages" management section for a course

website.
3. Input title and content where requested.
4. Select Preview.
5. Select Save.
6. Verify that the information page has been added to the list of information

pages in the“Information page" management section, and view the
information page (TC14).

Test Case TC12: Edit Existing Information Page
Functionality to Test: The user shall be able to edit an existing information page
 for courses he or she is assigned the privilege course leader if
 he or she is authenticated.
Functional Requirement: 6.1
Inputs: - The information page to edit
 - Title
 - Content
Expected Outputs: - Information page
 - Confirmation

Instructions for Tester

 173 (186)

1. Authenticate to the system (TC1).
2. Navigate to the "Information pages" management section for a course

website.
3. Select an existing information page to edit.
4. Input updated title and content where requested.
5. Select Preview.
6. Select Save.
7. Verify that the information page has been edited accordingly (TC14).

Test Case TC13: Remove Existing Information Page
Functionality to Test: The user shall be able to remove an existing information
 page for courses he or she is assigned the privilege course
 leader if he or she is authenticated.
Functional Requirement: 6.1
Inputs: - Information page to be removed
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Information pages" management section for a course

website.
3. Select an existing information page to remove.
4. Confirm removal of the selected information page.
5. Verify that the information page has been removed from the list of information

pages in the "Information page" management section.

Test Case TC14: View Information Page
Functionality to Test: The user shall be able to view an information page.
Functional Requirement: 6.2
Inputs: - Selected information page
Expected Outputs: - Information page for viewing

Instructions for Tester

1. Navigate to a course website.
2. Select an information page to view.
3. Verify that the selected information page is displayed.

Test Case TC15: Import Course Schedule
Functionality to Test: The user shall be able to import a course schedule in the
 iCalendar format for courses he or she is assigned the
 privilege course leader if he or she is authenticated.
Functional Requirement: 7.1
Inputs: - Schedule in the iCalendar format
Expected Outputs: - Schedule
 - Confirmation

 174 (186)

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Schedule" management section for a course website.
3. Input the location of the iCalendar file, where requested.
4. Select Import.
5. Verify that the schedule has been added correctly (TC20).

Test Case TC16: Remove Existing Course Schedule
Functionality to Test: The user shall be able to remove an existing course schedule
 for courses he or she is assigned the privilege course leader if
 he or she is authenticated.
Functional Requirement: 7.1
Inputs: None
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Schedule" management section for a course website.
3. Select remove schedule.
4. Confirm removal of schedule.
5. Verify that all the scheduled activities have been removed from the list of

scheduled activities in the "Schedule" management section.

Test Case TC17: Add Scheduled Activity
Functionality to Test: The user shall be able to add a scheduled activity for
 courses he or she is assigned the privilege course leader if he
 or she is authenticated.
Functional Requirement: 7.2
Inputs: - Title
 - Description
 - Starting date
 - Starting time
 - Ending date
 - Ending time
Expected Outputs: - Scheduled activity
 - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Schedule" management section for a course website.
3. Input title, starting date, starting time, ending date, ending time and

description where requested.
4. Select Preview.
5. Select Save.
6. Verify that the scheduled activity has been added to the course schedule

(TC20) and the compiled schedule (TC21).

 175 (186)

Test Case TC18: Edit Existing Scheduled Activity
Functionality to Test: The user shall be able to edit an existing scheduled activity
 for courses he or she is assigned the privilege course leader if
 he or she is authenticated.
Functional Requirement: 7.2
Inputs: - The scheduled activity to edit
 - Title
 - Description
 - Starting date
 - Starting time
 - Ending date
 - Ending time
Expected Outputs: - Scheduled activity
 - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Schedule" management section for a course website.
3. Select the existing scheduled activity to edit.
4. Input title, starting date, starting time, ending date, ending time and

description where requested.
5. Select Preview.
6. Select Save.
7. Verify that the scheduled activity has been edited accordingly (TC20 and

TC21).

Test Case TC19: Remove Existing Scheduled Acitivity
Functionality to Test: The user shall be able to remove an existing scheduled
 activity for courses he or she is assigned the privilege course
 leader if he or she is authenticated.
Functional Requirement: 7.2
Inputs: - The scheduled activity to remove
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the "Schedule" management section for a course website.
3. Select the existing scheduled activity to remove.
4. Confirm removal of selected scheduled activity.
5. Verify that the scheduled activity has been removed from the list of scheduled

activities in the "Schedule" management section.

Test Case TC20: View Scheduled Activity from Course Schedule
Functionality to Test: The user shall be able to view a scheduled activity from the
course schedule.
Functional Requirement: 7.3
Inputs: - The selected scheduled activity to view
Expected Outputs: - Detailed information for the selected scheduled activity

 176 (186)

Instructions for Tester

1. Navigate to a course website.
2. Select to view the course schedule.
3. Select a scheduled activity from the course schedule.
4. Verify that the details for the activity are displayed.

