Course Information Management System

Group 2

David Chang
Linda Chowdhury
Oscar Fitinghoff
Patrik Parberg
Tomas Hansson

1 (186)

Table of Contents

I INEFOAUCTION ...ttt ettt ettt ettt et e seeeeneesaneenneenes 8
1.1 About the dOCUMENLooueiiiiiiiiiiiieieet ettt et ettt e st e e e 8
L.2 GLOSSATY ..ottt ettt ettt e sttt s bt e et e e e bt e e s bt e e sab e e e st e e eabeeeabeesnaeens 8
1.3 SUIMIMIATY ittt et e e e e sab e e st e e bt e e s bteesbaeesbeeens 9

2 SYSTEM OVEIVIEW ..enuiiiiiiiiiiiieeiiiieeeiite et e ettt e st esite e sttt e s bt e e eabeeesabaeesabeeessbeessbeessbeessaeesnses 9
2.1 General DESCTIPLION.cc.iiiiiiiiieiiieieet ettt ettt sttt ettt e s aee 9
2.2 Overall Architecture DeSCTIPIONccc.ueiriuiieriiiieiiieeeiie ettt ettt e e 10
2.3 Detailed ATCRItECIUTIEoouiiiiiiiiiiiieeee ettt 12

Database SYSTEIM ..ecuuviiiiiieiiiieeitee ettt et ettt e et e sttt e st e et e e st e e sabeesanees 12
Entity-relationship MOdel.........cc.ooiiiiiiiiiiiiee e e 12
ToIMALIIX ettt ettt ettt et be e et e e s een e nereeneen 13
Database SIUCTUTE.coouutiiiiiiiiie ettt e s 13

BIOCK DIAZIAMS ...ceiuiiieiiiieiiieeeteeet ettt et sttt et et e e e e 14

3 Design COnSIACTALIONS.eeiiieeiiieeiiieeiteeeitteeeiteeeteeesteeessteeessseeessseessreesnsaeessseeessseesnsseesnnns 23
3.1 Assumptions and Dependencies............couvueeriiiiriiiiniieeieeeiee ettt 23
3.2 GENETAl CONSIIAINES ..c...eeiueieiiieiieniie ettt et ettt e ettt e se e et e sabeebee s bt e eabeesabe e bt e sbeesabeens 24

4 Graphical USer INTEITACEc.eeeiiiiiiiiiiiiiiei ettt 24
4.1 Design Of the SYStEM.......ciiiiiiiiiieeieeeieeecee ettt et e et e e e e et e e e beeesbee e nbeeeenseeennne 24
4.2 Overview of the User INterfacecocueeviiiiniiiiiiiiiiicieeeeeeee e 26
4.3 Details of the Graphical User INterface..........cccvvervieeriieeriieeieeeeeeeeeeee e 27

IMIEIIUES ...ttt ettt et e e et e sat et st et e st e b sat e e bt e saneeneens 27
StArt PAZE MENUooiiiiiiiiieiiiiieeecee et ettt e e e st e e e st e e s sabaeeeeaas 27
Personal Page — Logged OULcoouiiiiiiiiiiiieiieeeeeeeeeteeee ettt 27
Personal Page — Logged IN......cccueoviiiiiiiiiiciece et e 28
Course Website — LogZed OULccueeiiiiiiiiiieiiieeeeeee ettt 29
Course Website — Logged IN.......coouiiiiiiiiiiiiiieeeeeeeeeee ettt 30
Course AdMINISIIALION ...ccueieutiiriiieiieiite ettt ettt ettt ettt e sbtesbeesabeebeesaeeeabeens 32
System AdMINISTIALION ...cc..eeirireeiiiiieiitee ettt e et eeite e st e e sbee e st e snaeee s 34

SEATT PAZE.....eeeieeeiiee e et e ettt e e st e e et e e e et e e e s nbraeeenaneee 34

Personal PAgecoo.eeiiiiiiiiiiiee e 35
Front Page (INEWS)cecoiiieiiieeiiee ettt etee et e et eeete e et e e snaeeesnseeesnseeensseeesseeens 35
DEAALIINES ...ttt ettt 36
RESUILS ..ottt e et e et e et e e st e e enbeeeesbeeeenbeeennseeenaeeen 37
SCREAUIE ...ttt 37

COUTSE WEDSILEeenieiiieiee ettt sttt et et e e sat e e bt e saeeebeens 38
Front Page (INEWS) ..o.eeiiiiieiiieeee ettt ettt ettt ettt e s e s 38
ASSTZIIMEIILS ...ttt ettt e sa e et esat e et e e sbt e e bt e sbteeabeesbbeenbeessbesabeens 39
APPLY FOT COUTSE ...ttt ettt et 39
APPLY CONTITMATION ..eeuviiiiiiieeiiee ettt eetee et ee et e et e e eeaeeebeeeseseeessseeessseeennseeens 40
DEAAIINES ...ttt ettt ettt ettt e et esaneeea 40
COUTSE DESCTIPLION ...veeeiiiieeiiieeiiee et e eite e et e e steeesteeeeaeeeateeessaeessseeessseeesnseeensseesnsseesns 41
FHLES ettt ettt ettt 41
INfOrmMation PAZEScccuviiiiiiieiiiecee ettt et eaeeen 42
RESUILS ...ttt sttt et e et e s e eas 42
SCREAUIE ...ttt ettt e 43

Course AdminiStration Paesc.ccovieiiiiiiiiiiiiiiieeceeeececee et 44
SChedUIEd ACHIVITIESeeiiieiiieiieeteete ettt sttt et e e 44
Add ACHVILY PIEVIEWeiiiiiiiiiiiiieeetc ettt 45
Add Activity CONIrMAtIONccuveeeeiiieiiieeeiieerieeesieeeeee et e e eereeeaeeesaeeesreeesareeesseeens 46

2 (186)

BTt ACEIVIEY .eeeiiiieiiiie ettt ettt ettt e et e e it e s bbeesabeeebeeeas 46

Edit ACHIVILY PIEVIEW ..eviiiiiiieiie ettt ettt e vee e esaeeeeaeeennnee s 47
Activity Edited Confirmation............coeoueieiieiniiieiiiienieeesieeeiee et 47
Confirm Removal Of ACHVILYeeeriieeiiieeiieeeiieeeite et esteeeevee e e eaeeseaeeeaeee s 48
Activity Removed Confirmation...........c.eeevuieiiiieeiiiiieniieenieeeieeeeee et 48
Imported Schedule Confirmationcoccueeeiieeeiiieeiie e e e 48
Confirm Remove SChedulecoouiiiiiiiiiiiiee e 49
Remove Schedule Confirmationc.cooceeriiiiiiinieiiienieeeeeee e 49
ASSIZINIMCIILS ...eeuetieiiiieiiiie et ee et ee et e ettt e ettt e ettt e sttt e e bt e e s abeeesabeeesabeeessbeessbeessneesbreens 50
Add ASSIZNMENt PIEVIEWeiiiiiiiiiiiieiiie ettt e et eaae e e 51
Add Assignment CONfIrMAtIONceeruvieriiierriiieeiiieerite ettt e et sieee e 51
Edit ASSIZNIMENT ...ccvviiiiiieieiie et eiee et et eete e et e e e teeeeteeesbeeesnbaeensseeesseeensseesnsseeas 52
Edit ASSIZNMENT PIEVIEWeeiiiiiiiiiiiiiiieeieeeeeee ettt 53
Edit Assignment CONfIrmation...........ccouieerieeeiieeeiiieeeieeeeieeesieeesveeesaeeeseaeeenereeesneens 53
Confirm Remove ASSIZNMENT...........eiiiiiiiiiieiiiieeeieeeiee ettt ettt e e 54
Remove Assignment CONfIrmMationcecveeerieeriieeniiieeeieeesieeeeieeesveeeeveeeeneeeaneens 54
COUTSE ASSISTANLES ..uevieiiiieiiiieeitee et e et e ettt e ettt e st e e et e e sabeeesabeeesabeeesteessbeesbbeesabeeens 55
Confirm Add Course ASSISTANTcc.eerueeriiriieiieeieesie ettt e s e e 55
Add Course Assistant CONfIrMAtIONcccueeeriieiriieeiiieeieeeeee ettt 56
Confirm Remove Course ASSISTANTccc.ueeuiiriiriiieniieiieeniie ettt 56
Remove Course Assistant Confirmationcoccueeerieeeiieeniieeniieenieeesiee e 56
Edit Course DESCIIPLIONccuveieiiieeiiieeiieeeiiee ettt e ettt e eiteesieeesteeessreeessaeeesseeesseessneens 57
Edit Course Description Confirmation...............eeevueeerieeriieeniieeniieeeieeesieeesiee e 58
Create Course Website — Create DesCriptioncoc.eevverrieeniieiiieniennieenieeieeseeeieens 59
Create Course Website — Import Schedulecccoooiiiiiiiiiiiiniiieeeee, 60
Create Course Website — Import Schedule Confirmation............cccceeeeveeeriieenieennneenns 60
Create Course Website —Add Information Pages...........ccoccueevviiiniiiiniiiiniieiniieiieen, 61
Create Course Website — Add Information Pages Preview...........ccccoeevveviiieencieennnennn, 62
Create Course Website — Add Information Pages Confirmationccccceevveeruneens 62
Create Course Website — Add Deadlinesccooueeiueeniiiiiiiniiiiienicieeiceeeeeeee 63
Create Course Website — Add Deadlines Previewcccccovvviiniiiiniiiiniieinicenieens 63
Create Course Website — Add Deadlines Confirmation............ccccceeceerveenieeneenicnnneen. 64
Create Course Website SUMIMATYccccuveiriiieriieeniieeiiee et eireeeiteesieeesibeeesireessireeeas 65
Create Course Website Confirmationcoceeeieeiierieinieinieeieenieeee st 65
DEAAIINES ...ttt ettt et ettt et e et e et e ea 66
Add Deadling PrevIEWcoouiiiiiiiiiiiiiiiieieeeee ettt 67
Add Deadline Confirmationceeeueeiriieeniieeniie ettt ee e sibeessieeeeas 67
Edit DEAAINES ...cuveeiiiiiiiiiieeieeeee ettt ettt 68
Edit Deadling PreVIEWc.coiiiiiiiiiiiiiieciieeee ettt et 68
Edit Deadline Confirmationccocueeiuieriiiiieenie ettt 69
Confirm Deadline Removalccccooiiiiiiiiiiiiiiiceeeee e 69
Deadline Removal Confirmationcccccooieiiieniieiienieiieeieeeeste et 69
INfOrmation PAgescc.ueiiiiiiiiiieee e 70
Add Information Page PreVIEWcccviiiiiiiiiiieiiieeieeceeee e 71
Add Information Page Confirmation.............ccoocueeeiiieiniieiiiieiieeseeeeieeesee e 71
Edit Information Pagecoooiiiiiiiiiiiccece ettt 72
Edit Existing Information Page Previewccociiiiiiiiiiiiniiiiiiiieeeeeiee e 73
Information Page Edited Confirmationccceevevieeriieeiieeeiieeciieeeiee e esvee e 73
Confirm Removal of Information Page............cccoovuiiiiiiiiiiiiiiiiiiieieeee e 74
Information Page Removed Confirmationceeeeveerrieeeiieeniieeeiie e esiee e 74

3 (186)

Add NEWS PIEVIEWceiiuiiiiiiieeiie ettt ettt sit et e teeesaee s aaeessseeesseeensaeeensneeas 76
Add News COonfirmationcc.eeerueeeriiieniiieeeieeeeiee ettt eree et eeiaeesireesieeens 76
BTt INEWS .ttt ettt e st e e et e e st e et e e e nbaeesseeensseeensseeensneeas 77
Edit EXisting NEeWs PrEVIEWcoiiiiiiiiiiiiiiiiciieeeite ettt 77
News Edited Confirmation............cocueeeriieeiieeeiieeeiieeeieeesieeesveeesvee e eereeeeaeeeeneens 78
Confirm Removal 0f NEWSc..oiiiiiiiiiiiiiiieeeee et 78
News Removed Confirmationccouiieiieeeiieesiieeeiee e eeree e eveeeeree e 78
REZISTIALIONS ...ttt et ettt et e et e et e e st e e s bbeesabeeeabeeeas 79
Verified Registrations Confirmationccocueeueerieiiiinieniienieeeeseeee e 79
Confirm Removal of Student RegiStration...........ccceeeviiieniieiniieiniieeieeeieeeeee e 80
Student Registration Removed Confirmationcceeeveeeiiieeniieeeniieesiee e e 80
ReEGISTET RESULILS ...ceoiiiiiiiiiiie ettt ettt et e 81
Results Registered Confirmationcoccveeeiieeriiieniiieeeiee e eeieeesree e eireeeaeee s 81
FALES ettt et e et e st e e 82
Add File COnfirmationccoocuieiiiieeiiieeiiee et e st eeieeeeteeesaeeesaeeessseeessseeessseessseens 82
BTt FILE oottt st 83
Edit File Confirmationcoccueeeiiieeiiieeiieeeceeeeiteeeieeesieeesaeeesveeeseaeeesaeeeaneeesnneens 83
Confirm RemOVE File.......cocuiiiiiiiiiiiiiiee et 84
Remove File Confirmation............occuieeiiieeiiieeiieeeiee ettt iveeeeree e 84
System Administration Pages..........coovuiiiiiiiiiiiiiiiieeiieeecee e 85
COUTSES ..uvveeiireeeiiieeeiteeeeteeeeateeesateeetbeeeateeestaeeessaeeansseeansaeeasseeeanseeessaeenssaeensseesnsseennsseens 85
Course Added Confirmationcoecuieiriieeniieeniie ettt ettt e e sreeeas 85
EXIStING COUTSES LISt 1uuviiiiiieeiiie ettt et eie e et e et e et e e beeessaeeesaeeeneneeennneens 86
Edit EXiStING COUTSE. ..ccuutiiiiiiiiiiieiiiee ettt eet ettt ettt e st e st e e st e s sabeeesaseesnaneeeas 86
Course Edited Confirmation...........ccueeeiiieerieeeiieeeiieeeieeeeieeesieeesveeesveeeeveeeeneeesneens 86

U SBTS -ttt ettt ettt e st e et e e bt e e ab e e et e e et e e eabt e e e bt e e nabteenabeeeaneeea 87
Add User CONfIrMatioNeeeriieeiieeeiiieeiieeesiiee et eeieeesieeesaeeesreeessseeesseesnsneessseens 87
EXISHNZ USEIS ..uetiiiiiieiiiee ettt ettt ettt et e e st e e st e s st e e e sabeesaneeens 88
Edit PASSWOTAoiiiiiiiiiie ittt ettt ettt e et e st e e ebaeesbeeensaaeensseeensneens 88
Edit Password Confirmationcoocuieiiiiieniieinieeeiee ettt s 89
Edit USer PriVIIEZES. ...ccueeiiiiiiiiieeiteeeet et 89
Edit User Privileges — Course Privileges — Find Course............ccoccveeviiiiiniiieinieennieenn, 90
Edit User Privileges — Course Privileges — Select Coursec.ccoevuerveenieineenicnnicen. 90
Confirm Edit User Privilegescccooviiiiiiiiiiiiiiiieeieeeeeeeeeteeete et 91
Edit User Privileges Confirmationccocueevieriiiiieniiiiienieeeesieeiee st 91
Confirm User REMOVALcooiuiiiiiiiiiiiiiiicee ettt e 91
User Removal Confirmationcccceecieeiiiieeniieeiiie et e eireeeveeeseveeesveesnaneeens 92

5. DESIZN DIELALLS ..ottt st et 92
5.1 Class Responsibility Collaborator (CRC) Cards...........coeverviienieiniiinieniienieeieenieeieene 92
ALCTIVIEY 1ttt ettt ettt et e e et e et e e bt e e bt e e eabt e e e bt e e e bt e et e eeeabeesaneas 92
ACIVIEYCONIIOIIET ...ttt et st 93
ASSIZINIMCIITceiniiiiiiiieiiiee ettt ettt ettt et e et e e ettt e e bt e e e bt eesabteesabeeesabeeesabeeennbeesnneas 93
ASSIZNMENTCONITOLLET ..ottt st 93
BaSEODJECL ...ttt sttt et e et 93
Bas@CONIIOIIET ...cceuiiiieeeieeee e ettt e e e e e st e e e abaeeeeaas 93
CACKE ...ttt sttt et st e et 94
L1011] T OSSP UUPPPRRRUPPPPPRN 94
COUTSECONIIONIET ...ttt ettt ettt et e st e e sabeesanees 94
DT T4 1 PSPPSR 94

4 (186)

L .t e e e e e e e e e e e e s ee it baataaeeeeeennaares 95
FILECONIIOLIET ...ttt e e et e e e e e ee et raeeeeeeeeeeearaaneeeeaeeeenensnnns 95
INfOrmation Pagecoc.ooiiiiiiiiiie e 95
InformationPageController..........cooiiiiiiiiiiiiieieeee e 96
A LA P PPPPPPPPPPPPPRPPRRt 96
INEWSCONIIOILETuvvvveiiieeeeeeeiiieeee ettt eeee e e e e e e ee e etbrrreeeeeeeeeearraaeeesaeeeesnnsnnes 96
RESUIL ...t eee e e e e e e e e e e e e e e e eeesataaareeeeeeeennaaaees 96
RESUITCONIIOIIETvvvveieiee ettt e e e e et e e e e e e e eeeatrrreeeeaeeeeeenennres 96
NS (o) s WO 97
SCREAUIE ... e e e e e e e e e et re e e e e e e ee e nannees 97
SChEAUIECONIIOLIETcooieiiiieeieee e e e e e e e e e e e e eeaarraeeeeas 97
ST ittt ettt et e e e e e e e et r e e e e e e e e e a————aaaeeeeaaaa————aaaaaeeeaaabtrraaaaaeeeeaaanrrens 97
USEICONIIOIIET ...ttt ettt eeee e e e e e e e e et aeeeeeeeeeessstanneesseseeesnasnnes 98
5.2 Class DIQGIAIMN ...ceeiuiiiiiiiiiiiie ettt ettt e et e et e st e e st e e sab e e aneas 98
I 21 (3 O s F: 1 - 99
L0 TN ottt et ettt et e et e e e e 100
e [B o1 OO 100
EIE POSE oot e e e ettt e e e e e ee e e e e e e e e e e e e ataaaaaaaaeeeenans 100
DIEIELE POST....ciiiieiiieiieeeee et eee e e e e e e e et e e e e e s e e n e e e e e e e eeenaaraes 101
Create Course WebSite GUIAEc.ceeeeieeiiiiiieiieee ettt e e eeeeraeeeeeeeeeeeans 101
5.4 Interaction DIQ@IamIScccueieiiieeiiieeiiie et et e et et eestee et eeeaaeesaeeesaseeesnbeeennseeennne 102
LLOZ TN et ettt s e et e e et e e 102
Create Database POST.........uuuuuiiiiiiiiiiiiiiiiitiiitiiirieareteararetaaraeeaeara———————————————————————————————————_ 102
Edit Database POSt.........ccoiiiiiiiiiieeiee ettt eeeeerre e e e e e e e taaae e e e e e eeeans 103
Delete Database POSt........cooiivuuvieiiiiieieieeteeeeee et eeeer e e e e e e e et e e e e e eenns 103
View PoSt fTOmM CaCRhE........oocuiiiiiiiiie et e e e e e 104
View Post fTom Databaseeeviiiiiiiiiiiiiieiiiiceeeeeieeeee e 104
Export Schedule into iCalendar FOrmat.............ccooouieiiiiiiiiiiniiiiiieeeeececee e 104
L8] (o T2 16 I S U [T 105
Edit Uploaded FIlec..ooiiiiiiiiiiiie ettt 105
Delete Uploaded FAle........cooouiiiiiiiiiiececeeee ettt e e e 106
Create CoUrse WEDSITEcooeiiiiieiee ettt e e eeeecrr e e e e e eeeearraaeeeeeeeeeans 107
5.5 Detailed D SIZN ..ccuviiieiiieeiieiiie ettt e e et eennaee e 108
DaAtADASE ..eveeiiieiiieitieeee et e e e e e e e e e e e e e e ataaraaaaaeeeaans 108
Detailed database table definitionS.........cc.vvvviiiiiiiiiiiiieeiieeeeeeeieeeeeee e e 108
CLASSES «uvvvrreeeeeeeeeeectte et e e et ettt et e e e e eeeeeeetaraeeeeeeeeeeettasbaaesaeeeeeaaestasrasesaeeeenanssrsaaaeeeeeeennnns 112
(O TN 5 15 1 2 RSP 112
Class ACtVILYCONITOIIETeeiiiiiiiiiieiit ettt e 116
ClasS ASSIZNIMENLveeeiuiieeiiieeiieeeiiteeeiteeeeieeesteeesaeeessreeeaseeesaeesseessnseeessseesnsseesnseens 117
Class AsSignmentCONIIOILETccvuiiiiiiieiiieeiiee et e 120
CIASS CACKE ...ttt et e e e e e et e e e e e e eesaaaeeeeeeeeeeninns 122
LSS COUISEoueeirireeeeeeeeeeeitteeeeeeeeeeeeetrereeeeeeeeesettrreeeeeeeeeeetasssaseeaeeeeeasantrareaeeeeeennns 123
Class COUISCCONIIOIIET ...uvvvvvriiririiiiitiiitititirierrtratararararaaeraaaerareaaaraera————————————————————————— 129
ClasS DEAALINEuuvveeiiiiieiiiieeeee et e e e et r e e e e e eeertrareeeeeeeeeae 131
Class DeadlinECONIOLIETuvvviiiiiiiiiiieeieee ettt e e e e e e e e e e eeines 135
CLASS FILE oottt e e e et e e e e e e e e rtraraeeaeeeeean 137
ClasS FIIECONIIOIIET.........cooieiieiieiiee et ee e e e e e eeaare e e e e e e eennes 140
Class InformationPagecoocuviiiiiiiiiiiiiieecee e 141
Class InformationPageController.............cccuvieriieeriieeiiie et 144