Test Case TC21: View Scheduled Activity from Compiled Schedule
Functionality to Test: The user shall be able to view scheduled activities from the

compiled schedule, which can be accessed through the
personal page, and the details of the activities.

Functional Requirement: 7.4
Inputs: - Scheduled activity
Expected Outputs: - The description of the selected activity

Instructions for Tester

1. Navigate to the personal page.
2. Navigate to the “Schedule” section under “Personal Links”.
3. Select a schedule activity to view the description of the activity.
4. Verify that the details for the activity are displayed.

Test Case TC22: Export Schedule in iCalendar Format
Functionality to Test: The user shall be able to export the compiled schedule and

the course schedule on the course website.
Functional Requirement: 7.5
Inputs: - The schedule
Expected Outputs: - The schedule in iCalendar format

Instructions for Tester

1. Navigate to the personal page or the course website.
2. Navigate to the “Schedule” section.
3. Select Export this schedule to iCalendar format.
4. Verify that the schedule was exported by importing it to Google Calendar

and comparing the activities’ times and descriptions.

Test Case TC23: Add Deadline
Functionality to Test: The user shall be able to add deadlines for courses he or

she is assigned the privilege course leader if he or she is
authenticated.

Functional Requirement: 8.1
Inputs: - Title of the deadline
 - Date of the deadline
 - Description of the deadline
Expected Outputs: - The added deadline

- Confirmation

 177 (186)

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Deadline” section under “Course Leader Links”.
4. Input title, date and description for the deadline.
5. Select Preview.
6. Select Save.
7. Verify that the deadline is available from the deadline page (TC26).

Test Case TC24: Edit Existing Deadline
Functionality to Test: The user shall be able to edit existing deadlines for courses

he or she is assigned the privilege course leader if he or she
is authenticated.

Functional Requirement: 8.1
Inputs: - The selected deadline

- Title of the deadline
 - Date of the deadline
 - Description of the deadline
Expected Outputs: - The edited deadline

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Deadline” section under “Course Leader Links”.
4. Select deadline to edit.
5. Edit title, date or description for the deadline.
6. Select Preview.
7. Select Save.
8. Verify that the deadline is available from the deadline page (TC26).

Test Case TC25: Remove Existing Deadline
Functionality to Test: The user shall be able to remove existing deadlines for

courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 8.1
Inputs: - The selected deadline
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Deadline” section under “Course Leader Links”.
4. Select deadline to remove.
5. Select Confirm.
6. Verify that the deadline is removed from the deadline page (TC26).

 178 (186)

Test Case TC26: View Deadlines
Functionality to Test: The user shall be able to view existing deadlines for a

course.
Functional Requirement: 8.2
Inputs: - The ID of a deadline
Expected Outputs: - The selected deadline

Instructions for Tester

1. Navigate to the course website.
2. Navigate to the “Deadline” section under “Courses ”.
3. Select deadline to view.
4. Verify that the selected deadline is displayed.

Test Case TC27: View Overview of Deadlines
Functionality to Test: The user shall be able to view the overview of deadlines for

courses that the user is registered for.
Functional Requirement: 8.3
Inputs: None
Expected Outputs: - A list of deadlines for courses the user is registered for

Instructions for Tester

1. Navigate to the personal page.
2. Navigate to the “Deadline” section under “Personal Links”.
3. Verify that the deadlines for the courses the user is registered for are

displayed.

Test Case TC28: Upload File
Functionality to Test: The user shall be able to upload files for courses that the

user is assigned the privilege course leader if he or she is
authenticated.

Functional Requirement: 9.1
Inputs: - Title of the file
 - Description of the file
 - File to upload
Expected Outputs: - Uploaded file

- File description
- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Files” section under “Course Leader Links”.
4. Input title, description and file to upload.
5. Select Save.
6. Verify that the uploaded file is available from the file page (TC31).

 179 (186)

Test Case TC29: Edit Existing File
Functionality to Test: The user shall be able to edit existing uploaded files for

courses that the user is assigned the privilege course leader
if he or she is authenticated.

Functional Requirement: 9.1
Inputs: - File to be edited

- Title of the file
 - Description of the file
 - File to upload
Expected Outputs: - Uploaded file

- File description
- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Files” section under “Course Leader Links”.
4. Select file to be edited.
5. Edit title, description or file to upload.
6. Select Save.
7. Verify that the uploaded file is available from the file page (TC31).

Test Case TC30: Remove Existing File
Functionality to Test: The user shall be able to remove existing uploaded files for

courses that the user is assigned the privilege course leader
if he or she is authenticated.

Functional Requirement: 9.1
Inputs: - File to be removed

Expected Outputs: - Confirmation
Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Files” section under “Course Leader Links”.
4. Select file to be removed.
5. Select Confirm.
6. Verify that the uploaded file is removed from the file page (TC31).

Test Case TC31: Download File
Functionality to Test: The user shall be able to download files for courses he or

she is registered for if he or she is authenticated.
Functional Requirement: 9.2
Inputs: - Username
 - Password
Expected Outputs: - The selected file

Instructions for Tester

1. Authenticate to the system (TC1).

 180 (186)

2. Navigate to a course website.
3. Navigate to the “Uploaded Files” section of a course website.
4. Select a file to download.
5. Verify that the file is downloaded.

Test Case TC32: Add Course Assignment
Functionality to Test: The user shall be able to add course assignments for

courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 10.1
Inputs: - Title of the assignment
 - Description of the assignment
Expected Outputs: - The added assignment and confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Assignment” section under the “Course Leader Links”.
4. Input title and description for the course assignment.
5. Select Preview.
6. Select Save.
7. Verify that the assignment is available from the assignment page (TC35).

Test Case TC33: Edit Existing Course Assignment
Functionality to Test: The user shall be able to edit existing course assignments for

courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 10.1
Inputs: - Title of the assignment
 - Description of the assignment
Expected Outputs: - The edited assignment and confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Assignment” section under the “Course Leader Links”.
4. Select assignment to edit.
5. Edit title and description for the course assignment.
6. Select Preview.
7. Select Save.
8. Verify that the assignment is available from the assignment page (TC35).

Test Case TC34: Remove Exisiting Course Assignment
Functionality to Test: The user shall be able to remove existing course

assignments for courses he or she is assigned the privilege
course leader if he or she is authenticated.

Functional Requirement: 10.1

 181 (186)

Inputs: - Title of the assignment
 - Description of the assignment
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Assignment” section under the “Course Leader Links”.
4. Select course assignment to remove.
5. Select Confirm.
6. Verify that the assignment is removed from the assignment page (TC35).

Test Case TC35: View Course Assignments
Functionality to Test: The user shall be able to view existing course assignments

for a course.
Functional Requirement: 10.2
Inputs: None
Expected Outputs: - List of course assignments for the course

Instructions for Tester

1. Navigate to the course website.
2. Navigate to the “Assignment” section.
3. Verify that the assignments for the course are displayed.

Test Case TC36: Register Results
Functionality to Test: The user shall be able to register results for existing course

assignments for courses he or she is assigned the privilege
course leader or course assistant if he or she is
authenticated.

Functional Requirement: 11.1
Inputs: - Grade
 - Course assignment to assign grade to
 - User to assign grade to
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Results” section under the “Course Leader Links”.
4. Enter grades for the users and assignments.
5. Select Save.
6. Verify that the grade is available from the register results page (TC36).

Test Case TC37: View Results
Functionality to Test: The user shall be able to view existing results for a course he

or she is registered for if he or she is authenticated.

 182 (186)

Functional Requirement: 11.2
Inputs: None
Expected Outputs: - List of results for the course

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Results” section.
4. Verify that the user’s results for the course are displayed.

Test Case TC38: View Registered Students
Functionality to Test: The user shall be able to view registered users for courses he

or she is assigned the privilege course leader if he or she is
authenticated.

Functional Requirement: 12.1
Inputs: None
Expected Outputs: - List of students registered for the course

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Registrations” section under the “Course Leader Links”.
4. Verify that the registered users for the course are displayed.

Test Case TC39: Confirm Application to Get Registered for Course
Functionality to Test: The user shall be able to accept applying users for courses

he or she is assigned the privilege course leader if he or she
is authenticated.

Functional Requirement: 12.2
Inputs: - Users
Expected Outputs: - List of students for the course

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Navigate to the “Registrations” section under the “Course Leader Links”.
4. Select student applications to accept.
5. Select Verify the Selected Users.
6. Verify that the user is registered for the course (TC38).

Test Case TC40: Apply for Course
Functionality to Test: The user shall be able to apply for a course which he or she

isn’t already registered in.
Functional Requirement: 12.3
Inputs: None
Expected Outputs: - Updated student status

 183 (186)

 - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Select Apply for Course.
4. Select Apply.
5. Verify that the student application can be confirmed from the Course Leader

Registrations page (TC39).

Test Case TC41: Unregister Registered Student
Functionality to Test: A course leader shall be able to remove a previously

registered student from a course.
Functional Requirement: 12.4
Inputs: None
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Navigate to the course website.
3. Select the registration option from the Course Leader Links submenu.
4. Select the Remove (unregister) link corresponding to the student that shall be

unregistered
5. Select Confirm.
6. Verify that the student is no longer listed as a registered student for the course

(TC38).