5(186)

CLASS INEWS ..ttt ettt et eane 145
Class NeWSCONLIOIIETccocuuiiiiiiiiieieie e 148
CIaSS RESULL ..ttt 149
Class ReSultCONtIOIIETccuiiiiiiiieiieeitee e 152
CLaSS SESSION ...ttt ettt ettt et ettt et et sae e et e s b st esaee e b e e saeeeane 153
Class SChEedUIE.......coouiiiiiiiee et 154
Class ScheduleControllerooviiiiiiiiiieeeeee e 155
LSS USET .ttt ettt ettt et ettt e st et e sbb e et esaeeebeesateeaee 157
Class USEICONIIOLIETcoouvieiiiiiiiiierieeteeee ettt 162
Implementation Index of REqUITEMENESccccueeeiiiieeiiiieeiieeciie et 166
5.6 Package diagramc.ceeviiiiiiiiiiiieiiiee ettt ettt st e e e 168
6. FUNCIONAL TSt CASESeeiueiiiiiiiiieiieeieeeie ettt ettt ettt et et e st 168
Test Case TC1: Authenticate to the SYStem........coviiiiiiiiiiiiiiiiiiieeeeeee e 168
Test Case TC2: View Personal Page..........ccoevviiiiiiiieiiiiciiecieeee e 168
Test Case TC3: View Overview of Course NEeWS......cccueeviieeniiiiniiieeniieeniieeeiieeeireeeane 169
Test Case TC4: Create Course WebSILeceeueiriiiiiiriiiiieiieeeeeeeeeee e 169
Test Case TCS: Edit Existing Course DesCriptionccueeervieerieeenieeenieesiieesieeenae 170
Test Case TC6: View Course DeSCIIPONc.eeeeevieeeiiieeeiiieeniieeeieeenveeeniieeesiveeeireeenns 170
Test Case TCT7: Add Course NEWS.....cccueiiriiiiiiieiiieeiee ettt 170
Test Case TC8: Edit EXisting Course NEWS........ccccvieeiiieeiieeniieerieeenveeenveeeiveeeireeenns 171
Test Case TC9: Remove Existing Course NEeWSccccueeeriieriiiieriiieeniieeniee e 171
Test Case TC10: View CoUrse NEWSc...eeruiiriiiiieriieiieeieeiee ettt 172
Test Case TC11: Add Information Pageccoovieeiiiiiiiiiniiiiiiieeeeee e 172
Test Case TC12: Edit Existing Information Pagecccceeviiieiiiiieniiieiniiecieeeieees 172
Test Case TC13: Remove Existing Information Pagec..cccooveiniiiiniiiiniinineennn 173
Test Case TC14: View Information Pageccccvveeiiiieiiieniiiciececee e 173
Test Case TC15: Import Course Scheduleooceeeviiiiiiiiiiiiiiiice e 173
Test Case TC16: Remove Existing Course Schedulecccceveviiiniieeniiieeniieceieeene 174
Test Case TC17: Add Scheduled ACHVILYccocueeiriiiiniieiiieeieeeteeeeeeee e 174
Test Case TC18: Edit Existing Scheduled ACtVILYc.ceevvieeriiieiieeeieeeee e 175
Test Case TC19: Remove Existing Scheduled ACItIVILYccccveevviieiniiiiiniiieiniieeieeee 175
Test Case TC20: View Scheduled Activity from Course Schedule............ccccvveennnnnnee. 175
Test Case TC21: View Scheduled Activity from Compiled Schedule 176
Test Case TC22: Export Schedule in iCalendar Formatccccceevviieniieencieecnieeenne, 176
Test Case TC23: Add Deadline..........ccceeeviiiiiiiiiiiieeiieeieeeeeeete et 176
Test Case TC24: Edit Existing Deadline..........c.cccccvveeriieeniieeiiiieieeciieeeee e 177
Test Case TC25: Remove Existing Deadline...........ccoooueeriiiiniiiiiiiiiniiiiiecice e 177
Test Case TC26: View Deadlinesccccueevueeiiiiiiiiniiiieeniieeieee e 178
Test Case TC27: View Overview of Deadlinesccceevveeriiiiiiieiniiiiniiieciieeeeee 178
Test Case TC28: Upload FIlecccviiiiiiiiiiieciieece et e 178
Test Case TC29: Edit EXisting File.........coooiiiiiiiiiiiceee e 179
Test Case TC30: Remove Existing Filecoocioiiiiiiiiiiiiiiceecee 179
Test Case TC31: Download Filecccccooiiiiiiiiiiiiiiiicccceeeeete e 179
Test Case TC32: Add Course ASSIZNMENL..........eervreerureerreeerireeeireesueeesseeesseeensseeenne 180
Test Case TC33: Edit Existing Course ASSIZNMENL.c.ceeervuveerruieeriiieeniieeenieeenireennnne 180
Test Case TC34: Remove Exisiting Course ASSIZNMENt...........ccceuveererreerireeeriueeenveeennn. 180
Test Case TC35: View Course ASSIZNMENLSccceeeerueeerrireernireeniiieenieeesieeenseessireesnne 181
Test Case TC36: Register RESULLScccviiviiiieiiiieiieeiee e 181
Test Case TC37: VIeW ReSUILS....ccocuiiiiiiiiiiiiiiceeceeeee e 181
Test Case TC38: View Registered Students...........ccceeeveeeriieeiiieeiieenieeeiee e 182

6 (186)

Test Case TC39: Confirm Application to Get Registered for Course..........ccccveerunenn. 182

Test Case TC40: APPLY fOr COUISE ...eevuiiieiiieeiiieeiieeeiieeeieeeeiteesreeesreeeseveeeseveeeareeenns 182
Test Case TC41: Unregister Registered Student.............ooocueeeniiiiniieiniieinieenieeeieenae 183
Test Case TC42: Add USEr ACCOUNTccouuiiiiiiiiiieeeiiiiee ettt eeieee e et e e erieeeeesiaeeeeens 183
Test Case TC44: Remove USer ACCOUNL.......cccciiiriiiieniiieniieeniteeiee et eiree e e eiree e 184
Test Case TC45a: Edit USer Privil@gesccueeevuiieeiiiieeiiieeieeeeiie et evee e 184
Test Case TC45b: Edit User Privile@esoovuiiiiiiiiiiiiiiiiieeiiecieeeeteeeeeee e 185
Test Case TC46: Add Course ASSISTANTeeerureeerireeeiireeeieeenrreesreeesreeesreeessseeessreennns 185
Test Case TC47: Remove Course ASSIStANT........ceevueeeriieeriiieeniieerieeeniteeesieeeeieeesiree e 185
Test Case TCA8: Add COUTISE.......cevuuieeiiieeiieeeiieeeiteeeieeeeieeesaeeesteeessseeessseeessseesaseennns 186
Test Case TC49: Edit EXiStING COUISE....ccouvtirriieeniieeiiieeiiteeieee et eite et e siseessiree e 186

7 (186)

1 Introduction

1.1 About the document

The purpose of this document is to describe the design of the system. While the
requirements document focused on behaviour, the design document is covering the
technical aspects, such as implementation. Mainly, the documentation in the
document is written fo make the implementation stages as clear and straight-
forward as possible by designing the system on paper before the actual coding.

Since the intended audience of this document is the developers who are going to
implement the system, the scope includes a system overview (architecture), design
considerations, description of the graphical user interface, design details and
functional test cases.

The system will be named Course Information Management System (abbreviated
CIMS).

To fully understand parts of this document, the reader should have taken part of the
requirements document for this system.

1.2 Glossary

Apache Tomcat

A web container that provides an environment for Java code to run in cooperation
with a web server.

Client-server architecture

An architectural model for distributed systems where the system functionality is
offered as a set of services provided by a server. These are accessed by client
computers that make use of the services.

Cookie
Information stored in the user's web browser by the server-side of the system, used to
maintain certain information regarding that specific web browser.

Database

A computer database is a structured collection of data that is stored in a computer
system so that a computer program or person using a query language can consult it
to answer queries.

Entity-relationship model (ER model)

An Entity-relationship model is a relational schema database modeling method used
to model a system and its requirements, where an entity represents a discrete object
and a relationship captures how two or more entities are related to one another.,

iCalendar
A standard for group calendaring and scheduling, which enables calendaring data
to be sent via e-mail or the Web that is automatically entered into the recipient's
schedule.

8 (186)

JavaServer Pages (JSP)

Enables software developers to create dynamic web pages that run on the web
server. The web pages can for example load and process data from a database
server, as well as receive user input from end-users.

MySQL
A widely used open source relational database management system.

1.3 Summary

The system uses a three-tier client-server architecture consisting of the client (web
browser handling the graphical user interface towards the user), the application
server (containing the business logic) and the database server (storing data for the
business objects).

The system will be implemented in Java ServerPages (JSP), run on a web server set
up with Apache Tomcat software and the data within the system will be stored using
MySQL database software.

The overall design of the system (web page structure) is divided into the four
categories Course Administration, Personal Page, System Administration and Course
Website. These categories have web pages representing different tasks within the
scope of respective category.

The user interface is divided into three sections. The header section at the top of the
web page will contain the name of the system. Below the header section to the left,
the navigation section is located. The last section will be placed to the right of the
navigation section, and will display the main content for that particular web page.

In a web page there will be different controls in the form of text fields, dropboxes,
buttons and links which allows the user to insert data for sending, send data to the
server for saving or redirect to another web page.

To manage the business objects and their data, there will be classes to represent the
business objects themselves and controller classes o manage them (add, edit or
delete). The system also has classes handling sessions and caching.

2 System Overview

2.1 General Description

The system is meant to provide an easy way for lecturers without web design skills to
create and update course websites, while at the same time providing a cenfral
information source for students who are enrolled in these courses.

Since we need to have the data stored on a central server we opted for a web
based solution, allowing for users to access the system without the need to install a
custom client application on the computer. This also allows the system to be
accessed from public terminals, if the user isn't at home and doesn’t possess a
laptop of their own.

9 (186)

The design of the system was focused on making the user interface quick to use,
requiring as few steps as possible to use what we expect will be the most commonly
used functions, such as viewing schedules and news.

2.2 Overall Architecture Description

The system uses a three-tier client-server architecture, where the clients are web
browsers and the servers consists of an application server and a database server.

Display
A
c
Q@
O ~
[Input } [Cookies
J
! A A
Y ; Y :
Client .
Communication File System
A A A A A A
5 : ! !
E 1]]
$ \ 4 ' :
[' !
2 Session ' !
© : '
O ! |
a A A ' :
Q ' ! ,
< ! ! '
E v v :
Controller E
A
o !
2 '
[}
0 Database
3 Tables
_8 H—> Data
o
o
a %-}-> Control

10 (186)

The web browsers contain no business logic and manage the user interface. The web
browser also stores cookies to enable the application server to identify the user. It
also enables the user to send input to the application server.

The application server handles the incoming requests by retrieving and storing data
from the database server. The application server uses caching to limit the number of
database queries.

The application server consists of mainly two logical layers for processing requests.
The first layer (client communication) interprets the user request and calls upon the
appropriate controllers. There is also a cache layer used to lessen the load on the
database server by storing frequently used information in memory.

Controllers are responsible for database communication and perform the
creation/updating/removal of database records corresponding to actual business
objects.

The session is a conftroller that is used to idenftify different users. It is used throughout
the system and is therefore illustrated in the diagram.

Objects represent business objects and contain business logic and validation. These
are mainly used to represent data in the database in a domain specific way, and do
little more than allow for this data tfo be manipulated and making sure that the
objects state obey the rules of the business object it represents.

11 (186)

2.3 Detailed Architecture

Database System

Entity-relationship model

Privilege Has privilege User
Result
useriD userlD
privileges USEImame
password
firstnarme
lastname
In course
11
Course
courselD
name
courseCode
courseleader
startyear
startPeriod
endyaar
endPeriod
credits
description
Belongs to Belongs to Belongs 10’—,_‘ Belongs to Belongs to Belongs to
11 11 11 [T
Activity Deadline News File InformationPage Assianment
activitylD deadlinelD newslD filelD pagelD assignmentiD
coursel0) courgi) cowrsel0) courssii) colrseft) courselt)
title title guthor title fitle title
description description headline description content description
startTime time content filename
endTime tirme

The above is an entity-relationship model (ER model) of the database structure that
will be used by the system. Primary keys are distinguished by bold font, and foreign
keys are distinguished by italic font.

The central part of data in the system is the Course table where information about
the courses is stored. Much of the rest of data in the system is related to the Course
table. A course can for example have activities, deadlines, news, files, information
pages and assignments. All these must be related to exactly one course.

Users can be in none, one or several courses, and a course can have none, one or
several users in it. Users are in a course when they’re applying to get registered for i,
fully registered or are involved with tfeaching in the course. The user’s status in a
specific course is available in as a status field in the InCourse relation.

Privileges which are not course specific (system administrator privileges) are stored in
the Privilege table.

Results are stored in the Resulf table and are related tfo one user and one
assignment. Each assignment is in turn related to one course.

12 (186)

Files are stored in the file system, and only their metadata is stored in the database.
No filename is stored in the database since files will be renamed so that their file-ID

can be used to locate the file.

A schedule consists of several activities belonging to a course. A specific user’s
schedule can be found by finding the courses the student is in and then fetching the

activities for that course.

T-matrix

Type Name I-Term(s) E-Term(s)
username,

Object | User userlD possword,
firsthame,
lasthame
name,
courseCode,
courselLeader,
startYear,

Object | Course courselD startPeriod,
endYear,
endPeriod,
credits,
description

Object | Activity activitylD fifle, description,
startTime, endTlime

Object | Deadiine deadiinelD fite. descripfion.

Object| News news|D author, hegdhne,
contfent, time

Object |File filelD fitle, description,
filename

Object | InformationPage pagelD fitle, content

Object | Assignment assignmentiD fitle, description

Object | Privilege userlD Privileges

1:N ActivityBelongsTo courselD, activitylD

I:N DeadlineBelongsTo courselD, deadlinelD

1:N NewsBelongsTo courselD, newsID

1:N FileBelongsTo courselD, filelD

1:N nformationPageBelongsTo | courselD, pagelD

I:N AssignmentBelongsTo courselD, assignmentlD

N:N InCourse userlD, courselD Status

N:N Result userlD, assignment|D Grade

Above is the T-matrix for the database illustrated in the ER model.

Database Structure

Table \

Attribute

13 (186)

User ((userlD), username, password, firsthname, lasthname)

Course ((CourselID), name, Coursqude, Coursl.eLeoderl, sTorTYeor,
startPeriod, endYear, endPeriod, credits, description)

Activity ((activitylD), courselD, title, description, startTime, endTime)

Deadline ((deadlinelD), courselD, title, description, time)

News ((newslD), courselD, author, headline, content, time)

File ((filelD), courselD, title, description, flename)

InformationPage | ((pagelD), courselD, title, content)

Assignment ((assignmentlD), courselD, fitle, description)

Privilege ((userlD), privilege)

InCourse ((userlD, courselD), status)

Result ((userlD, assignmentlD), grade)

This is the database structure after normalizing it from the T-matrix. Privileges which
are not course specific are stored in a separate table to avoid wasting space since

very few users (system administrators) will have any special privileges.

Block Diagrams

A block diagram is a type of flowchart, which quickly gives you an overview of the
mMajor process steps in the system. The processes to add course description, add
news, add assignment etc. are very similar and therefore they are represented by
the block diagram “Create Database Post”. The exception is to upload a file
because of the interaction with the file system. The same goes for "Edit Database

Post” and "Delete Database Post”.

Login
Client Server Database Server File System
| Confroller |
Translate the
i requasl o
5"::3 ?aiiizl?dm p»{ datahase query to | User information
pass ! get user
information
Controller
Login failed + ‘alidate user input |«
3
Session
Login succeded | Create session

Figure 1 displays the major processes when a client requests to log in.

14 (186)

Create Database Post

Client Server Database Server File System

Session

Requast to create

post Validate session

L J

Create post failed |

Submit data &

Controller

» \alidate data

I

Controller
Translate the
request to o
database query to | Create post
create post
Create post
succeded

Figure 2 displays the processes to create a database post.

15 (186)

Edit Database Post

Client Server Database Server File System
Session
Request listing of P S :
Dol Validate session
Controller
Listing of posts Translate the
failed rag est in . Posts
database query to g
view posts
Listing of posts |
succeded
L Session
Submit 1D of post : :
1o edit # ‘falidate session
I
Contraller
Edit post failed Translate the
reguest to = Post
database query to
get post
Fost fo be edited
1 Session
Submit edited post # Walidate session
L
Editing post failed (e Controller
Validate data
Controller
Translate the
request to e .
database query to = Edit post
edit post
Editing post o
succeded i

Figure 3 displays the processes to edit a database post.

16 (186)

Delete Database Post

Client Server Database Server File System
Session
Request listing of | . _
posts » Walidate session
Listing of posts |
failad - .
Controller
Translate the
reguest to ..
database quary to Posis
get posts
Listing of posts |
succaded 2
1‘ Session
Specify post to be N :
deleted p» Walidate session
Dredete post falled {
Controller
Translate the
request to e
database query to - Delete post
delete post
Delete post o
succeded ™

Figure 4 displays the processes to create a database post.

17 (186)

View Database Post

Client Server Database Server File System
Cacha
Request 1o view &
diafiiherein e (et database post
View dabase post |
succeded L 4
View dabese post
failed
Controller
Translate the
reguest 1o N
database quary to Post
get post
View dabase post |
succeded
Figure 5 displays the processes when a client requests to view a database post.
Export Schedule into iCalendar format
Client Server Database Server File System
Controller
Translate a
request to get all
the activities in the
Specify schedule _ | specified schedule Schadula
to export as a database information
guery to get posts
with that
information
Controller
Export schedule Transform into
succeded B iCalendar format [

Figure 6 displays the processes to export a schedule into iCalendar format.

18 (186)

Upload File
Client Server Database Server File System
Session
Request 1o upload
e p Walidate session
Upload file failed [
Submit file -+
Controller
Translate the
£ request to o)
*| databasa query to | Save metadata # Uplcad fila
save metadata
Upload file
succaded b

Figure 7 displays the processes when a client requests to upload a file.

19 (186)

Edit Uploaded File

Editing post

Client Server Database Server File System
Session
Rﬁqul BS[;EUI.IIESD[» Validate session
|——' v
Listing of posts Controller
failed
Translate the
regquast to i :
database query to e Metadata
view metadata
Listirg of
uplcaded files |«
succadead
; Session
s"'bm'lg.o{ file to # Validate session
it
: s k4
Edit fike failad Q—I Controller
Get file from file :
system s e
File to be edited |
l Session
Submil edited file » Walidate session
Editing file failed — .
Controller
Translate the
request to < Replace old file
database query to #1 Update metadala wih new file
update metadata

succaded I

Figure 8 displays the processes when a client requests to edit an uploaded file.