Test Case TC42: Add User Account
Functionality to Test: A system administrator shall be able to add user accounts.
Functional Requirement: 13.4
Inputs: - Username
 - Password
Expected Outputs: - New User

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Select Users from the System Administrator submenu.
3. Input username and password.
4. Select Add.
5. Select Confirm.
6. Verify that the new user can log in (TC1).

Test Case TC43: Edit User Password

Functionality to Test: A system administrator shall be able to edit user’s
passwords.

Functional Requirement: 13.4

 184 (186)

Inputs: - Username
 - Password
Expected Outputs: - Updated User
 - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Select Users from the System Administrator submenu.
3. Input the username into the username field under Edit Existing User.
4. Select the Edit Password link corresponding to the user.
5. Input the new password.
6. Press the save button.
7. Verify that the user can log in using the new password (TC1).

Test Case TC44: Remove User Account
Functionality to Test: A system administrator shall be able to remove user

accounts.
Functional Requirement: 13.4
Inputs: - Username
Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Select Users from the System Administrator submenu.
3. Input the username into the username field under Edit Existing User.
4. Select the Remove link corresponding to the user.
5. Select Confirm.
6. Verify that the user can no longer log in (TC1).

Test Case TC45a: Edit User Privileges
Functionality to Test: A system administrator shall be able to edit user privileges

to make other users System Administrators.
Functional Requirement: 13.1
Inputs: - Username
Expected Outputs: - Updated user

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Select Users from the System Administrator submenu.
3. Input the username into the username field under Edit Existing User.
4. Select the Edit Privileges link corresponding to the user.
5. Select the System Administrator checkbox.
6. Select Save.
7. Select Confirm.
8. Verify that the user has access to the System Administrator functions of the

system such as editing user privileges (TC45a).

 185 (186)

Test Case TC45b: Edit User Privileges
Functionality to Test: A system administrator shall be able to edit user privileges

to make other users Course Leader or Course Assistant.
Functional Requirement: 13.1
Inputs: - Username

- Course Code
Expected Outputs: - Updated user

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Select Users from the System Administrator submenu.
3. Input the username into the username field under Edit Existing User.
4. Select the Edit Privileges link corresponding to the user.
5. Select the Course Leader or Course Assistant checkbox.
6. Input course code.
7. Select Save.
8. Select Confirm.
9. Verify that the user has access to Course Leader/Course Assistant functions

such as registering results (TC36).

Test Case TC46: Add Course Assistant
Functionality to Test: A course leader shall be able to assign course assistants to

courses they are responsible for.
Functional Requirement: 13.2
Inputs: - Username
Expected Outputs: - Added Course Assistant

- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).
2. Authenticate with the system.
3. Select Course Assistants from the Course Leader Links submenu.
4. Input the username.
5. Select Continue.
6. Select Confirm.
7. Verify that the user can now add results for students registered for the course

(TC36).

Test Case TC47: Remove Course Assistant
Functionality to Test: A course leader shall be able to remove course assistants to

courses they are responsible for.
Functional Requirement: 13.2
Inputs: - Course

- Username
Expected Outputs: - Confirmation

Instructions for Tester

 186 (186)

1. Authenticate with the system.
2. Select Course Assistants from the Course Leader Links submenu.
3. Select the Remove link corresponding to the Course leader to remove.
4. Select Confirm.
5. Verify that the user no longer has access to Course Leader functions for the

course, such as adding course assistants (TC46).

Test Case TC48: Add Course
Functionality to Test: A System Administrator shall be able to add courses to the

system.
Functional Requirement: 13.3
Inputs: - Course Code
Expected Outputs: - New Course and Confirmation

Instructions for Tester

1. Authenticate with the system.
2. Select Courses from the System Administrator submenu.
3. Input the course code in the field corresponding to Add Course Code.
4. Select Add.
5. Select Confirm.
6. Verify that a Course Leader can now be assigned to the course (TC45b).

Test Case TC49: Edit Existing Course
Functionality to Test: A System Administrator shall be able to edit existing courses

in the system.
Functional Requirement: 13.3
Inputs: - Course Code (old)

- Course Code (new)
Expected Outputs: - Updated Course and Confirmation

Instructions for Tester

1. Authenticate with the system.
2. Select Courses from the System Administrator submenu.
3. Input the course code in the field corresponding to Edit Course Code.
4. Select Search.
5. Select the Edit link corresponding to the course to be edited.
6. Input the new Course Code
7. Select Save.
8. Select Confirm.
9. Verify that a Course Leader can be assigned to the course using the new

course code but not the old one (TC45b).