20 (186)

Delete Uploaded File

Client Server Database Server File System
Session
Fequest listing of ; :
uploaded flles » ‘Validate session
Listing af fi Y
isting of files
falled Controller
Translate the
RSl Metadata
database query to "
view metadata
Listing of files
succeded fid
J. Session
Specify file 1o ba 2 ’ ’
delatad Validate session
— v
Delete file failed -r Controller
B8 e Tl b Dalate file
Controller
Translale the
reguest to delate A :
metadstia io & » Delete meladata
database query
Dalete fila B
succaded =

21 (186)

Figure 9 displays the processes when a client requests to delete an uploaded file

Create Course Website

Client Server Database Server File System

Session

Request to creata

; Validale session
course website

k4

Create course
website failed

Submit course

description Session
L » Validate session
Add course |
description failed \L
Controller
Walidate data
Session
Add course Save coursa
description 4 description
succeded temporarily
Y Session
Spﬂcm'.r Bchacis » Validate session
to import
—
Controller
Import schedule Validate data
failed
| Session
Save schedule
Import schedule | temporarily
succeded o
L Session
Submit information . .
page ‘Validate session
Add information Controller
page failed
Validate data
Session
Add information | Save information
page succeded | page temporarily

|

Figure 10 displays the processes when a client requests to create website (part 1).

22 (186)

Client Server Database Server File System

¥ Session
Submit deadline # \Validate session
r—_‘ v
Add deadiine Controller
failled
Validate data
Session
Add deadiine | Save deadling
succeded i temporarily
Session
Request summery » Validate session

Digplay summery
failed ¥
Controller

Fy

Translates the
reguest [0 save
the temporarily
saved information, | Saves website
from the session v information
contrals to the
databasze, to
database queries

Create course
website succedead |~

Figure 11 displays the processes when a client requests to create website (part 2).

3 Design Considerations

3.1 Assumptions and Dependencies

The software will be implemented using Java ServerPages (JSP) without the use of
Enterprise Java Beans (EJB). In theory it should be possible to run on any operating
system that supports the Apache Tomcat webserver, however it will only be tested to
work with Apache Tomcat running on Linux. The version of Apache Tomcat that will
be supported is version 6.0.

The system is designed to be used with the MySQL Relational Database
Management System (RDBMS) version 5.0

Users of the system will be running the Mozilla Firefox web browser version 2.0 when
using the system. They will not need any specific training in order to use the system.

23 (186)

3.2 General constraints

One of the more likely bottlenecks of the system will be the database server, since it’s
used to store most of the information in the system it will be queried frequently, which
could cause a high load on the server. To mifigate this the system will cache
information in memory and reduce the amount of queries needed o the database
server

4 Graphical User Interface

4.1 Design of the System

The overall design of the system is described by the figure below, where there are
four major categories; Course Administration, Personal Page, System Administration
and Course Website, which are represented by the rounded shadowed rectangles.
The webpages in each category is represented by rounded rectangles and an
element of a webpage is represented by a rectangle, e.g. “Export into iCalendar
format” is an element of the Schedule webpage.

When accessing the Personal Page and the Course Website the default page is the
News webpage. The default page when accessing the Registration webpage, in the
category Course Administration, is View Registered Students page.

The design of the system has been centered on the so called Personal Page. The
personal page will provide logged in users with access to the features their user
privileges allow, such as viewing ones results if they are a student, or administrating of
course websites if they are a course leader.

24 (186)

A(Add Course Dascripu'nn) 4(Add)
Import Schedule m
Add Information Page Remove

Add Deadlines
[Asslgpmentsj Elreata Coursa Websltaj E‘:oursa Asslslamﬂ Ecnurss Descrlptlnr] [Deadlines [Files]

‘Infom'lation Pages l Mews ' Reqistration [ﬁegisier Results-] [Schedule J
" | Add

dd Unregisier Studanis 4@
l—Qu"ﬁrif'yv Course Rﬁgistratinrj) —.

{Viw Registered Studenlj ' Remave

mpart Schedule

Edit

Remove Remowve

G0

i
1o

0

N

ook
e

Course Administration
Deadlines

o) (&)

Course

User Account
I I I 1
(Edil F'li\rileges) (El:lit F'asswurl:l) (Add) (ﬁemmre)
Uploaded Files
[ﬁgsqnmntsj E\\pply for Cnur«sﬂ E:nurse Deacrlpllnﬂ [Mews j (Deadlines j Information Page ‘ Sehadule l

Export into
HCalendar format

Results

Export into o .
iCalendar format Schedille Personal Pages System Administration

gigp

Course Website

Start

Figure 5 describes the overall design of the system.

25 (186)

4.2 Overview of the User Interface

The graphical user interface (GUI) is divided into three sections:
1. The header (at the top), with the name of the system.

2. To the left, the navigation menu (listing of links). The content of the navigation
menu will depend on the status of the user (whether the user is logged in or not, and
what privileges the user is assigned). The menu available to users when logged in will
remain mostly the same as they navigate to different parts of the system, and they’ll
have quick access to both functions related to the current page they’re af, and at
the same time be able to navigate to other parts of the system. Also, login/logout-
related objects will be placed at the top of the navigation menu.

3. To the right, the main content is displayed. The page displayed in this section wiill
correspond to the part of the system being used by the user.

General notes:
Users who are not logged in will still be able to access their, and others, personal
page. When not logged in the menu items available are more limited, such as that

one can’t view results unless logged in, and they will not “follow” the user as they
navigate to different parts of the system.

26 (186)

4.3 Details of the Graphical User Interface

Menues

Start Page Menu

Username: | |1

Pazsward: | |2

Login |3

Functional Requirements:
1.1

Controls:

1. txtUsername - textfield to get username from user.

2. txtPassword - textfield to get password from user.

3. btnLogin - Button fo start the login procedure by invoking the authenticate
method.

Methods:

authenticate - Validates the provided username/password combination against
what is stored in the database.

Personal Page — Logged Out

Lzername: | |

Pazsward: | |

Functional Requirements:

1.1
22
23
7.4
8.3

Controls:

1. InkCourseNews — Redirects the user to the news overview page.
2. InkSchedule - Redirects the user to the compiled schedule page.
3. InkDeadlines — Redirects the user to the deadlines overview page.
4. InkCourse1 — Redirects the user to the specific course website.

27 (186)

Methods:
None

Personal Page — Logged In

Functional Requirements:

23
7.4
8.3
11.2

Controls:

. InkLogOut - Invokes the logout method.

. InkCourseNews — Redirects the user to the news overview page.

. InkSchedule - Redirects the user to the compiled schedule page.
. InkDeadlines — Redirects the user to the deadlines overview page.
. InkResults — Redirects the user to the results page.

. InkCourse1 — Redirects the user to the specific course website.

. InkCourse2 — Redirects the user to the specific course website.

. InkCourse3d — Redirects the user to the specific course website.

. InkCourse4 — Redirects the user to the specific course website.

NV OONOOTNNWN —

Methods:
Logout — Logs out the user.

28 (186)

Course Website — Logged Out

Lzername: | |

o
o
i

|
3
<]
2
=

Functional Requirements:

1.1
4.2
5.2
6.2
7.3

Controls:

1. InkNews — Redirects the user to the news page for the specific course.

2. InkDescription — Redirects the user to the description page for the specific course.
3. InkSchedule - Redirects the user to the schedule page for the specific course.

4. InkDeadlines — Redirects the user to the deadline page for the specific course.

5. InkAssignments — Redirects the user to the assignment page for the specific course.
6. InkApply — Redirects the user to the apply page for the specific course.

7. InkinformationPage — Redirects the user to a information page for the specific
course.

Methods:
None

29 (186)

Course Website — Logged In

Functional Requirements:

23
4.2
5.2
6.2
7.3
7.4
8.2
9.2
10.2
11.2
12.3

Controls:

1. InkLogOut — Invokes the logout method.

2. InkNews — Redirects the user to the news page for the specific course.

3. InkDescription — Redirects the user to the description page for the specific course.
4. InkSchedule - Redirects the user to the schedule page for the specific course.

5. InkDeadlines — Redirects the user to the deadline page for the specific course.

6. InkAssignments — Redirects the user to the assignment page for the specific course.

30 (186)

7. InkUploadedFiles — Redirects the user to the upload files page for the course.
8. InkApply — Redirects the user to the apply page for the specific course.

9. InkinformationPage — Redirects the user to a information page for the specific
course.

10. InkAlINews — Redirects the user to the news overview page.

11. InkAllSchedule - Redirects the user to the compiled schedule page.

12. InkAlIDeadlines — Redirects the user to the deadlines overview page.

13. InkAlIResults — Redirects the user to the results page.

14. InkCourse 1 — Redirects the user to the specific course website.,

158. InkCourse2 — Redirects the user to the specific course website.,

16. InkCourse3 - Redirects the user to the specific course website,

17. InkCourse4 — Redirects the user to the specific course website.

Methods:
logout — Logs out the user.

31 (186)

Course Administration

Functional Requirements:

23
4.1
4.2
5.1
5.2
6.1
6.2
7.2
7.3
7.4
8.1

32 (186)

8.2
8.3
9.1
9.2
10.1
10.2
11.1
12.1
12.2
12.3
12.4
13.2

Controls:

. InkLogOut - Invokes the logout method.

. InkNews — Redirects the user to the news page for the specific course.

. InkDescription — Redirects the user to the description page for the specific course.

. InkSchedule - Redirects the user to the schedule page for the specific course.

. InkDeadlines — Redirects the user to the deadline page for the specific course.

. InkAssignments — Redirects the user to the assignment page for the specific course.
. InkUploadedFiles — Redirects the user to the upload files page for the course.

. InkApply — Redirects the user to the apply page for the specific course.

. InkinformationPage - Redirects the user to a information page for the specific
course.

10. InkManageAssignment — Redirects the user to the manage assignment page for
the specific course.

11. InkManageCourseAssistant — Redirects the user to the manage course assistant
page for the specific course.

12. InkManageDescription — Redirects the user to the manage description page for
the specific course.

13. InkManageDeadline — Redirects the user to the manage deadlines page for the
specific course.

14. InkManagelnformationPage - Redirects the user tfo the manage information
page for the specific course.

15. InkManagerFile — Redirects the user to the manage file page for the specific
course.

16. InkManageNews — Redirects the user to the manage news page for the specific
course.

17. InkManageRegistration — Redirects the user to the manage registration page for
the specific course.

18. InkManageResults — Redirects the user to the mange results page for the specific
course.

19. InkManageSchedule — Redirects the user to the manage schedule page for the
specific course.

20. InkAllNews — Redirects the user to the news overview page.

21. InkAllSchedule - Redirects the user to the compiled schedule page.

22. InkAllDeadlines — Redirects the user to the deadlines overview page.

23. InkCourse1 — Redirects the user to the specific course website.

OV ONO O~ LN —

Methods:
logout — Logs out the user.

33 (186)

System Administration

Functional Requirements:

13.1
13.3
13.4

Controls:

1. InkLogOut - Invokes the logout method.
2. InkAddCourse — Redirects the user to the add course page.
3. InkAddUser — Redirects the user to the add user page.

Methods:
logout — Logs out the user.

Start Page

Welcome

Welcome to the Course Information Management System. Login to the left.

Functional requirements:
1.1

Controls:
None

Methods:
None

34 (186)

Personal Page

Front Page (News)

Functional Requirements

2.1
22
23

Controls
None

Methods
printfCompiledNews — Prints compiled news from all courses the student is enrolled in.

35 (186)

Deadlines

Functional Requirements

22
8.3

Controls
None

Methods

printOverviewDeadlines — Prints all relevant deadlines from all the courses the student
is enrolled in.

36 (186)

Results

Functional Requirements

22
11.2

Controls
None

Methods

printResults — Prints all results assigned to the course assignments from all the courses
the student is enrolled in.

Schedule

Functional Requirements

22
7.4

37 (186)

7.5

Controls
1. InkExportSchedule — Invokes the method exportCompiledSchedule.

Methods

prinfCompiledSchedule - Prints the compiled schedule where activities, from all
courses the student is enrolled in, are included.
exportCompiledSchedule - Exports the compiled schedule into iCalendar format.

Course Website

Front Page (News)

Functional Requirements
5.2

Controls
None

Methods
printNews — Prints all news for the course.

38 (186)

Assignments

Functional Requirements
10.2

Controls
None

Methods
printfCourseAssignments — Prints all assignments from the course in question.

Apply for Course

Functional Requirements
12.3

Controls
1. Apply - Bufton to confirm applying to a course.

Methods

applyForCourse — Updates the student’s status for the course in question to reflect
the student applying for the course.

39 (186)

Apply Confirmation

To the Course Wehsite

Functional Requirements
12.3

Controls
1. btnCourseWelbsite — Redirects the user to the course welbsite.

Methods
None

Deadlines

Functional Requirements
8.2

Controls
None

Methods
printDeadlines — Prints all the current deadlines for the course in question.

40 (186)

Course Description

Functional Requirements
4.2

Controls
None

Methods
printfCourseDescription — Prints the description of the course

Files

Functional Requirements
9.2

Controls
1-6. InkFile T-InkFile6 — Invokes the viewFile method.

Methods

viewFile — Gives a view of the selected file.
printFile — Prints the selected file.

41 (186)

saverFile — Saves the selected file to a specified directory.

Information Pages

Functional Requirements
6.2

Controls
None

Methods
printfinformationPage - prints the information for the course.

Results

Functional Requirements
11.2

Controls
None

Methods

printCourseResults — Prints all results assigned to the course assignments from the
course in question.

42 (186)

Schedule

Functional Requirements

7.3
7.5

Controls
1. InkExportSchedule- Invokes the printCourseSchedule method.

Methods

printCourseSchedule - Prints the schedule where activities, from the specific course
the

student selected.

printSchedule - Prints the schedule for the course.

43 (186)

Course Administration Pages

Scheduled Activities

L]
o _anuary L2 -? E-DD .:
[o1] [senery][2007]

Presview: |]

Remave

Functional Requirements

7.1
7.2

Controls

1. tIxtActivityTitle — The title of the activity.

2. drpBeginDay - The day the activity starts.

3. drpBeginMonth — The month the activity starts.
4. drpBeginYear — The year the activity starts.

5. drpBeginHour — The hour the activity starts.

6. drpBeginMinute — The minute the activity starts.
7. drpEndDay - The day the activity ends.

8. drpEndMonth — The month the activity ends.

44 (186)

9. drpEndYear - The year the activity ends.

10. drpEndHour - The hour the activity ends.

11. drpEndMinute — The minute the activity ends.

12. txtActivityDescription — The description of the activity.

13. btnPreviewActivity — Shows a preview of the activity with provided information.

14. txtiCalFileLoc - The location of the iCal file.

156. btnBrowserFiles — A graphic alternative to control 14 which lets the user navigate
through local files.

16. btnimportSchedule - Invokes the method importSchedule.

17-21. InkEditActivity 1 - InkEditActivityd — Invokes the editActivity method.

22-26. InkRemoveActivityl - InkRemoveActivityd - Invokes the removeActivity
method.

Methods

importSchedule — Uploads the provided iCal schedule to the file system.

editActivity — Retrieves the data for the specified activity and allows the user to edit
that data.

removeActivity — Removes the specified activity.

Add Activity Preview

Title: Lecture, D

Begin: 1500, 12t December, 2007

End: 17.00, 13t December, 2007

Description:

1 2

Functional Requirements
7.2

Controls

1. btnBack — Returns the user to the previous page.
2. btnAddActivity - Invokes the method addActivity.

Methods
addActivity — Adds the activity with the provided information to the database.

45 (186)

Add Activity Confirmation

Add Anather Activity

Functional Requirements
7.2

Controls
1. binAddActivity — Redirects the user to the add activity page.

Methods
None

Edit Activity

Edit Activity

Title: |Leu:1ure, E1 | 1

Begin: | 0z M“ December _[1]” 2007 M” 10 M” 0o Ji“
2 3 ar] L&

End: 02 |% ||| December |+ ||| 2007 | M\M

Description: 12

[Fevev] 13

Functional Requirements
7.2

Controls

. IxtActivityTitle — The ftitle of the activity.

. drpBeginDay - The day the activity starts.

. drpBeginMonth - The month the activity starts.
. drpBeginYear — The year the activity starts.

. drpBeginHour — The hour the activity starts.

. drpBeginMinute — The minute the activity starts.
. drpEndDay - The day the activity ends.

. drpEndMonth — The month the activity ends.

. drpEndYear - The year the activity ends.

VoONOODNLN —

46 (186)

10. drpEndHour — The hour the activity ends.

11. drpEndMinute — The minute the activity ends.

12. txtActivityDescription — The description of the activity.

13. btnPreviewEditedActivity — Shows a preview of the edited activity.

Methods
None

Edit Activity Preview

Functional Requirements
7.2

Controls

1. btnBack - Returns the user to the previous page
2. btnEditActivity — Invokes the method editActivity.

Methods
editActivity — Updates the activity in the database, with the information provided.

Activity Edited Confirmation

Edit Ancother Activity

Functional Requirements
7.2

Controls
1. btnEditAnotherActivity — Redirects the user to the Sheduled activities page.

Methods
None

47 (186)

Confirm Removal of Activity

Functional Requirements
7.2

Controls
1. btnConfirmActivityRemoval - Invokes removeActivity.

Methods
removeActivity — Removes the scheduled activity from the database.

Activity Removed Confirmation

Remove Ancther Activity

Functional Requirements
7.2

Controls
btnRemoveAnotherActivity — Redirects the user to the Scheduled activities page.

Methods
None

Imported Schedule Confirmation

Impart Another Schedule

Functional Requirements
7.1

48 (186)

Controls
1. btnimportAnotherSchedule — Redirects the user to the Scheduled activities page.

Methods
None

Confirm Remove Schedule

Functional Requirements
7.1

Controls
1. btinConfirmRemoveSchedule — Confirms that the schedule should be removed.

Methods
None

Remove Schedule Confirmation

Administrate the Schedule

Functional Requirements
7.1

Controls
1. btinAdministrateSchedule — Redirects the user to the schedule page.

Methods
None

49 (186)

Assignments

Add Assignment

Title: | |1

Description: 2

3
Edit Existing Assignment

Title

Functional Requirements
10.1

Controls

1. txtAddAssignmentTitle — The title of the new assignment.

2. txtAddAssignmentDescription — A text that describing the new assignment.

3. btnPreviewAddAssignment — Invokes the displayAddAssignment method.

4-5. InkEditAssignment] - InkEditAssignment2 — Invokes the editAssignment method.
6-7. InkRemveAssignment1 - InkRemoveAssignment2 — Invokes the removeAssignment
method.

Methods

displayAddAssignment - Validates the input and displays a preview of the new
assignment.

editAssignment — Retrieves the data for the specified assignment and allows the user
to edit the data.

removeAssignment — Deletes the specified assignment from the database.

50 (186)

Add Assignment Preview

1 [Back][sae] 2
Functional Requirements
10.1
Controls

1. btnBackAddAssignment - Redirect the user to the previous page (Add
Assignment) and allows the user to edit the input.
2. btnSaveAddAssignment — Invokes the method addAssignment.

Methods
addAssignment — Saves the new assignment.

Add Assignment Confirmation

Add Anather Assignment

Functional Requirements
10.1

Controls
1. bInAddAssignment — Redirects the user to the add assignment page.

Methods
None

51 (186)

Edit Assignment

Edit Assignment

Title: [poD | 1

Description: (The purpoze of the POD iz to give an introductory overview of the A 2
project. After reading this fairly brief document, the reader should |
have an ides of:

1. Who are the users and what problem does the system solve
faor them?

2. The main uses of the system.
3. The context/environment in which the system is to be used.
4. The zcope of the system.

3. The main factors that need to be taken in to sccount when
designing and building the system.

E. Technologies and Risks

It should be between 3 and 5 pages in length snd contain &
=sections carresponding tothe B points listed above.

In Section 2, you must include st least 2 usage narratives in

acdition to & general description of the main uses of the system. A
uzage narrative iz a stusted example of the use of the system. |t

i= a brief paragraph in which you invent a fictional but specific

actor and briefly capture the mental stete of that person &€° whry

he warts what he wants or what conditions drive him to act as he
does. Capture hosy the world works inthat particular case, from

the start of the situstion tothe end. These narratives should give

the: reader & good general idea of whst the system is about. Here

iz an example of a uzage narrative for the famous Sutomated Teller | |

[Foen] 3

Functional Requirements
10.1

Controls

1. IxtEditAssignmentTitle — The fitle of the new assignment.
2. tIxtEditAssignmentDescription — A text that describing the new assignment.
3. btnPreviewEditAssignment — Invokes the displayEditAssignment method.

Methods

displayEditAssignment - Validates the input and displays a preview of the edited
assignment.

52 (186)

Edit Assignment Preview

1 [Bock][seve] 2

Functional Requirements
10.1

Controls

1. btnBackEditAssignment — Redirect the user to the previous page (Edit Assignment)
and allows the user to edit the input.
2. btnSaveEditAssignment — Invokes the method saveEditAssignment.

Methods
saveEditAssignment — Saves the edited assignment.

Edit Assignment Confirmation

Edit Ancther Assignment

Functional Requirements
10.1

Controls
1. binEditAssignment — Redirects the user to the assignment page.

Methods
None

53 (186)

Confirm Remove Assignment

Functional Requirements
10.1

Controls

1. btnConfirmRemoveAssignment - Confirms that the selected assignment should be
removed.

Methods
None

Remove Assignment Confirmation

Remowve Another Assignment

Functional Requirements
10.1

Controls
1. btnRemoveAssignment — Redirects the user to the assignment page.

Methods
None

54 (186)

Course Assistants

Functional Requirements
13.2

Controls

1. txtUsername - Username of the user to add.

2. btnAddCourseAssistant — Invokes the checkUser method.

3. InkRemoveCourseAssistantT - InkRemoveCourseAssistant2 - Invokes the
removeCourseAssistant method.

Methods

checkUser — Determines whether the user account exists or not, if the user account
exist it redirects the user to the confirmation page.
removeCourseAssistant — Removes the specified course assistant.

Confirm Add Course Assistant

Functional Requirements
13.2

Controls
1. btnConfirmCourseAssistant — Invokes the addCourseAssistant method.

Methods
addCourseAssistant — Adds a new course assistant for the course.

55 (186)

Add Course Assistant Confirmation

Add Ancther Course Assistant

Functional Requirements
13.2

Controls

1. binAddAnotherCourseAssistant — Redirects the user fo the add course assistant
page.

Methods
None

Confirm Remove Course Assistant

Functional Requirements
13.2

Controls
1. btnConfirmRemoveCourseAssistant — Invokes the removeCourseAssistant method.

Methods
removeCourseAssistant — Removes a course assistant from the course.

Remove Course Assistant Confirmation

Remove Another Course Assistant

56 (186)

Functional Requirements
13.2

Controls

1. bthRemoveAnotherCourseAssistant — Redirects the user to the remove course
assistant page.

Methods
None

Edit Course Description

Edit Course Description

Course Hame: [Softwars Enginssring |1

Credits: 2
Begins in Period: 3 4
Ends in Period: 5 B

Description: <P=Second course in computer science giving theoretical a7
knowyledge and practical experience of working in & program
developmernt project =/Pe=<f=<hd=-Goals=hd==P=-After attending
thiz course, the studert is expected to be able

Lo =/F==P==/P==lL=<LI=describe 5 broad range of software
engineeting technigques, processes and methodologies that have
been developed over the past 30 years 2iLl=<Ll=perform
requirements analysis and formulstion, system architecture and
design, system implementation, and system

tlesting, </LI==LI=evaluate the applicakilty of a particular software
engineering technigque, process or methodology to a given project
from both & technical and financial perspective =lL=<Ll=-uze a
variety of tools (hoth commercial and academic) that can be used
to design and implement software systems <lL=<Li=evaluate
whether a specific software engineering tool is technically and
economically viskle for a given project =/Lk==Ll=find informsation in
the main sources of information regarding software engineering
technology =/LI==Ll=he effective in both oral and written technical
communication =Ll==LI=in order to be able tozLl=<Li=wark in
inclustrial zoftware developmert projects =iLl==LI=keep up with
and abzorh developments in software

engineering. =/Ll==UL==hd4=Contert=hd==P=Theory: Systematic
principles for construction of correct and robust programs, life
cycle models, PSS standard, software reguirements, user
requirements, architectural design specification, Capability Maturity
Wlodel (Chibd), extreme programming, organization of wark in group,
group dynamics, experience from industry, testing, design
patterns. Documentstion. =/P==P=Presentation of project ideas,
assignment of projects. Constructing documents concerning the
assigned project: documents on project planning, user st
£ | 3

Enfk

Functional Requirements
4.1

Controls

1. txtCourseName - The name of the course.

2. txtCourseCredit — The credit of the course.

3. drpCourseBeginYear — The year that the course starts.

4. drpCourseBeginPeriod — The period that the course starts..

57 (186)

5. drpCourseEndYear - The year that the course ends.

6. drpCourseEndPeriod - The period that the course ends.

7. txtCourseDescription — The descriptions of the course.

8. btnSaveCourseDescription — Invokes the saveCourseDescription method.

Methods
saveCourseDescription — Saves the changes to the course description.

Edit Course Description Confirmation

Edit Course Descrigption

Functional Requirements
4.1

Controls
1. binEditCourseDescription — Redirects the user to the edit course description page.

Methods
None

58 (186)

Create Course Website — Create Description

Course Description

Course Hame: | | 1

Credits: |:| 2
Begins in Perim:l:3 4
Ends in Period: 5 5

Description: 7

[comne] 8

Functional Requirements

3.1
4.1

Controls

. IxtCourseName - The name of the course.

. IxtCourseCredit — The credit of the course.

. drpCourseBeginYear — The year that the course starts.

. drpCourseBeginPeriod — The period that the course starts..

. drpCourseEndYear — The year that the course ends.

. drpCourseEndPeriod - The period that the course ends.

. txtCourseDescription — The descriptions of the course.

. btnSaveCourseDescription — Invokes the saveCourseDescription method.

ONOOTDNLN —

Methods

btnContinueToSchedule — Saves the course description and continues to the next
step in the creation guide (Import Schedule).

59 (186)

Create Course Website — Import Schedule

Import Schedule

iCaIendarﬁIe:ll | Browse.. | 2
3 (st o] &

Functional Requirements

3.1

7.1

Controls

1. txtScheduleDirectory — The directory of the schedule in iCalendar format.

2. btnBrowseSchedule - Selects the schedule the user selects to import.

3. btnSkipSchedule - Redirects the user to the next step in the creation guide (Add
information Page).

4. btnlmportSchedule - Invokes the importSchedule method.

Methods

importSchedule - Validates the input, generates a schedule that can be viewed
through the system and saves it.

Create Course Website — Import Schedule Confirmation

Functional Requirements

3.1
7.1

Controls
1. btnContinueToAddInformationPage - Redirects the user to the add information
page.

Methods
None

60 (186)

Create Course Website —Add Information Pages

Add Information Page

Title: | | 1

Content: 2

3 (S0 [reven] 4

Functional Requirements

3.1
6.1

Controls

1. tIxtinformationPageTitle — The title of the information page.

2. txtinformationPageContent — The content of the information page.

3. btnSkipInformationPage — Redirects the user to the next step (Add Deadlines) in
the creation guide.

4. btnPreviewlnformationPage - Invokes the displayAddinformationPage method.

Methods

displayAddIinformationPage - Validates the input and displays a preview of the new
information page.

61 (186)

Create Course Website — Add Information Pages Preview

Functional Requirements

3.1
6.1

Controls

1. btnBackAddInformationPage - Redirect the user to the previous page (Add
Information Page) and allows the user to edit the input.
2. btnSaveAddIinformationPage - Invokes the method addinformationPage.

Methods
addinformationPage - Saves the information page.

Create Course Website — Add Information Pages Confirmation

Functional Requirements

3.1
6.1

Controls

1. btnContinueToAddDeadlines — Redirects the user to the next step (Add Deadlines)
in the creation guide.

62 (186)

Methods
None

Create Course Website — Add Deadlines

Add Deadline

Title: | |1
Time: 01 [w|| January [s || 2008 [+ || 0o MIMI
Description: 2 3 4 2 . 7

8 5][rrevee] 5

Functional Requirements

3.1
8.1

Controls

. IxtTitleAddDeadline - The title of the new deadline.

. drpDateDay - The day part of the date the deadline is for.

. drpDateMonth — The month part of the date the deadline is for.

. drpDateYear - The year part of the date the deadline is for.

. drpTimeMinutes — The minutes part of the fime the deadline is for.
. drpTimeHour — The hour part of the time the deadline is for.

. IxtDescriptionAddDeadline — A text describing the new deadline.
. btnPreviewDeadline — Invokes the displayAddDeadline method.

ONOODNOLN —

Methods
displayAddDeadline- Validates input and displays a preview of the new deadline.

Create Course Website — Add Deadlines Preview

1 2
Functional Requirements
3.1
8.1

63 (186)

Controls

1. btnBackAddDeadline - Redirect the user to the previous page (Add Deadline)
and allows the user to edit the input.
2. btnSaveAddDeadline - Invokes the method addDeadline.

Methods
addDeadline - Saves the deadline.

Create Course Website — Add Deadlines Confirmation

Functional Requirements

3.1
8.1

Controls
1. btnContinueToCreationGuidePreview - Invokes displayCreationGuide

Methods

displayCreationGuide - Displays a summary of the objects created by the user
throughout the creation guide.

64 (186)

Create Course Website Summary

Create Course Wiehsite | 2

Functional Requirements

3.1
8.1

Controls

1. btnBackCreationGuide - Redirect the user to the add deadline page and allows
the user to edit the input.
2. btnCreateCourseWebsite — Invokes the createCourseWelbsite method.

Methods
createCourseWebsite — Creates the course welbsite.

Create Course Website Confirmation

To the Course Wehsite

Functional Requirements
3.1

65 (186)

Controls
1. btinCourseWelbsite — Redirects the user to the new course welbsite.

Methods
None

Deadlines

Add Deadline

Title:

| 1
Time: Eﬂzﬂ January [i] 2005 [l”_ﬂgﬁnﬂ:éﬂ

Description: 7

s
Edit Existing Deadline

Title Time

Functional Requirements
8.1

Controls

1. txtTitle — The title of the new deadline.

2. drpDateDay - The day part of the date the deadline is for.

3. drpDateMonth — The month part of the date the deadline is for.

4. drpDateYear - The year part of the date the deadline is for.

5. drpTimeMinutes — The minutes part of the time the deadline is for.

6. drpTimeHour — The hour part of the time the deadline is for.

7. txtDescription — A text describing the new deadline.

8. btnPreviewDeadline - Shows a preview of the deadline with the provided
content..

@-11 InkEditDeadline - InkEditDeadline3 - Invokes the editDeadline method.

12-14. InkRemoveDeadlinel - InkRemoveDeadline3 - Invokes the removeDeadline
method.

Methods

editDeadline — Retrieves the data for the specified deadline and allows the user to
edit that data.
removeDeadline — Removes the specified deadline.

66 (186)

Add Deadline Preview

e |[sme]:

Functional Requirements
8.1

Controls

1. btnBackAddDeadline — Redirect the user to the previous page (Add Deadline)
and allows the user to edit the input.
2. btnSaveAddDeadline — Invokes the method addDeadline.

Methods
addDeadline — Saves the new deadline.

Add Deadline Confirmation

Acdd Another Deadline

Functional Requirements
8.1

Controls
1. btnAddDeadline - Redirects the user to the add deadline page.

Methods
None

67 (186)

Edit Deadlines
Course Admiisiraor /Deacines /Ed Exising Descline /Edi Deadine

Edit Deadline

Title: |Use Cazes | 1

Time: [0 [w | Movemser [s]]| 2007 [w]][18 [w]|[00 [v]
2z 3 ES 5 [

Description: (This iz a very time consuming assigment. E

8
Functional Requirements

8.1

Controls

1. txtTitle — The title of the new deadline.

2. drpDateDay - The day part of the date the deadline is for.

3. drpDateMonth — The month part of the date the deadline is for.

4. drpDateYear - The year part of the date the deadline is for.

5. drpTimeMinutes — The minutes part of the time the deadline is for.

6. drpTimeHour — The hour part of the time the deadline is for.

7. IxtDescription — A text describing the new deadline.

8. btnPreviewDeadline — Shows a preview of the deadline with the provided content.

Methods
None

Edit Deadline Preview

1 2
Functional Requirements
8.1
Controls

1. btnBackEditDeadline — Redirect the user to the previous page (Edit Deadline) and
allows the user to edif the input.
2. btnSaveEditAssignment — Invokes the method saveEditDeadline.

68 (186)

Methods
saveEkditDeadline — Saves the edited deadline.

Edit Deadline Confirmation

Edt Anather Deadling

Functional Requirements
8.1

Controls
1. btnEditAnotherDeadline — Redirects the user 1o the list of existing deadlines.

Methods
None

Confirm Deadline Removal

Functional Requirements
8.1

Controls
1.btnConfirm - Confirms that the selected deadline should be removed.

Methods
None

Deadline Removal Confirmation

Remave ¬her Deadline

69 (186)

Functional Requirements
8.1

Controls
1. btnDeleteAnotherDeadline — Redirects the user to the list of existing deadlines.

Methods
None

Information Pages

Presvigsn

Functional Requirements
6.1

Controls

1. tIxtinfoPagetTitle — The fitle of the information page.

2. ixtinfoPageContent — The content of the information page.

3. btnPreviewlnfoPage — Shows a preview of the information page with the provided
content.

4. InkEditinfoPage - Invokes the editinfoPage method.

70 (186)

5. InkRemovelnfoPage - Invokes the removelnfoPage method.

Methods

editfinfoPage — Refrieves the data for the specified information page and allows the
user to edit the data.
removelnfoPage — Removes the specified information page.

Add Information Page Preview

Functional Requirements
6.1

Controls

1. btnBack — Returns the user to the previous page.
2. btinAddinfoPage - Invokes the method addinfoPage.

Methods
addinfoPage — Adds the information page to the database.

Add Information Page Confirmation

Aded Ancther Information Page

Functional Requirements
6.1

71 (186)

Controls
1. binAddInformationPage — Redirects the user to the add information page.

Methods
None

Edit Information Page

Edit Information Page

Title: |Special Information for Extl 1

Content: [y jg="preadcrumbs"==a href="#"=Software Engineering=/a= | 2

Special Information for Exchange Students<idive
=1 =Special Information for Exchange Students=h1=

Exchange students nesd to go to the support office to get their user
accounts as s00n as possible! Belowy is a long list of things that need
to be done to during the course if you cant get & user account.

=ul=
=li=Lang=ii=
=li=lizt=di=
=li=of=Mi=
=li=long=i=
=li=things <M=
=li=to=Ji=
=li=do=Mi=

=iLl=

[Fevon] 3

Functional Requirements
6.1

Controls

1. txtinfoPageTitle — The title of the information page.

2. IxtinfoPageContent — The content of the information page.

3. btnPreviewInfoPage — Shows a preview of the information page with the provided
content.

Methods
None

72 (186)

Edit Existing Information Page Preview

Beck [seve |

Functional Requirements
6.1

Controls

1. btnBack — Returns the user to the previous page.
2. binEditinfoPage - Invokes the method editinfoPage.

Methods

editinfoPage - Updates the information page in the database, with the provided
information.

Information Page Edited Confirmation

Edit Anather Infarmation Page

Functional Requirements
6.1

Controls
1. binEditAnotherinfoPage — Redirects the user to the “Information pages” page.

Methods
None

73 (186)

Confirm Removal of Information Page

Functional Requirements
6.1

Controls
1. btinConfirminfoPageRemoval — Invokes the method removelnfoPage.

Methods
removelnfoPage — Removes the information page in question from the database.

Information Page Removed Confirmation

Remove Another Informstion Page

Functional Requirements
6.1

Controls
1. btnRemoveAnotherinfoPage — Redirects the user to the “Information pages” page.

Methods
None

74 (186)

News

Presview:

Functional Requirements
5.1

Controls

1. txtNewsHeadline — The headline of the news post.

2. txtNewsContent — The content of the news post.

3. btnPreviewAddNews - Shows a preview of the activity, with the provided
information.

4-6. InkEditNews]1 - InkEditNews3 — Invokes the editNews method.

7-8. InkRemoveNews|1 - InkRemoveNews3 - Invokes the removeNews method.

Methods

editNews — Retrieves the data for the specified news and allows the user to edit the
data.
removeNews — Removes the specified news.

75 (186)

Add News Preview

Functional Requirements
5.1

Controls

1. btnBack — Returns the user to the previous page.
2. btinAddNews — Invokes the method addNews.

Methods
addNews — Adds the news post to the database.

Add News Confirmation

Add Another Mews

Functional Requirements
5.1

Controls
1. btnAddNews — Redirects the user to the add news page.

Methods
None

76 (186)

Edit News

Edit News
Headline: |new lecture scheduled | 1
Content: [The lecture has been scheduled! | am heatthy. 2

3
Functional Requirements
5.1
Controls

1. txtNewsHeadline — The headline of the news post.

2. txtNewsContent — The content of the news post.

3. btnPreviewEditNews - Shows a preview of the updated news post, with the
provided information.

Methods
None

Edit Existing News Preview

1 2

Functional Requirements
5.1

Controls

1. btnBack — Returns the user to the previous page.
2. btnEditNews — Invokes the method editNews.

Methods
editNews — Updates the news post in the database, with the information provided.

77 (186)

News Edited Confirmation

Edit Ancther Mew:s

Functional Requirements
5.1

Controls

1. btnEditAnotherNews - Redirects the user to the news management page for
system administrators.

Methods
None

Confirm Removal of News

Functional Requirements
5.1

Controls
1. btnConfirmNewsRemoval — Invokes the method removeNews.

Methods
removeNews — Removes the news post in question from the database.

News Removed Confirmation

Remove Anather Mews

78 (186)

Functional Requirements
5.1

Controls

1. btnRemoveAnotherNews — Redirects the user to the news management page for
system administrators.

Methods
None

Registrations

Zelect All || Verify the Selected Lzers

Functional requirements
12.1
12.2
12.4

Controls

1. chkX_1 - Checkbox to select user1 (Olle Johansson) for verification.

2. chkX_2 — Checkbox to select userd (Johan Olofsson) for verification.

3. btnSelectAll - Checks all the checkboxes.

4. btnVerifySelected - Invokes the method verifyRegistrations.

5-6. InkRemoveStudent] - InkRemoveStudent2 — Invokes the removeStudent method.

Methods

verifyRegistrations — Updates the status for the selected students.
removeStudent — Removes the student from the specified course.

Verified Registrations Confirmation

“erify Another Student

79 (186)

Functional requirements
12.2

Controls
1. btnVerifyAnotherStudent — Redirects the user to the Registrations page.

Methods
None

Confirm Removal of Student Registration

Functional requirements
12.4

Controls
1. btnConfirmRegistrationRemoval — Invokes the method removeStudentReg.

Methods

removeStudentReg - Removes the student registration in question from the
database.

Student Registration Removed Confirmation

Functional requirements
12.4

Controls
1. btnRemoveAnotherStudent — Redirects the user to the Registrations page.

Methods
None

80 (186)

Register Results

Bl =
||

Functional requirements
11.1

Controls

1. txtGrade_UserAssign_1_1 — The grade of the first assignment (POD) for the first
student.

2. txtGrade_UserAssign_1_2 — The grade of the second assignment (Use Cases) for the
first student.

3. IxtGrade_UserAssign_2_1 — The grade of the first assignment (POD) for the second
student.

4. txtGrade_UserAssign_2_2 — The grade of the second assignment (Use Cases) for the
second student.

5. btnSaveRes - Invokes the method saveResults.

Methods
saveResults — Updates the results in the database.

Results Registered Confirmation

Regizter More Resufts

Functional requirements
11.1

Controls
1. btnRegisterMoreResults — Redirects the user to the Register results page.

Methods
None

81 (186)

Files

Title: |

Description: |

[Browse...]4

Functional Requirements
9.1

Controls

1. txtAddFileTitle — The title of the file.

2. txtAddFileDescription — The description of the file.

3. txtAddFileSource - The directory of the file.

4. binSelectAddFile — Selects the file the user specified for upload.

5. btnSave AddFile — Invokes the uploadAddFile method.

6-11. InkEditFile 1 - InkEditFile6 — Invokes the editFile method.

12-17. InkRemoveFile1 - InkRemoverFile6 — Invokes the removeFile method.

Methods

uploadAddFile — Uploads the file and saves the title and description.
editFile — Retrieves the data for the specified file and allows the user to edit the data.
emoverFile — Removes the file.

Add File Confirmation

Add Ancther File

82 (186)

Functional Requirements
9.1

Controls
1. binAddFile — Redirects the user to the add files page.

Methods
None

Edit File

Edit File

Title: [Porwverpairt from Lecturs | 1

Description: |The PowerPoint slides from the second lecture. 2

File: 3 I Browse... | 4
s

Functional Requirements
9.1

Controls

1. txtEditFileTitle — The new fitle of the file.
2. txtEditFileDescription — The new description of the file.

3. txtEditFileSource - The directory of the new file, if the user wants a new file.
4. btnSelectEditFlle — Selects the new file the user specified for upload.

5. btnSavektditFile — Invokes the uploadAddFile method.
Methods

uploadEditFile — Uploads the new file, if specified, and saves the changes.

Edit File Confirmation

Edit &nather File

Functional Requirements
9.1

83 (186)

Controls
1. btnEditFile — Redirects the user to the add files page.

Methods
None

Confirm Remove File

Functional Requirements
9.1

Controls
1. btnConfirmRemoverFile — Confirm that the selected file should be removed.

Methods
None

Remove File Confirmation

Remove Another File

Functional Requirements
9.1

Controls
1. btnRemoverile - Redirects the user to the add files page.

Methods
None

84 (186)

System Administration Pages

Courses
Add Course
Course Code: | | 1
2
Edit Existing Course
Course Code: | | 3
4
Functional Requirements
13.3
Controls

1. txtCourseCode - Course code for the course to be added.
2. btinAddCourse - Invokes the addCourse method.

3. txtCourseCode - Course code for the course to edit.

4. btnSearchCourse - Invokes the searchCourse method.

Methods

addCourse - Adds the course with the given course code to the system.
searchCourse — Searches for the course with the given course code.

Course Added Confirmation

Agsign Course Leader
Add Ancther Course

Functional Requirements
13.3

Controls

1. btnAssignCourseLeader — Redirects the user to the user privileges page for courses.
2. btnAddAnotherCourse — Redirects the user o the course management page for
system administrators.

Methods
None

85 (186)

Existing Courses List

Functional Requirements
13.3

Controls
1-3. InkEditCourse1 - InkEditCourse3 — Invokes the editCourse method.

Methods

editCourse — Retrieves the data for the specified course and allows the user to edit
the data.

Edit Existing Course

Course: Softvware Engineeting

Course Leader: Mo Thing

Course Code: D01 363 |

Save

Functional Requirements
13.3

Controls

1. txtCourseCode - The new desired course code for the course.
2. btnSaveCourseCode - Invokes the method setCourseCode.

Methods
setCourseCode - Saves the given course code to the database.

Course Edited Confirmation

Edlit Anather Course

86 (186)

Functional Requirements
13.3

Controls

1. btnEditAnotherCourse — Redirects to the course management page for system
administrators.

Methods
None

Users

Functional Requirements
13.4

Controls

1. txtUsername — Username of the user to add.

2. txtPassword - Password of the user to add.

3. btnAdd - Invokes the addUser method.

4. txtSearchString — Search string used for finding a user.
5. btnSearch - Invokes the findUser method.

Methods

addUser — Adds a new user using the provided username and password
findUser — Atftempts to find a user using the given search string.

Add User Confirmation

Assign Privileges to User

Add Another User

87 (186)

Functional Requirements
13.4

Controls

btnAssignUserPrivileges — Redirects the user to the edit user privileges page.
btnAddAnotherUser — Redirects the user to the add user page.

Methods
None

Existing Users

The following users matched your search...

User Firstname Lastname

Functional Requirements

13.1
13.4

Controls

1-3. InkEditPrivileges1 - InkEditPrivileges3 — Invokes the editPrivileges method.
4-6. InkEditPassword]1 - InkEditPassword3 — Invokes the editPassword method.
7-9. InkRemoveUser1 - InkRemoveUser3 — Invokes the removeUser method.

Methods

editPrivileges - Let the user edit the specified users privileges.
editPassword - Let the user edit the specified users password.
removeUser — Let the user remove the specified user.

Edit Password

Edit User Password

User: userd
First name: Clle

Last name: Anderszon

Password: [=sassss | 1
2
Functional Requirements
13.4
Controls

1. txtPassword — The new password for the user.

88 (186)

2. btnSavePassword - Invokes the savePassword method.

Methods
savePassword — Saves the new password for the user in the database.

Edit Password Confirmation

Edit Anather User

Functional Requirements
13.4

Controls
1. btnEditAnotherUser — Redirects the user to the existing users page.

Methods
None

Edit User Privileges

Edit User Privileges

User: uzer
First name: Qlle

Last name: Ancerssan
Course Leader: | [
Course Assistant: [=

System Administrator: [~ 3

[soe] 4

Functional Requirements
13.1

Controls

1. chkCourseLeader - Indicates whether the user should have course leader

privileges.

2. chkCourseAssistant — Indicates whether the user should have course assistant

privileges.

3. chkSystemAdministrator - Indicates whether the user should have system

administrator privileges.
4. btnSavePrivileges - Invokes the checkPrivileges method.

89 (186)

Methods

checkPrivileges — Determines whether more input is required to assign the selected
privileges (happens if course leader or assistant has been selected), if not sends the
user to the ask for confirmation screen.

Edit User Privileges — Course Privileges — Find Course
e e N

Edit User Privileges

For which course would you like to grant userd the course leader privilege?

Course Code: | 1
2
Functional Requirements
13.1
Controls

1. txtCourseCode - Course code of the course for which to give the user privileges.
2. btnSearch - invokes the findCourse method.

Methods
findCourse — Attempts to find courses matching the given course code.

Edit User Privileges — Course Privileges — Select Course

The following courses matched your search...

Course Code Course

Functional Requirements
13.1

Controls
1-3. InkSelectCoursel - InkSelectCoursed — Invokes the editPrivileges method.

Methods
editPrivileges — Adds the specified course to the specified users privileges.

90 (186)

Confirm Edit User Privileges

Functional Requirements
13.1

Controls
1. btnConfirmPrivileges - Invokes the savePrivileges method.

Methods
savePrivileges — Saves the new privileges in the database.

Edit User Privileges Confirmation

Edit &Anather Lizer

Functional Requirements
13.1

Controls
1. binEditAnotherUser — Redirects the user to the existing users page.

Methods
None

Confirm User Removal

91 (186)

Functional Requirements
13.4

Controls
1. btnConfirm - Invokes the removeUser method.

Methods
removelUser — Removes the user and sends the user a confirmation.

User Removal Confirmation

Remowve Another User

Functional Requirements
13.4

Controls
1. btnRemoveAnotherUser — Redirects the user to the existing users page.

Methods
None

5. Design Details

5.1 Class Responsibility Collaborator (CRC) Cards

Activity

Responsibilities Collaborators
Knows course it belongs to ActivityController
Knows title

Knows description
Knows start day
Knows start month
Knows start year
Knows start hour
Knows start minute
Knows end day
Knows end month
Knows end year
Knows end hour
Knows end minute

92 (186)

| Validate data

ActivityController

Responsibilities

Collaborators

Add activity

Remove activity

Update activity

Fetching an activity from the database

Activity

Assignment

Responsibilities

Collaborators

Knows course it belongs to
Knows title

Knows description

Knows deadline

Validate data

AssignmentController

AssignmentController

Responsibilities

Collaborators

Add assignment

Remove assignment

Update assignment

Fetching an assignment from the
database

Assignment

BaseObject

Responsibilities

Collaborators

Defines common methods for all business
objects

BaseController

Responsibilities

Collaborators

Defines common methods for all
controllers

93 (186)

Cache

Responsibilities

Collaborators

Cache object (save to primary memory)

Retrieve cached object
Check if valid cache exists
Manage cache item timeout

Course

Responsibilities

Collaborators

Knows course name
Knows course code
Knows news

Knows deadlines

Knows results

Knows assignment

Knows information pages
Knows users

Knows files

Validate data

CourseController

CourseController

Responsibilities

Collaborators

Add course

Update course description

Register a user for a course

Unregister a user from a course

Apply a user for a course

Fetching a course from the daftabase

Course
User

Deadline

Responsibilities

Collaborators

Knows course it belongs to
Knows title

Knows description

Knows day

Knows month

Knows year

Knows hour

Knows minute

Validate data

DeadlineController

94 (186)

DeadlineController

Responsibilities

Collaborators

Add deadline
Remove deadline
Update deadline

Generate a list of all deadlines for a

course

Generate a list of all deadlines for a user
Fetching a deadline from the database

Course
Deadline
User

File

Responsibilities

Collaborators

Knows course it belongs to
Knows ftitle

Knows description

Knows filename

Validate data

FileController

FileController

Responsibilities

Collaborators

Add file metadata to database
Remove file metadata from database
Update file metadata in database
Save file to file system

Remove file from file system

Update file in file system

Fetching a file from the database

File

Information Page

Responsibilities

Collaborators

Knows course it belongs to
Knows title

Knows content

Validate data

InformationPageController

95 (186)

InformationPageController

Responsibilities

Collaborators

Add information page

Remove information page

Update information page

Fetching an information page from the
database

InformationPage

News

Responsibilities

Collaborators

Knows course it belongs to
Knows headline

Knows content

Validate data

NewsController

NewsController

Responsibilities

Collaborators

Add news

Remove news

Update news

Generate a list of all news for a course
Generate alist of all news for a user
Fetching a news post from the database

Course
News
User

Result

Responsibilities

Collaborators

Knows the result associated to a
assignment and user

Validate data

Fetching a result from the database

ResultController

ResultController

Responsibilities

Collaborators

Add result
Remove result
Update result

Assignment
Result
User

96 (186)

Session

Responsibilities

Collaborators

Knows logged-in status
Creates user-session
Ends user-session

User
Privilege

Schedule

Responsibilities

Collaborators

Knows all activities related to a course

ScheduleController

ScheduleController

Responsibilities

Collaborators

Generate a list of all activities for a
course

Generate a list of all activities for a user
Export a list of activities to iCalendar
format

Import activities from the
format

Remove all activities for a course

iCalendar

Activity
Course
Schedule
User

User

Responsibilities

Collaborators

Knows username
Knows password
Knows firsthame

Knows lasthame

Knows privileges

Validate data

Course
UserController

97 (186)

UserController

Responsibilities

Collaborators

Add user

Update user password

Remove user

Fetching a user from the database

Add system administrator privilege for a
user

Remove system administrator privilege
for a user

Add course leader privilege for a user
Remove course leader privilege for a
user

Add course assistant privilege for a user
Remove course assistant privilege for a
user

Course
User

5.2 Class Diagram

98 (186)

ScheduleController

Cache

UserController

AssignmentController

Session
\ BaseController InformationPageController
ResultController / = '—7

XN

CourseController NewsController ActivityController DeadlineController

FileController

InformationPage

/

Activity BaseObject File

[<1

5.3 State Charts

Description of the different components in the State Charts are described in this box.

99 (186)

© Start Q State

Action batween
R e states
Stop
Action between
—
stales
Log In
Users Lisermname and
Password
.“_,..--'-"'___"‘--.\‘_‘
Dizplay Log alidate Usea .
©—Usar Selects fo Log In ass ﬁranledo
"""--_._______,_,_.--"""
Access Denied
Add Post
User Enters
Informaticn
.—-—-—''—-_‘—-—-—...
©—Usar Selects o Add Post Display Post Form Walidates Information
-".._-_-_-_____-_-_._._r
Information
Invalid

Save Post 1o Database
and Display Confirmation

{nformation Valid

Fy

Oc—mst Added

Edit Post

1 Retrieve Listing of Posts)
©—L§5&r Selects to Edit Post tn Dibabiasi ser Selects Post Display Post Form
Information USELS.TEFS
Irvvalid Informnation

Save Post to Database

and Display Confirmation Validates Information

O«—Fas: Edited

100 (186)

Delete Post

Retrieve Listing of Posts
from Database

ser Selects (o Delete Post

User Salects Post

Delete Post from
Database and Display
Corfirmation

Create Course Website Guide

User Enters
Informmation

Start Course
Website Guide

Display Coursa
Description Form

i — = ~Display Ad
Yalidales .
Infermation Information Page
Form

User Enters Information

Information Vaild

Display Preview

Skip

Validates
Information

nformation Valid Display Preview Bl

Display Impart
Schedule Form

User
Information Selects
Invalid a
Schedule

Validates
Infarmation

Display
Confirmation

User
Save Enters Inr::,::;:gm
Information
' : % Back
Display finu Display Add
Confirmation Deadling Form Back -
<4 Caontinue
Skip »{ Display Summary reate Course Wehsite—vo

101 (186)

5.4 Interaction Diagrams

The sequence diagram models the flow of logic within the
system where a horizontal arrow represents the interaction
between two objects. The dofted vertical lines represents the
fime, where the time flows from top to bottom. The solid lines
represent data flow in the system, and the dashed lines

represent a transfer of control.

We decided to create one sequence diagram, “Create Database Post”, for the use
cases add course description, add deadline, add course leader, add privileges, etc.
because they have similar sequence of actions. The same goes for the sequence
diagrams “Edit Database Post”, "Delete Database Post” and the view sequence
diagrams. There are two view sequence diagrams, one that describes the flow if a
post can be retrieved from the cache and the other if the post can’t be retrieved

from the cache and has to get it from the database server.

Log In

Client

Client Communication

15: request login using provided login details r:

[y

<

-

— [ata

-* Caontrol

Session Controller Object Controller

8 : deliver confirmation page

oo s s e g s
7 + confirmation of successful login

2 : validate logjn details

¥

'
ol

<}
5 : oeate new session
6 : confirmation
.................... _:.5

Figure 6 displays the sequence of action when a client requests to log in.

Create Database Post

Client

Client Communication

: request page for creating of posts

1

ey
1 4 deliver page for creating of posts

Database Server

3 1 query for details ”

Session Controller Object Controller

5 : post to be created

¥

3

- 2:validate session
1]
Lc—f ----------------------- .

6 : validate session

7

e L]

8 : create post

¥

12 : deliver page with confirmation

Figure 7 displays the sequence of actions to create a database post.

102 (186)

Database Server

99: guery to create post Ll E

.c_:' _____________

10

______ T

Edit Database Post

Client Client Communication Session Controller Obiject Controller
1: request page with listing of posts & I I
Lal 2 : validate session 2

Database Server

EAS SR LR A RS R Lt e D (RS R RS SR R A e

be edited

15 : validation response

1:5'

15 : confirmation of edited post

Frrp i tn o A Ry B

Figure 8 displays the sequence of actions to edit a database post.

Delete Database Post

Client Client Communication

1: request page with listing of posts I

2 : validate session

16 : edit post
______________________ R R

13 : query response

Session Controller Object Controller

_____________ 1

4 : query for list of posts

Database Server

3 : validate session

5 list of posts

______________ 1

3 10 : delete)post

EEERANE CRA RS GRS SR Dot TR BRSNS SR R R

5 e
i i
R B L e e e s Bk

v 6 : deliver page with listing of posts :

7 :id of post to be deleted o

i ™

| e
| e

'
'
'
'
'
'
'
'
'
'
'
i
'
'
'
'
R B O R

¥

Figure 9 displays the sequence of actions to create a database post.

103 (186)

11: query to delete post

.‘:_: _____________

12

______ 1)

View Post from Cache

Client Client Communication Cache Session Controller Obiect Controller Database Server

1: request page to view

¥

2 fetch cached data

s e) U s s s

S L e 3 : cached data
4 : deliver page with data from cache SRS

Figure 10 displays the sequence of actions to view a database post from cache.

View Post from Database

Client Client Communication Session Controller Object Controller Database Server

1: reguest page to view 2 : validate session

e . i e |
| FRR—— . 5 |
: 3 : : :
i 4:get d%lta & E 5 : query to get data - E
EE I Tt PPRRTS | i ey
| 8 requested page with acquired data + Fequestd o

Figure 11 displays the sequence of actions to view a post from the database server when the post isn't
available in the cache.

Export Schedule into iCalendar Format

Client Client Communication Session Controller Database Server

Object Controller

1: tiCalend t of schedul
e T T DL UE-; 2 : request iCalendar reprekentation of schedule

T
1
:
:
i
:
i
:

0

uery for schedule informa_go
L

4 : schedule information

6 : deliver file containing schedule

Figure 12 displays the sequence of actions to export a schedule into iCalander format.

104 (186)

Upload File

Client Client Communication Session Controller Obiject Controller Database Server File System

2 validate session

I

=" "3 Validation response

= 9 : query to store metadata

10 : query response !

11 : stare file i
et e ,|—|
: ; 2 :
1 14: deliver page with confirmation 1: E E E E
Figure 13 displays the sequence of actions when a client requests to upload a file.
Edit Uploaded File
Client Client Communication Session Controller Obiject Controller Database Server File System

1! request page with listing of uploaded files

: i i :
. e 2 validate session 2, H 1 1
H Ly H H H
: 4% Validation response T i i i
i 4 : request listing ofluploaded files o i i 3
E E gi 5 : query to get metadata E E
: B o S LTSN _TTRE _TTER 6 : query response : :
: 7 : deliver listing of uploaded files H H b
g : deliver page with listing of uploaded ﬁIEsT 4 g 5 d 4 g
: 51 id of file to be edited : : : : :
: - !] i H
i 11 : validation response i 1 i 3
! 12 : get uplogded file et H it
3 4 L 13 : request to get file -
H H H =l

s s S S— i
! [——— | 14 : deliver copy of file i
i 15 : deliver uénloaded file E E E
v 16 : deliver page with uploaded file v i H i V
: 17 : edited fi : : : : :
5 ed & T 18 : validate session i L 4 .
H Ly H H H
E 19 : validation response E % : 21: query to update m:etadata E
1 20 ; replace old file 5
E E 22 : gquery response q = E
H H i >

1 7 23 : rpquest to replace old file u
H L : PR e e T e P b e

P S e e ¥ i e e e e 24:

v N e SO MO BB || 25 : confirmation of edllhng uploaded file Gt

Figure 14 displays the sequence of actions when a client requests to edit an uploaded file.

105 (186)

Delete Uploaded File

Client Client Communication Session Controller Obiject Controller Database Server File System

1: request to delete a file

2 validate session

¥

4 ; request list of files

5: list of files

6 : deliver page with list of files S

7 ¢ id of the file to be deleted 38 : validate session

= il

9

)
L
]

¥

10 : request to delete file

3
F

e T T e ST i st 14
15 : confirmation of file deletion

Figure 15 displays the sequence of actions when a client requests to delete an uploaded file.

106 (186)

Create Course Website

Client Client Communication Session Controller Obiject Controller Database Server

1 : request Form For course description__

3

2 : validate session

PU
L T gy ;
............................... 3 '
4 1 deliver Form For course description | !
5 : course description w2 E E

s 6 ; validate session |

= 1

P L]

8|: bempararily save?course descrip_t‘iol‘.l

- L
10 : deliver Form For importing schedule

11 : schedule to import

¥

12 : walidate session

e
¢ 16 : deliver confirmation for schedule

117 ¢ request Form For information page_
P

20 ; deliver Farm Far information page

21 : information page

- ; :
Lt 22 1 walidate session

P L]

b 24 1 validate input

(RRSESE M— L

i
T e o T b oeed ol f D Td Ty o . 25 |

28 1 validate session

| i

¥

; 29, ; ;
30 :|tempararily savé information page
Lail

v L
32 : deliver confirmation for information page

533 : request Form fFor information page | 2 lidat ;
: walidate session

fessstonsatons i

e e L s

L

38 1 validate session

¥

107 (186)

41 : deadline . :
1 waldiate session

| T L] § |

' 43 : ' :
] 4 1 validate input H :

: e T T LJ :

FEm = e Lo 45 | H
46 1 deliver preview of deadline i i

¥
e

47 1 confirmation on preview ; . : ; : ;
48 1 validate session

¥

e [
52 ¢ deliver confirmation for deadline

E 53 : request Form for deadline = ' ' '

o
-y
=
o
=
M
=
i
o
i
n
A
=}
3

P et tn e e pm mm w i mn o =] 3 ;
! 56 : deliver Form For deadline] ! ! !
57 ! request surrnar H 1

q . | 56 1 validate session :

1 'U : :
. i et ; . :
59 ' '

&0 : request course website data ;

R g

M e e A e A e g - 61 | H
i 62 1 deliver summary] [i

&3 1 confirm summary

¥

64 validate session

: L LJ :

: £5 : : :
! 66 : save course website data

E : ';L' 67 ¢ course website daka .

: : PR il

H g i S T e o G e i E R S S v |
------------------------------- = e : =]

= ;
70 deliver confirmation For course website:

Figure 16 displays the sequence of actions when a client uses the guide for creating a course website.

5.5 Detailed Design

Database

Detailed database table definitions

Key Column name | Data type Not null | Unique | Index | Extra
Primary | userlD infeger X X X auto_increment
username varchar(0) [X X
password varchar(é4) |X
firstname varchar(80) | X
lasthname varchar(d0) | X

108 (186)

Key Column name | Data type Not null | Unique | Index | Extra
Primary | courselD infeger X X X auto_increment
courseCode |varchar(20) |[X X
Foreign | courseLeader |integer
courseName |varchar(60) |X
startYear infeger
startPeriod smallint
endYear infeger
endPeriod smallint
credits float
description text X

Key Column name | Data type Not null | Unique | Index | Extra
Primary | activitylD infeger X X X auto_increment
Foreign | courselD infeger X X X

title varchar(100) | X

description text X

startTime DateTime X

endlime DateTime X

109 (186)

Key Column name | Data type Not null | Unique | Index | Extra
Primary | deadlinelD infeger X X X auto_increment
Foreign | courselD infeger X X X

headline varchar(100) | X

confent text X

time DateTime X

Key Column name | Data type Not null | Unique | Index | Extra
Primary |newsID infeger X X X auto_increment
Foreign | courselD infeger X X X
Foreign | author infeger X
headline varchar(100) [X
content text X
tfime Datelime X

Key Column name | Data type Not null | Unique | Index | Extra
Primary |filelD infeger X X X auto_increment
Foreign | courselD infeger X X X

fitle varchar(100) [X

description text X

flename varchar(60) [X

Key Column name | Data type Not null | Unique | Index | Extra
Primary | pagelD infeger X X X auto_increment
Foreign | courselD infeger X X X

fitle varchar(100) [X

content text X

110 (186)

Key Column name | Data type Not null | Unique | Index | Extra
Primary | assignmentlD |integer X X X auto_increment
Foreign | courselD infeger X X X

title varchar(100) | X

description text X

Key Column name | Data type Not null | Unique | Index | Extra
Primary | userlD infeger X X X
Primary | courselD infeger X X X

status enum X

Key Column name | Data type Not null | Unique | Index | Extra
Primary | userlD infeger X X X
Primary | assignmentlD |integer X X X

grade enum X

Key Column name | Data type Not null | Unique | Index | Extra
Primary | userlD infeger X X X
privilege enum X

111 (186)

Classes

Class Activity

Field activitylD
The ID that uniquely identifies the activity.

Type: Integer
Access level: Private

Field belongToCourse
The ID of the course that the activity belongs to.

Type: Integer
Access level: Private

Field description
The description of the activity.

Type: String
Access level: Private

Field endDateTime
The date and time that the activity ends.

Type: Date
Access level: Private

Field startDateTime
The date and time that the activity starts.

Type: Date
Access level: Private
Field title

The fitle of the activity.

Type: String
Access level: Private

Method getActivitylD
Retrieves the value of the activitylD field.

Requirements: 7.2-7.4

Parameters: N/A

Return: Integer (ID of the activity)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

112 (186)

Post-conditions: N/A
Caller: - ActivityController::Update
Calls: N/A

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements: 7.2

Parameters: N/A

Return: Integer (ID of the course that the activity belongs to)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - ActivityController::update

Caills: N/A

Method getDescription
Retrieves the value of the description field.

Requirements: 7.2

Parameters: N/A

Return: String (description of the activity)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - ActivityController::update
Calls: N/A

Method getEndDateTime
Retrieves the value of the endDateTime field.

Requirements: 7.2
Parameters: N/A
Return: Date (Date and fime for the end of the activity)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - ActivityController::update
- Activity::setStartDateTime
Calls: N/A

Method getStartDateTime
Retrieves the value of the startDateTime field.

Requirements: 7.2

Parameters: N/A

Return: Date (Date and time for the start of the activity)
Data access: N/A

113 (186)

Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

Method getTitle

N/A

N/A

N/A

- ActivityController::update
- Activity::setEndDateTime
N/A

Retrieves the value of the fitle field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

7.2

N/A

String (fitle of the activity)
N/A

N/A

N/A

N/A

- ActivityController::update
N/A

Method setBelongToCourse
Stores an intfeger in the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

Method setDescription

7.2

- Integer (ID of the course that the activity belongs 10)
Boolean (true if the ID was successfully stored and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

- ActivityController::add

- ActivityController::update

N/A

Stores a String in the description field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

7.2

- String (description of the activity)

Boolean (true if the description was successfully stored and
validated)

N/A

N/A

- The description is a string no longer than 100 characters
N/A

- ActivityController::add

- ActivityController::update

N/A

114 (186)

Method setEndDateTime

Stores a Date object in the endDateTime field.

Requirements:
Parameters:
Return:

Data access:

Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

Method setStartDateTime

7.2

- Timestamp (Date and time for the end of the activity)
Boolean (true if the date and time of an activity was
successfully stored and validated)

N/A

N/A

- The endDateTime is a Date object, representing date and
fime where the year has to be at least 1900, and if
startDateTime is defined then the endDatelime has to
occur after startDateTime.

N/A

- ActivityController::add

- ActivityController::update

- Activity::setStartDateTime

- Activity::setStartDateTime

Stores a Date object in the startDateTime field.

Requirements:
Parameters:
Return:

Data access:

Pre-conditions:
Validity Check:

Post-conditions:
Cadller:

Calls:

Method setTitle

7.2

- Date (Date and time for the start of the activity)

Boolean (true if the date and time of an activity was
successfully stored and validated)

N/A

N/A

- The startDateTime is a Date object, representing date and
tfime where the year has to be at least 1900, and if
endDateTime is defined and startDateTime is defined to
occur after endDateTime, the endDateTime is changed
into the same as startDateTime.

N/A

- ActivityController::add

- ActivityController::update

- Activity::getEndDateTime

- Activity::setEndDateTime

Stores a String in the fitle field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

7.2

- String (title of the activity)

Boolean (rue if the title was successfully stored and
validated)

N/A

N/A

- The ftitle is a string no longer than 50 characters

N/A

- ActivityController::add

115 (186)

Calls:

- ActivityController::update
N/A

Class ActivityController

Method add

The method stores an activity in the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:

Caller:
Calls:

Method get

7.2

- Activity (the activity to be stored)

Boolean (tfrue if activity was successfully stored in the
database)

Inserts a row in the database table Activity

- A connection to the database is established

N/A

- One new row is inserted into the Activity table in the
database

- JSP page for adding a scheduled activity

- Activity get methods

The method gets an activity from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method remove

7.2-7.3

- Integer (the activity ID to be fetched)

Activity (the activity corresponding to the activity ID)
Fetches a row in the database table Activity

- A connection to the database is established

N/A

N/A

- JSP page for editing or viewing a scheduled activity
- Activity set methods

The method removes an activity from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:

Cadller:
Calls:

Method update

7.2

- Activity (the activity to be removed)

Boolean (true if activity was successfully removed from the
database)

Deletes a row in the database table Activity

- A connection to the database is established

- The activity exists in the database

N/A

- The activity’s row is removed from the Activity table in the
database

- JSP page for removing a scheduled activity

N/A

The method updates an activity in the database.

116 (186)

Requirements: 7.2

Parameters: - Activity (the activity to be updated)
Return: Boolean (tfrue if activity was successfully updated in the
database)
Data access: Update arow in the database table Activity
Pre-conditions: - A connection to the database is established
- The activity exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the Activity table in the database
Caller: - JSP page for updating a scheduled activity
Calls: - Activity get methods
Class Assignment

Field assignmentID
The ID that uniquely identifies the assignment.

Type: Integer
Access level: Private

Field belongToCourse
The ID of the course that the assignment belongs to.

Type: Integer
Access level: Private
Field deadline

The deadline of the assignment.

Type: Deadline
Access level: Private

Field description
The description of the assignment.

Type: String
Access level: Private
Field title

The ftitle of the assignment.

Type: String
Access level: Private

Method getAssignmentID
Retrieves the value of the assignmentlD field.

Requirements: 10.1
Parameters: N/A
Return: Integer (ID of the assignment)

117 (186)

Data access: N/A

Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - AssignmentController::update
Calls: N/A

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements: 10.1

Parameters: N/A

Return: String (hame of the course that the activity belongs to)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - AssignmentController::update

Calls: N/A

Method getDeadline
Retrieves the Deadline object in the deadline field.

Requirements: 10.1

Parameters: N/A

Return: Deadline (the deadline of the activity)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - AssignmentController::update

Calls: N/A

Method getDescription
Retrieves the value of the description field.

Requirements: 10.1

Parameters: N/A

Return: String (description of the assignment)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - AssignmentController::update
Caills: N/A

Method getTitle
Retrieves the value of the fitle field.

Requirements: 10.1
Parameters: N/A

118 (186)

Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

String (title of the assignment)
N/A

N/A

N/A

N/A

- AssignmentController::update
N/A

Method setBelongToCourse
Stores an intfeger in the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

Method setDeadline

7.2

- Integer (ID of the course that the assignment belongs to)
Boolean (true if the ID was successfully stored and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

- AssignmentController::add

- AssignmentController::update

N/A

Stores a Deadline object in the deadline field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method setDescription

10.1

- Deadline (the deadline of the activity)

Boolean (true if the deadline was successfully stored and
validated)

N/A

N/A

- The deadline is a Deadline object.

N/A

- AssignmentController::update

N/A

Stores a String in the description field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

7.2

- String (description of the assignment)

Boolean (true if the description was successfully stored and
validated)

N/A

N/A

- The description is a string no longer than 100 characters
N/A

- AssignmentController::add

- AssignmentController::update

119 (186)

Calls:

Method setTitle

N/A

Stores a String in the fitle field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

7.2
- String (title of the assignment)

Boolean (true if the title was successfully stored and

validated)

N/A

N/A

- The ftitle is a string no longer than 50 characters
N/A

- AssignmentController::add

- AssignmentController::update

N/A

Class AssignmentController

Method add

The method stores an assignment in the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:

Caller:
Calls:

Method get

10.1
- Assignment (the assignment to be stored)

Boolean (true if assignment was successfully stored in the

database)

Inserts a row in the database table Assignment
- A connection to the database is established
N/A

- One new row is inserted into the Assignment table in the

database
- JSP page for adding an assignment
- Assignment get methods

The method gets an assignment from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

10.1-10.2

- Integer (the assignment ID to be fetched)
Assignment (the assignment corresponding to
assignment ID)

Fetches a row in the database table Assignment

- A connection to the database is established

N/A

N/A

- JSP page for editing an assignment

- Assignment set methods

Method getAssignmentByCourse
The method generates a list of all assignments for a specific course.

120 (186)

the

Requirements:
Parameters:

Return:
Data access:
Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

Method remove

10.1

- Course (the course for which assignments shall be
retrieved)

ArrayList (containing all assignments for the course)
Retrieve rows from the database table Assignment

- A connection to the database is established

- The course exists in the database

N/A

N/A

- JSP page for displaying assignments for a course

- JSP page for displaying a list of existing assignments
- Assignment set methods

The method removes an assignment from the database. It also removes all results
associated to the assignment.

Requirements:
Parameters:
Return:

Data access:

Pre-conditions:

Validity Check:
Post-conditions:

Caller:
Calls:

Method update

10.1

- Assignment (the assignment fo be removed)

Boolean (true if assignment was successfully removed from
the database)

Deletes a row in the database table Assignment and alll
rows in the database table Result that are associated to
the deleted row in Assignment

- A connection to the database is established

- The assignment exists in the database

N/A

- The assignment’s row is removed from the Assignment
tfable in the database and all rows in Result that were
associated fto that row has been removed

- JSP page for removing an assignment

N/A

The method updates an assignment in the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:

Caller:
Calls:

10.1

- Assignment (the assignment to be updated)

Boolean (frue if assignment was successfully updated in the
database)

Update a row in the database table Assignment

- A connection to the database is established

- The assignment exists in the database

N/A

- One row is updated in the Assignment table in the
database

- JSP page for updating an assignment

- Assignment get methods

121 (186)

Class Cache

Field cache
Stores the cached objects and the keys needed to retrieve them.

Type: HashMap<Object, BaseObject>
Access level: Private

Field timeout
The current cache timeout value.

Type: Integer
Access level: Private
Method add

Adds an object to the object cache for later retrieval.

Requirements: 14.1-14.3

Parameters: - Object (The key used to later retrieve the object)
- BaseObject (the object to cache)

Return: void

Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: - The object has been added to the object cache.

Caller: - Any page or object that loads BaseObject type objects.

Caills: N/A

Method get

Retrieves a previously cached object.

Requirements: 14.1-14.3

Parameters: - Object (The key to which the object is mapped)

Return: Object (Object mapped to the key, or null if no object
found)

Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: - An object reference is returned, or null if there was no
object found.

Caller: - Any page or object that loads a BaseObject type object.

Calls: N/A

Method getCacheTimeout
Gets the amount of fime before cached objects become invalid.

Requirements: 14.1-14.3

Parameters: N/A

Return: Integer (representing the amount of minutes before cache
items are considered invalid)

Data access: N/A

122 (186)

Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

Method remove

N/A
N/A
N/A
N/A
N/A

Removes an object from the object cache.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:

Caller:
Calls:

Method setCacheTimeout

14.1-14.3

- Key

Boolean (true if the item was found and removed from the
cache)

N/A

N/A

N/A

- The object mapped to the specified key can no longer be
retrieved.

- Any controller object.

N/A

Sets the amount of minutfes before cached items are considered invalid.

Requirements:
Parameters:

Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Class Course

Field assignments

14.1-14.3

- Integer (representing the amount of minutes before
cache items are considered invalid)

void

N/A

N/A

N/A

- The cache timeout time has been updated.

N/A

N/A

A collection of Assignment objects representing assignments of this course.

Type:
Access level:

Field courseCode

ArrayList<Assignment>
Private

The course code of the course.

Type:
Access level:

Field courselD

String
Private

The ID that uniquely identifies the course.

123 (186)

Type: Integer
Access level: Private

Field deadlines
A collection of Deadline objects representing deadlines of this course.

Type: ArrayList<DeadLine>
Access level: Private
Field files

A collection of File objects representing files of this course.

Type: ArrayList<File>
Access level: Private

Field informationPages

A collection of InformationPage objects representing information pages of this
course.

Type: ArraylList<informationPage>
Access level: Private
Field news

A collection of News objects representing news of this course.

Type: ArrayList<News>
Access level: Private
Field results

A collection of Result objects representing results of this course.

Type: ArrayList<Result>
Access level: Private
Field users

A collection of User objects representing the students registered for this course.

Type: ArrayList<User>
Access level: Private

Method addAssignment
Stores an Assignment object in the assignments ArrayList.

Requirements: 10.1

Parameters: - Assignment (the assignment that’s added to the course)

Return: Boolean (true if the Assignment object is successfully stored
and validated)

Data access: N/A

Pre-conditions: N/A

Validity Check: - The input has to be an Assignment object.

124 (186)

Post-conditions:
Cadller:
Calls:

Method addDeadline

N/A
N/A
N/A

Stores a deadline object in the deadlines ArrayList,

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method addFile

8.1

- Deadline (the deadline that’s added to the course)
Boolean (tfrue if the Deadline object is successfully stored
and validated)

N/A

N/A

- The input has to be a Deadline object.

N/A

N/A

N/A

Stores a File object in the files ArrayList.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

9.1

- File (the file that’s added to the course)

Boolean (frue if the Files object is successfully stored and
validated)

N/A

N/A

- The input has to be a File object.

N/A

N/A

N/A

Method addinformationPage
Stores an InformationPage object in the InformationPage ArrayList.

Requirements:
Parameters:

Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method addNews

6.1

- InformationPage (the InformationPage that’s added to
the course)

Boolean (true if the InformationPage object is successfully
stored and validated)

N/A

N/A

- The input has to be an InformationPage object.

N/A

N/A

N/A

Stores a News object in the news ArrayList.

Requirements:

5.1

125 (186)

Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method addResult

- News (the news that’s added to the course)

Boolean (frue if the News object is successfully stored and
validated)

N/A

N/A

- The input has to be a News object.

N/A

N/A

N/A

Stores a Result object in the results ArrayList.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method addUser

11.1

- Result (the result that’s added to the course)

Boolean (true if the Result object is successfully stored and
validated)

N/A

N/A

- The input has to be a Result object.

N/A

N/A

N/A

Stores a User object in the users ArrayList. Register a student for the course.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:
Calls:

12.2

- User (the student that’s registered for the course)

Boolean (frue if the User object is successfully stored and
validated)

N/A

N/A

- The input is a User object. The user isn’t already registered
for the course.

N/A

N/A

N/A

Method getAllAssignments
Retrieves all assignments for this course.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

10.1-10.2

N/A

ArrayList<Deadline> (all deadlines for this course)
N/A

N/A

N/A

N/A

N/A

N/A

126 (186)

Method getAllDeadlines
Retrieves all deadlines for this course.

Requirements: 8.1-8.3

Parameters: N/A

Return: ArrayList<Deadline> (all deadlines for this course)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: N/A

Calls: N/A

Method getAllFiles
Retrieves all files for this course.

Requirements: 9.1-9.2

Parameters: N/A

Return: ArrayList<File> (all files for this course)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: N/A

Calls: N/A

Method getAllinformationPages
Retrieves all information pages for this course.

Requirements: 6.1-6.2

Parameters: N/A

Return: ArrayList<informationPages> (all information pages for this
course)

Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: N/A

Calls: N/A

Method getAllINews
Retrieves all news for this course.

Requirements: 5.1-5.2

Parameters: N/A

Return: ArrayList<News> (all the news for this course)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: N/A

127 (186)

Calls: N/A

Method getAllResults
Retrieves all results for this course.

Requirements: 11.1-11.2

Parameters: N/A

Return: ArrayList<Results> (all results for this course)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: N/A

Calls: N/A

Method getAllUsers
Retrieves all students that are registered for this course.

Requirements: 12.1
Parameters: N/A
Return: ArrayList<Users> (all students registered for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Caills: N/A

Method getCourseCode
Retrieves the value of the courseCode field.

Requirements: N/A
Parameters: N/A
Return: String (the course code for this course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Method getCourselD
Retrieves the value of the courselD field.

Requirements: 13.3
Parameters: N/A
Return: Integer (ID of the course)
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A

128 (186)

Caller: - CourseController::update
Calls: N/A

Method setCourseCode
Updates the value of the course code field.

Requirements: 13.3
Parameters: - String (the course code for this course)
Return: N/A
Data access: N/A
Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: N/A
Calls: N/A

Class CourseController

Method add
The method stores a course in the database.

Requirements: 13.3

Parameters: - Course (the course to be stored)

Return: Boolean (frue if course was successfully stored in the
database)

Data access: Inserts a row in the database table Course

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - One new row is inserted into the Course table in the
database

Caller: - JSP page for adding a course

Calls: - Course get methods

Method GetDescription
The method gets a course description from the database.

Requirements: 4.1-4.2

Parameters: - Integer (the course ID of the course to be fetched)
Return: Course (the course corresponding to the course ID)
Data access: Fetches a row in the database table Course
Pre-conditions: - A connection to the database is established
Validity Check: N/A

Post-conditions: N/A

Caller: - JSP page for editing or viewing a course description
Calls: - Course set methods

Method getDescriptionByCourseCode

The method gets a course description from the database using a course code. The
course code has to match exactly.

Requirements: 4.1

129 (186)

Parameters: - String (the course code of the course to be fetched)

Return: Course (the course corresponding to the course code)
Data access: Fetches a row in the database table Course
Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: N/A

Caller: - JSP page for editing user privileges for a course

Calls: - Course set methods

Method update
The method updates a course stored in the database.

Requirements: 13.3

Parameters: - Course (the course to be stored)

Return: Boolean (frue if course was successfully stored in the
database)

Data access: Update arow in the database table Course

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - One row is updated in the Course table in the database

Caller: - JSP page for editing a course

Calls: - Course get methods

Method updateDescription
The method updates a course with a course description in the database.

Requirements: 4,1,13.3
Parameters: - Course (the course to be updated)
Return: Boolean (true if course description was successfully
updated in the database)
Data access: Update arow in the database table Course
Pre-conditions: - A connection to the database is established
- The course exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the Course table in the database
Caller: - JSP page for updating a course description
Calls: - Course get methods
Method Apply

The method applies a user for a course in the database. This is done by inserting a
row in table InCourse with status field APPLYING.

Requirements: 12.3
Parameters: - Course (the course to which the user is applying for)
- User (the user to apply)
Return: Boolean (true if the user was successfully applied for the
course in the database)
Data access: Update arow in the database table InCourse
Pre-conditions: - A connection to the database is established

- The course exists in the database

130 (186)

- The user exists in the database

Validity Check: N/A

Post-conditions: - One row is inserted in the InCourse table in the database
Caller: - JSP page for applying for a course

Calls: N/A

Method register

The method registers a user for a course in the database. This is done by updating
the status field in table InCourse to REGISTERED, from the previous state APPLYING.

Requirements: 12.2

Parameters: - Course (the course to which the user shall be registered
for)
- User (the user to register)

Return: Boolean (true if the user was successfully registered for the
course in the database)

Data access: Update arow in the database table InCourse

Pre-conditions: - A connection to the database is established

- The course exists in the database
- The user exists in the database
- The user has applied for the course

Validity Check: N/A

Post-conditions: - One row is updated in the InCourse table in the database
Caller: - JSP page for updating a course description

Calls: N/A

Method unregister

The method unregisters a user from a course in the database. This is done deleting
the row in table InCourse corresponding to the given course and user.

Requirements: 12.4

Parameters: - Course (the course to which the user shall be unregistered
from)
- User (the user to unregister)

Return: Boolean (true if the user was successfully unregistered from
the course in the database)

Data access: Delete arow in the database table InCourse

Pre-conditions: - A connection to the database is established

- The course exists in the database
- The user exists in the database
- The user has been registered for the course

Validity Check: N/A

Post-conditions: - One row is deleted in the InCourse table in the database
Caller: - JSP page for updating a course description

Calls: N/A

Class Deadline

Field belongToCourse
The ID of the course that the deadline belongs to.

131 (186)

Type:
Access level:

Field deadlineDateTime

Integer
Private

The date and time that of the deadline.

Type:
Access level:

Field deadlinelD

Date
Private

The ID that uniquely identifies the deadline.

Type:
Access level:

Field description

Integer
Private

The description of the deadline.

Type:
Access level:

Field title

The title of the deadline.

Type:
Access level:

String
Private

String
Private

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

8.1-8.3

N/A

Integer (ID of the course that the deadline belongs to)
N/A

N/A

N/A

N/A

- DeadlineController::update

- DeadlineController::getCourseDeadlines
- DeadlineController::getUserDeadlines
N/A

Method getDeadlineDateTime
Retrieves the value of the deadlineDateTime field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

8.1-8.3

N/A

Date (Date and fime for when the deadline expire)
N/A

N/A

N/A

132 (186)

Post-conditions:
Cadller:

Calls:

Method getDeadlinelD

N/A

- DeadlineController::update

- DeadlineController::getCourseDeadlines
- DeadlineController::getUserDeadlines
N/A

Retrieves the value of the deadlinelD field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method getDescription

8.1

N/A

Integer (ID of the deadline)
N/A

N/A

N/A

N/A

- DeadlineController::update
N/A

Retrieves the value of the description field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method getTitle

8.1-8.3

N/A

String (description of the deadline)
N/A

N/A

N/A

N/A

- DeadlineController::update

- DeadlineController::getCourseDeadlines
- DeadlineController::getUserDeadlines
N/A

Retrieves the value of the fitle field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

8.1-8.3

N/A

String (fitle of the deadline)

N/A

N/A

N/A

N/A

- DeadlineController::update

- DeadlineController::getCourseDeadlines
- DeadlineController::getUserDeadlines
N/A

Method setBelongToCourse
Stores an intfeger in the belongToCourse field.

133 (186)

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

8.1-8.3

- Integer (ID of the course that the deadline belongs t0)
Boolean (rue if the ID was successfully stored and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

- DeadlineController::add

- DeadlineController::update

N/A

Method setDeadlineDateTime
Stores a Date object in the deadlineDateTime field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

Method setDescription

8.1-8.3

- Date (Date and time for when the deadline expire)
Boolean (true if the date and time of a deadline was
successfully stored and validated)

N/A

N/A

- The input has to be a Date object and the year has to be
at least 1900.

N/A

- DeadlineController;:update

- DeadlineController::add

N/A

Stores a String in the description field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method setTitle

8.1-8.3

- String (description of the deadline)

Boolean (true if the description was successfully stored and
validated)

N/A

N/A

- The description is a string no longer than 100 characters
N/A

- DeadlineController::add

- DeadlineController;:update

N/A

Stores a String in the fitle field.

Requirements:
Parameters:

8.1-8.3
- String (title of the deadline)

134 (186)

Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Boolean (rue if the title was successfully stored and
validated)

N/A

N/A

- The ftitle is a string no longer than 50 characters

N/A

- DeadlineController::add

- DeadlineController::update

N/A

Class DeadlineController

Method add

The method stores a deadline in the daftabase.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:

Caller:
Calls:

Method get

8.1

- Deadline (the deadline to be stored)

Boolean (true if deadline was successfully stored in the
database)

Inserts a row in the database table Deadline

- A connection to the database is established

N/A

- One new row is inserted into the Deadline table in the
database

- JSP page for adding a deadline

- Deadline get methods

The method gets a deadline from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

8.1-8.2

- Integer (the deadline ID of the deadline to be fetched)
Deadline (the deadline corresponding to the deadline ID)
Fetches a row in the database table Deadline

- A connection to the database is established

N/A

N/A

- JSP page for editing or viewing a deadline

- Deadline set methods

Method getDeadlinesByCourse
The method generates a list of all deadlines for a specific course.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:

2.1-2.2

- Course (the course for which deadlines shall be retrieved)
Arraylist (containing all deadlines for the course)

Retrieve rows from the database table Deadline

- A connection to the database is established

- The deadline exists in the database

N/A

N/A

135 (186)

Caller:
Calls:

- JSP page for displaying deadlines for a course
- Deadline set methods

Method getDeadlinesByUser
The method generates a list of all deadlines for courses that a specific user is

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

Method remove

registered for.

8.3

- User (the user for which deadlines shall be retrieved)
ArrayList (containing all deadlines for the user’s courses)
Retrieves row from the database table Deadline

- A connection to the database is established

- The user exists in the database

N/A

N/A

- JSP page for displaying deadlines for a user

- Deadline set methods

The method removes a deadline from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:

Caller:
Calls:

Method update

8.1

- Deadline (the deadline to be removed)

Boolean (true if deadline was successfully removed from
the database)

Deletes a row in the database table Deadline

- A connection to the database is established

- The deadline exists in the database

N/A

- The deadline’s row is removed from the Deadline table in
the database

- JSP page for removing a deadline

N/A

The method updates a deadline in the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

8.1

- Deadline (the deadline to be updated)

Boolean (true if deadline was successfully updated in the
database)

Update arow in the database table Deadline

- A connection to the database is established

- The deadline exists in the database

N/A

- One row is updated in the Deadline table in the database
- JSP page for updating a deadline

- Deadline get methods

136 (186)

Class File

Field belongToCourse
The ID of the course that the file belongs to.

Type: Integer
Access level: Private

Field description
The description of the file.

Type: String
Access level: Private
Field filelD

The ID that uniquely identifies the file.

Type: Integer
Access level: Private

Field filename
The name of the file.

Type: String
Access level: Private
Field title

The fitle of the file.

Type: String
Access level: Private

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements: 9.1-9.2

Parameters: N/A

Return: Integer (ID of the course that the file belongs to)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - FileController::update

Calls: N/A

Method getDescription
Retrieves the value of the description field.

Requirements: 9.1-9.2
Parameters: N/A
Return: String (description of the file)

137 (186)

Data access: N/A

Pre-conditions: N/A
Validity Check: N/A
Post-conditions: N/A
Caller: - FileController::update
Calls: N/A

Method getFilelD
Retrieves the value of the filelD field.

Requirements: 9.1

Parameters: N/A

Return: Integer (ID of the file)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - FileController::update
Calls: N/A

Method getFilename
Retrieves the value of the filename field.

Requirements: 9.1-9.2

Parameters: N/A

Return: String (hame of the file)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - FileController::update
Calls: N/A

Method getTitle
Retrieves the value of the fitle field.

Requirements: 9.1-9.2

Parameters: N/A

Return: String (title of the file)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - FileController::update
Calls: N/A

Method setBelongToCourse
Stores an integer in the belongToCourse field.

Requirements: 9.1-9.2
Parameters: - Integer (ID of the course that the file belongs to)

138 (186)

Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Cadller:

Calls:

Method setDescription

Boolean (rue if the ID was successfully stored and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

- FileController::add

- FileController::update

N/A

Stores a String in the description field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method setFilename

9.1-9.2

- String (description of the file)

Boolean (true if the description was successfully stored and
validated)

N/A

N/A

- The description is a string no longer than 100 characters
N/A

- FileController::add

- FileController::update

N/A

Stores a String in the filename field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method setTitle

9.1-9.2

- String (hame of the file)

Boolean (true if the name was successfully stored and
validated)

N/A

N/A

- The name is a string no longer than 50 characters
N/A

- FileController::add

- FileController::update

N/A

Stores a String in the fitle field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

9.1-9.2

- String (title of the file)

Boolean (true if the title was successfully stored and
validated)

N/A

N/A

- The fitle is a string no longer than 50 characters

139 (186)

Post-conditions:
Cadller:

Calls:

Class FileController

Method add

N/A

- FileController::add

- FileController::update
N/A

The method stores a file on the file system and its metadata in the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:

Caller:
Calls:

Method get

9.1

- File (the file object to be stored)

Boolean (true if file was successfully stored in the database)
Inserts a row in the database table File

- A connection to the database is established

N/A

- One new row is inserted into the File table in the database
and a new file is saved on the file system

- JSP page for adding a file

- File get methods

The method gets a file from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method getFileByCourse

9.1

- Integer (the file ID of the file o be fetched)
File (the file corresponding to the file ID)
Fetches a row in the database table File

- A connection to the database is established
N/A

N/A

- JSP page for editing or viewing a file

- File set methods

The method generates a list of all files for a specific course.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

Method remove

9.1

- Course (the course for which files shall be retrieved)
ArrayList (containing all files for the course)
Reftrieve rows from the database table File

- A connection to the database is established
- The course exists in the database

N/A

N/A

- JSP page for displaying files for a course

- JSP page for displaying a list of existing files

- File set methods

The method removes a file from the file system and its metadata from the database.

140 (186)

Requirements: 9.1

Parameters: - File (the file object to be removed)

Return: Boolean (tfrue if file was successfully removed from the
database)

Data access: Deletes a row in the database table File and a file from the
file system

Pre-conditions: - A connection to the database is established

- The file exists on the file system and its metadata exists in
the database

Validity Check: N/A

Post-conditions: - The file's row is removed from the File table in the
database and the file is removed from the file system

Caller: - JSP page for removing a file

Calls: N/A

Method update
The method updates a file on the file system and its metadata in the database.

Requirements: 9.1
Parameters: - File (the file object to be updated)
Return: Boolean (tfrue if file was successfully updated in the
database)
Data access: Update arow in the database table File
Pre-conditions: - A connection to the database is established
- The file exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the File table in the database
Caller: - JSP page for updating a file
Calls: - File get methods

Class InformationPage

Field belongToCourse
The ID of the course that the information page belongs to.

Type: Integer
Access level: Private

Field content
The content of the information page.

Type: String

Access level: Private

Field pagelD

The ID that uniquely identifies the information page.
Type: Integer

Access level: Private

141 (186)

Field title
The title of the information page.

Type: String
Access level: Private

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements: 6.1-6.2

Parameters: N/A

Return: Integer (ID of the course that the information page belongs
to)

Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - InformationPageController::update

Calls: N/A

Method getContent
Retrieves the value of the content field.

Requirements: 6.1-6.2

Parameters: N/A

Return: String (content of the information page)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - InformationPageController::update
Calls: N/A

Method getPagelD
Retrieves the value of the pagelD field.

Requirements: 6.1-6.2

Parameters: N/A

Return: Integer (ID of the information page)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - InformationPageController::update
Caills: N/A

Method getTitle
Retrieves the value of the fitle field.

Requirements: 6.1-6.2
Parameters: N/A

142 (186)

Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

String (title of the information page)
N/A

N/A

N/A

N/A

- InformationPageController::update
N/A

Method setBelongToCourse
Stores an intfeger in the belongToCourse field.

Requirements:
Parameters:

Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

Method setContent

6.1-6.2

- Integer (ID of the course that the information page
belongs to)

Boolean (rue if the ID was successfully stored and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

- InformationPageController::add

- InformationPageController::update

N/A

Stores a String in the content field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method setTitle

6.1-6.2

- String (content of the information page)
Boolean (true if the content was successfully stored and
validated)

N/A

N/A

- The content is a string

N/A

- FileController::add

- FileController::update

N/A

Stores a String in the fitle field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:

6.1-6.2

- String (title of the information page)

Boolean (true if the title was successfully stored and
validated)

N/A

N/A

- The fitle is a string no longer than 50 characters

N/A

143 (186)

Caller: - InformationPageController::add
- InformationPageController::update
Calls: N/A

Class InformationPageController

Method add
The method stores an information page in the database.

Requirements: 6.1

Parameters: - InformationPage (the information page to be stored)

Return: Boolean (true if information page was successfully stored in
the database)

Data access: Inserts a row in the database table InformationPage

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - One new row is inserted into the InformationPage table in
the database

Caller: - JSP page for adding an information page

Calls: - InformationPage get methods

Method Get

The method gets an information page from the database.

Requirements: 6.1-6.2

Parameters: - Integer (the information page ID of the information page
to be fetched)

Return: InformationPage (the information page corresponding to
the file ID)

Data access: Fetches a row in the database table InformationPage

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: N/A

Caller: - JSP page for editing or viewing an information page

Calls: - InformationPage set methods

Method getinformationPageByCourse
The method generates a list of all information pages for a specific course.

Requirements: 6.1-6.2
Parameters: - Course (the course for which information pages shall be
retrieved)
Return: ArrayList (containing all information pages for the course)
Data access: Retrieve rows from the database table InformationPage
Pre-conditions: - A connection to the database is established
- The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying a course website
- JSP page for displaying a list of existing information pages
Calls: - InformationPage set methods

144 (186)

Method remove

The method removes an information page from the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:

Caller:
Calls:

Method update

6.1

- InformationPage (the information page to be removed)
Boolean (tfrue if information page was successfully removed
from the database)

Deletes a row in the database table InformationPage

- A connection to the database is established

- The information page exists in the database

N/A

- The information page’s row is removed from the
InformationPage table in the database

- JSP page for removing an information page

N/A

The method updates an information page in the database.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:

Validity Check:
Post-conditions:

Cadller:
Calls:

Class News

Field belongToCourse

6.1

- InformationPage (the information page to be updated)
Boolean (frue if information page was successfully updated
in the database)

Update a row in the database table InformationPage

- A connection to the database is established

- The information page exists in the database

N/A

- One row is updated in the InformationPage table in the
database

- JSP page for updating an information page

- InformationPage get methods

The ID of the course that the news belongs to.

Type:
Access level:

Field content

The content of the news.

Type:
Access level:

Field headline

Integer
Private

String
Private

The headline of the news.

Type:
Access level:

String
Private

145 (186)

Field newsID
The ID that uniquely identifies the news.

Type: Integer
Access level: Private

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements: 5.1-5.2

Parameters: N/A

Return: Integer (ID of the course that the news belongs to)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - NewsConftroller::update

- NewsController::getCourseNews
- NewsController::getUserNews
Calls: N/A

Method getContent
Retrieves the value of the content field.

Requirements: 5.1-56.2

Parameters: N/A

Return: String (content of the news)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - NewsConftroller::update

- NewsController::getCourseNews
- NewsController::getUserNews
Calls: N/A

Method getHeadline
Retrieves the value of the headline field.

Requirements: 5.1-56.2

Parameters: N/A

Return: String (headline of the news)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - NewsController::update

- NewsController::getCourseNews
- NewsController::getUserNews
Calls: N/A

146 (186)

Method getNewsID

Retrieves the value of the news|D field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

5.1

N/A

Integer (ID of the news)
N/A

N/A

N/A

N/A

- NewsConftroller::update
N/A

Method setBelongToCourse
Stores an intfeger in the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:

Calls:

Method setContent

5.1-5.2

- Integer (ID of the course that the news belongs t0)
Boolean (true if the ID was successfully stored and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

- NewsController::add

- NewsController::update

N/A

Stores a String in the content field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method setHeadline

5.1-6.2

- String (content of the news)
Boolean (true if the content was successfully stored and
validated)

N/A

N/A

- The description is a string
N/A

- NewsController::add

- NewsConftroller::update
N/A

Stores a String in the headline field.

Requirements:
Parameters:
Return:

5.1-5.2

- String (headline of the news)

Boolean (tfrue if the headline was successfully stored and
validated)

147 (186)

Data access: N/A

Pre-conditions: N/A
Validity Check: - The headline is a string no longer than 50 characters
Post-conditions: N/A
Caller: - NewsController::add
- NewsConftroller::update
Calls: N/A

Class NewsController

Method add
The method stores a news post in the database.

Requirements: 5.1

Parameters: - News (the news post to be stored)

Return: Boolean (true if news post was successfully stored in the
database)

Data access: Inserts a row in the database table News

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - One new row is inserted info the News table in the
database

Caller: - JSP page for adding a news post

Calls: - News get methods

Method get

The method gets a news post from the database.

Requirements: 5.1

Parameters: - Integer (the news ID of the news o be fetched)

Return: News (the news post corresponding to the news ID)

Data access: Fetches a row in the database table News

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: N/A

Caller: - JSP page for editing or viewing a news post

Calls: - News set methods

Method getNewsByCourse
The method generates a list of all news for a specific course.

Requirements: 5.2
Parameters: - Course (the course for which news shall be retrieved)
Return: ArrayList (containing all news for the course)
Data access: Retrieve rows from the database table News
Pre-conditions: - A connection to the database is established
- The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying news for a course
Calls: - News set methods

148 (186)

Method getNewsByUser
The method generates a list of all news for courses that a specific user is registered

for.
Requirements: 2.1-2.3
Parameters: - User (the user for which news shall be retrieved)
Return: ArrayList (containing all news for the user’s courses)
Data access: Retrieves row from the database table News
Pre-conditions: - A connection to the database is established

- The user exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying news for a user
Calls: - News get methods

Method remove
The method removes a news post from the database.

Requirements: 5.1

Parameters: - News (the news post to be removed)

Return: Boolean (tfrue if news post was successfully removed from
the database)

Data access: Deletes a row in the database table News

Pre-conditions: - A connection to the database is established
- The news post exists in the database

Validity Check: N/A

Post-conditions: - The news post’s row is removed from the News table in the
database

Caller: - JSP page for removing a news post

Calls: N/A

Method update
The method updates a news post in the database.

Requirements: 5.1
Parameters: - News (the news post to be updated)
Return: Boolean (true if news post was successfully updated in the
database)
Data access: Update arow in the database table News
Pre-conditions: - A connection to the database is established
- The news post exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the News table in the database
Caller: - JSP page for updating a news post
Calls: - News set methods

Class Result

Field belongToAssignment
The assignment the result is registered for.

149 (186)

Type:
Access level:

Field belongToCourse

Assignment
Private

The ID of the course that the result belongs to.

Type:
Access level:

Field grade

Integer
Private

The grade of the assignment.

Type:
Access level:

Field user

String
Private

The user that the result belongs to.

Type:
Access level:

User
Private

Method getBelongToAssignment
Retrieves the value of the belongToAssignment field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

11.1-11.2

N/A

Assignment (assignment that the result belongs to)
N/A

N/A

N/A

N/A

- ResultController::update

N/A

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

Method getGrade

11.1-11.2

N/A

String (name of the course that the result belongs to)
N/A

N/A

N/A

N/A

- ResultConftroller::update

N/A

Retrieves the value in the grade field.

Requirements:

11.1-11.2

150 (186)

Parameters: N/A

Return: String (grade of an assignment for a specific course)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - AssignmentController::update

Calls: N/A

Method getUser
Retrieves the value of the user field.

Requirements: 11.1-11.2

Parameters: N/A

Return: User (user that the result belongs to)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - ResultController::update

Caills: N/A

Method setBelongToAssignment
Stores an Assignment object in the belongToAssignment field.

Requirements: 11.1-11.2

Parameters: - Assignment (Assignment the result belongs to)

Return: Boolean (true if the assignment was successfully stored and
validated)

Data access: N/A

Pre-conditions: N/A

Validity Check: - The assignment is an Assignment object and identifies an

existing assignment for the specified course in the
belongToCourse field.

Post-conditions: N/A
Caller: - ResultController::add

- ResultConftroller::update
Calls: N/A

Method setBelongToCourse
Stores an integer in the belongToCourse field.

Requirements: 11.1-11.2

Parameters: - Integer (ID of the course that the result belongs to)

Return: Boolean (true if the ID was successfully stored and
validated)

Data access: N/A

Pre-conditions: N/A

Validity Check: - The course ID is an infeger and identifies a course that
exists

151 (186)

Post-conditions:
Cadller:

Calls:

Method setGrade

N/A

- ResultController::add

- ResultController::update
N/A

Stores a String in the grade field.

Requirements:
Parameters:

Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Cadller:

Calls:

Method setUser

11.1-11.2

- String (the grade of a specified assignment for a specified
course)

Boolean (true if the grade was successfully stored and
validated)

N/A

N/A

- The grade has to be one of the letters A-F, the letter P or
the string “Fx”

N/A

- AssignmentController::add

- AssignmentController::update

N/A

Stores a User object in the user field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

11.1-11.2

- User (user that the result belongs to)

Boolean (rue if the user was successfully stored and
validated)

N/A

N/A

- The input is a User object and identifies a user that exists
N/A

- ResultController::add

- ResultController::update

N/A

Class ResultController

Method getResultByUser

The method gets all results for a user from the database.

Requirements:
Parameters:

Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

11.2

- Integer (the user ID of the user whose results are to be
fetched)

Arraylist<Result> (the results corresponding to the user)
Fetches rows from the database table Resulf

- A connection to the database is established

N/A

N/A

- JSP page for viewing results for a user

152 (186)

Calls: - Result set methods

Method getResultByUserAndCourse
The method gets all results for a user and a course from the database.

Requirements: 11.2

Parameters: - Integer (the user ID of the user whose results are to be
fetched)
- Integer (the course ID of the course which’s results are o
be fetched)

Return: ArrayList<Result> (the results corresponding to the user and
course)

Data access: Fetches rows from the database table Resulf

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: N/A

Caller: - JSP page for viewing results for a user and course

Calls: - Result set methods

Method update

The method updates a user’s result for an assignment in the database. If no result
previously exists for the user, a new result is created. If no result is given, any previous
result is deleted.

Requirements: 11.1

Parameters: - Result (the result to be saved, contains an assignment, a
user and a grade)

Return: Boolean (frue if the result for the assignment was
successfully changed in the database)

Data access: Update, inserted or deleted a row in the database table
Result

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - One row is updated, inserted or deleted in the Resulf table
in the database

Caller: - JSP page for updating a result for an assignment

Calls: - Result get methods

Class Session

Method authenticate
Authenticates a user with the system.

Requirements: 1.1

Parameters: - String (username)
- String (password)

Return: Boolean (true if authentication was successful)

Data access: Reftrieves values from database table User

Pre-conditions: - User is not logged in
- A connection to the database is established

Validity Check: N/A

153 (186)

Post-conditions: - The user state in the current session is set to logged in

Caller: - Any page that allows the user to login.

Calls: - UserController::getUserByUsername
- Cache::add
- Cache::get

Method logout

Logs out a user from the system.

Requirements: 1.1

Parameters: N/A

Return: Void

Data access: N/A

Pre-conditions: - User is logged in.

Validity Check: N/A

Post-conditions: - The user state in the current session is set to logged out
- Any temporarily saved user data is removed.

Caller: - Any page.

Calls: N/A

Class Schedule

Field activities

Type: ArrayList<Activity>

Access level: Private

Field belongToCourse

The ID of the course that the schedule belongs to.

Type: Integer

Access level: Private

Method addActivity

The method adds an Activity object in the activities ArrayList,

Requirements: 7.1-7.5

Parameters: - Activity (activity to be added in the schedule that
belongs to the specified course)

Return: Boolean (frue if activity was successfully added and
validated)

Data access: N/A

Pre-conditions: N/A

Validity Check: - The activity has to be an existing Activity object belonging
to the course specified in the belongToCourse field.

Post-conditions: N/A

Caller: N/A

Calls: N/A

Method getAllActivities
The method retrieves all activities

154 (186)

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

7.1-7.5

N/A

ArrayList<Activity> (All the activities for a course)
N/A

N/A

N/A

N/A

- ScheduleController::getCourseSchedule

- ScheduleController::getUserSchedule

N/A

Method getBelongToCourse
Retrieves the value of the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:
Post-conditions:
Caller:

Calls:

7.1-7.5

N/A

Integer (ID of the course that the schedule belongs to)
N/A

N/A

N/A

N/A

- ScheduleController::getCourseSchedule

- ScheduleController::getUserSchedule

N/A

Method setBelongToCourse
Stores an intfeger in the belongToCourse field.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

Post-conditions:
Caller:
Calls:

7.1-7.5

- Integer (ID of the course that the schedule belongs to)
Boolean (tfrue if course ID was successfully added and
validated)

N/A

N/A

- The course ID is an infeger and identifies a course that
exists

N/A

N/A

N/A

Class ScheduleController

Method export

The method exports a schedule into the iCalendar format.

Requirements:
Parameters:
Return:

Data access:
Pre-conditions:
Validity Check:

7.5,13.3

N/A

String (representing schedule in iCalendar format)
N/A

N/A

N/A

155 (186)

Post-conditions: - Scheduled activities are represented in iCalendar format
Caller: - JSP page for viewing a schedule
Calls: - Activity get methods.

Method getScheduleByCourse
The method generates a list of all activities for a specific course.

Requirements: 7.3
Parameters: - Course (the course for which news shall be retrieved)
Return: ArrayList (containing all scheduled activities for the course)
Data access: Retrieve rows from the database table News
Pre-conditions: - A connection to the database is established

- The course exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying a schedule for a course
Calls: - Activity get methods

Method getScheduleByUser

The method generates a list of all scheduled activities for courses that a specific user
is registered for.

Requirements: 2.1-2.2
Parameters: - User (the user for which a schedule shall be retrieved)
Return: Arraylist (containing all scheduled activities for the user’s
courses)
Data access: Retrieves row from the database table News
Pre-conditions: - A connection to the database is established
- The user exists in the database
Validity Check: N/A
Post-conditions: N/A
Caller: - JSP page for displaying a schedule for a user
Calls: - Activity get methods

Method import
The method imports a schedule and stores it in the database.

Requirements: 7.1

Parameters: - Schedule (represented in iCalendar format)

Return: Boolean (rue if schedule was successfully stored in the
database)

Data access: Inserts new rows into the Activity database table.

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - Scheduled activities are inserted into the Activity table in
the database

Caller: - JSP page for importing a schedule

Caills: -N/A

Method removeScheduleByCourse
The method removes all scheduled activities belonging to a course.

156 (186)

Requirements: 7.1,13.3

Parameters: - String (containing course code)

Return: Void

Data access: All rows in table Activity containing activities for the course
are removed.

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: - There are no activities in the database table Activity for
the course

Caller: - JSP page for removing a schedule

Calls: N/A

Class User

Field courseAssistant

The course assistant privilege of a user. Contains course ID’s for the courses for which
the user has the privilege course assistant.

Type: HashSet<Integer>
Access level: Private

Field courselLeader

The course leader privilege of a user. Contains course ID’s for the courses for which
the user has the privilege course leader.

Type: HashSet<Integer>
Access level: Private

Field firstname
The firsthame of a user.

Type: String
Access level: Private

Field lastname
The lasthame of a user.

Type: String
Access level: Private

Field password
The password of a user.

Type: String
Access level: Private

Field sysadmin

The system administrator privilege of a user. If frue then the user has the privilege
"System Administrator”.

157 (186)

Type:
Access level:

Field userlID

boolean
Private

The ID that uniquely identifies the user.

Type:
Access level:

Field username

The username of a user.

Type:
Access level:

Integer
Private

String
Private

Method getCourseAssistantForCourse
The method returns true if the user has the course assistant privilege for the given

course.

Requirements:
Parameters:
Return:

Data access:

Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

11.1

- Course (the course to check privilege for)

Boolean (true if the user has the privilege)

Retrieve rows from the table Privilege if the privileges
haven’t been previously fetched.

- A connection to the database is established

N/A

N/A

- Any JSP page where the course assistant privilege is
sufficient

N/A

Method getCourselLeaderForCourse
The method returns frue if the user has the course leader privilege for the given

course.
Requirements:

Parameters:
Return:
Data access:

Pre-conditions:

Validity Check:
Post-conditions:
Caller:

Calls:

Method getFirstName

3.1,4.1,5.1,6.1,7.1,72,8.1,9.1,10.1, 11.1, 12,1, 122, 12.4
and 13.2

- Course (the course to check privilege for)

Boolean (true if the user has the privilege)

Retrieve rows from the table Privilege if the privileges
haven’t been previously fetched.

- A connection to the database is established

N/A

N/A

- Any JSP page where the course leader privilege is
sufficient

N/A

The method retrieves a first name.

158 (186)

Requirements: 13.4

Parameters: N/A

Return: String (first name of the user)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - UserController::update
Calls: N/A

Method getLastName
The method retrieves a last name.

Requirements: 13.4

Parameters: N/A

Return: String (Last name of the user)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - UserController::update
Caills: N/A

Method getPassword
The method retrieves a password.

Requirements: 13.4

Parameters: N/A

Return: Char (password of the user)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - UserController::update
Calls: N/A

Method getStudentinCourse
The method returns true if the user is registered in the course.

Requirements: 9.2

Parameters: - Course (the course to check privilege for)

Return: Boolean (true if the user is registered for the course)

Data access: Retrieve rows from the table InCourse if the privileges
haven’t been previously fetched.

Pre-conditions: - A connection to the database is established

Validity Check: N/A

Post-conditions: N/A

Caller: - Any JSP page where the being registered for a specific
course is sufficient

Calls: N/A

159 (186)

Method getSysAdmin
The method refrieves the system administrator privilege for a user.

Requirements: 13.1,13.3, 134

Parameters: N/A

Return: Boolean (true if the user is a system administrator)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - UserController::update

Calls: N/A

Method getUserlD
Retrieves the value of the userID field.

Requirements: 12.2,12.4,13.1-13.2, 134
Parameters: N/A

Return: Integer (ID of the user)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - UserController::update
Calls: N/A

Method getUsername
The method retrieves a username.

Requirements: 13.4

Parameters: N/A

Return: String (username of the user)
Data access: N/A

Pre-conditions: N/A

Validity Check: N/A

Post-conditions: N/A

Caller: - UserController::update
Caills: N/A

Method setCourseAssistantForCourse

Stores the course assistant privilege. Adds an integer representing the course (course
ID) to the courseAssistant HashSet.

Requirements: 13.1

Parameters: - Integer (course ID for the course to assign the privilege for)
Return: N/A

Data access: N/A

Pre-conditions: N/A

Validity Check: - The course has to exist.

Post-conditions: N/A

Caller: - UserController::assignCourseAssistant

160 (186)

Calls: N/A

Method setCourselLeaderForCourse

Stores the course leader privilege. Adds an intfeger representing the course (course
ID) to the courseLeader HashSet.

Requirements: 13.1

Parameters: - Integer (course ID for the course to assign the privilege for)
Return: N/A

Data access: N/A

Pre-conditions: N/A

Validity Check: - The course has to exist.

Post-conditions: N/A

Caller: - UserController::assignCourseLeader

Calls: N/A

Method setFirstName
The method sefts a first name.

Requirements: 13.4
Parameters: - Firsthname (the first name to be stored)
Return: Boolean (tfrue if first name was successfully stored in the
database)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The username is a string
Post-conditions: N/A
Caller: - UserController::update
- UserController::add
Calls: N/A

Method setLastName
The method sets a last name.

Requirements: 13.4
Parameters: - Lastname (the last name to be stored)
Return: Boolean (tfrue if last name was successfully stored in the
database)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The lastname is a string
Post-conditions: N/A
Caller: - UserController::update
- UserController::add
Calls: N/A

Method setPassword
The method sets a password.

Requirements: 13.4
Parameters: - Password (the password to be stored)

161 (186)

Return: Boolean (frue if password was successfully stored in the

database)
Data access: N/A
Pre-conditions: N/A
Validity Check: - The password is at least 5 chars
Post-conditions: N/A
Caller: - UserController::update
- UserController::add
Calls: N/A

Method setSysAdmin
Stores a Boolean in the system administrator privilege field.

Requirements: 13.1
Parameters: - Boolean (true if the user is a system administrator)
Return: N/A
Data access: N/A
Pre-conditions: N/A
Validity Check: - The privilege has to be a Boolean.
Post-conditions: N/A
Caller: - UserController::add
- UserController::update
Calls: N/A

Method setUsername
The method sets a username.

Requirements: 13.4

Parameters: - Username (the username to be stored)

Return: Boolean (true if username was successfully stored in the
database)

Data access: N/A

Pre-conditions: N/A

Validity Check: - The username is a string and is at least 5 chars long

Post-conditions: N/A

Caller: - UserController::update
- UserController::add

Calls: N/A

Class UserController

Method add
The method stores a user in the database.

Requirements: 13.4

Parameters: - User (the user to be stored)

Return: Boolean (true if user was successfully stored in the
database)

Data access: Inserts a row in the database table User

Pre-conditions: - A connection to the database is established

Validity Check: N/A

162 (186)

Post-conditions: - One new row is inserted info the User table in the

database
Caller: - JSP page for adding a user
Calls: - User get methods

Method assignCourseAssistant

The method assigns a user the course assistant privilege in the database by updating
the status field of the InCourse table to ASSISTANT.

Requirements: 13.1
Parameters: - User (the user to assign the privilege 1o)
- Course (the course to assign the privilege 10)
Return: Boolean (frue if privilege was successfully assigned in the
database)
Data access: Update arow in the database table InCourse
Pre-conditions: - A connection to the database is established

- The user exists in the database
- The course exists in the database

Validity Check: N/A

Post-conditions: - One row is updated or inserted in the InCourse table in the
database with value of the status field set to ASSISTANT

Caller: - JSP page for assigning the course assistant privilege

Calls: N/A

Method assignCourseLeader

The method assigns a user the course leader privilege in the database by updating
the status field of the InCourse table to LEADER.

Requirements: 13.1
Parameters: - User (the user to assign the privilege 10)
- Course (the course to assign the privilege o)
Return: Boolean (frue if privilege was successfully assigned in the
database)
Data access: Update a row in the database table InCourse
Pre-conditions: - A connection to the database is established

- The user exists in the database
- The course exists in the database

Validity Check: N/A

Post-conditions: - One row is updated or inserted in the InCourse table in the
database with value of the status field set to LEADER

Caller: - JSP page for assigning the course leader privilege

Caills: N/A

Method assignSysAdmin
The method assigns a user the system administrator privilege in the database.

Requirements: 13.1

Parameters: - User (the user to assign the privilege 10)

Return: Boolean (frue if privilege was successfully assigned in the
database)

Data access: Update a row in the database table Privilege

163 (186)

Pre-conditions: - A connection to the daftabase is established
- The user exists in the database

Validity Check: N/A

Post-conditions: - One row is inserted in the Privilege table in the database
Caller: - JSP page for assigning the system administrator privilege
Calls: N/A

Method get

The method gets a user from the database.

Requirements: 13.4

Parameters: - Integer (the user ID of the user to be fetched)
Return: User (the user corresponding to the user ID)
Data access: Fetches a row in the database table User
Pre-conditions: - A connection to the database is established
Validity Check: N/A

Post-conditions: N/A

Caller: - JSP page for editing or viewing a user

Calls: - User set methods

Method getUserByUsername

The method gets a user from the database using a username. The username has to
match exactly.

Requirements: 1.1

Parameters: - String (the username of the user to be fetched)
Return: User (the user corresponding to the username)
Data access: Fetches a row in the database table User
Pre-conditions: - A connection to the database is established
Validity Check: N/A

Post-conditions: N/A

Caller: - Session::authenticate

Calls: - User set methods

Method remove
The method removes a user from the database.

Requirements: 13.4

Parameters: - User (the user to be removed)

Return: Boolean (frue if user was successfully removed from the
database)

Data access: Deletes a row in the database table User

Pre-conditions: - A connection to the database is established
- The user exists in the database

Validity Check: N/A

Post-conditions: - The user’s row is removed from the User table in the
database

Caller: - JSP page for removing a user

Calls: N/A

164 (186)

Method revokeCourseAssistant

The method revokes the course assistant privilege for a user in the database by
removing the row for the user and course in the InCourse database table.

Requirements: 13.1
Parameters: - User (the user to revoke the privilege from)
- Course (the course to revoke the privilege from)
Return: Boolean (true if privilege was successfully revoked in the
database)
Data access: Delete arow in the database table InCourse
Pre-conditions: - A connection to the database is established

- The user exists in the daftabase
- The course exists in the database

Validity Check: N/A

Post-conditions: - The user is no longer course assistant for the specified
course

Caller: - JSP page for revoking the course assistant privilege

Calls: N/A

Method revokeCourseLeader

The method revokes the course assistant privilege for a user in the database by
removing the row for the user and course in the InCourse database table.

Requirements: 13.1
Parameters: - User (the user to revoke the privilege from)
- Course (the course to revoke the privilege from)
Return: Boolean (irue if privilege was successfully revoked in the
database)
Data access: Delete a row in the database table InCourse
Pre-conditions: - A connection to the database is established

- The user exists in the database
- The course exists in the database

Validity Check: N/A

Post-conditions: - The user is no longer course leader for the specified course
Caller: - JSP page for revoking the course leader privilege

Calls: N/A

Method revokeSysAdmin
The method revokes a user the system administrator privilege in the database.

Requirements: 13.1
Parameters: - User (the user to revoke the privilege from)
Return: Boolean (rue if privilege was successfully revoked in the
database)
Data access: Delete arow in the database table Privilege
Pre-conditions: - A connection to the database is established
- The user exists in the database
Validity Check: N/A
Post-conditions: - The user is no longer system administrator
Caller: - JSP page for revoking the system administrator privilege
Calls: N/A

165 (186)

Method update
The method updates a user in the database.

Requirements: 13.4
Parameters: - User (the user to be updated)
Return: Boolean (frue if user was successfully updated in the
database)
Data access: Update arow in the database table User
Pre-conditions: - A connection to the database is established
- The user exists in the database
Validity Check: N/A
Post-conditions: - One row is updated in the User table in the database
Caller: - JSP page for updating a user
Calls: - User get methods

Implementation Index of Requirements

Requirement Implemented in

1.1 Session::Authenticate
Session::Logout

2.1 DeadlineController::GetDeadlinesByUser
NewsController::GetNewsByUser
ScheduleController::GetScheduleByUser
ResultController::GetResultByUser

2.2 Display implemented in JSP page
DeadlineController::GetDeadlinesByUser
NewsController::GetNewsByUser
ScheduleController::GetScheduleByUser

2.3 NewsController::GetNewsByUser

3.1 JSP Page for the creation guide

4.1 CourseController::UpdateDescription
4.2 CourseController::GetDescription

5.1 NewsConftroller::Add

NewsController::GetNewsByCourse
NewsController::Update
NewsController::Remove

5.2 NewsController::GetNewsByCourse

6.1 InformationPageController::Add
InformationPageController::Update
InformationPageController::Remove
InformationPageController::GetinformationPageByCourse

6.2 InformationPageController::Get

7.1 ScheduleController::import

7.1 ScheduleController::RemoveScheduleByCourse
7.2 ActivityController::Add

ActivityController::Update
ActivityController::Remove
7.3 ScheduleController::GetScheduleByCourse

166 (186)

ActivityController::Get

7.4 ScheduleController::GetScheduleByUser
7.5 ScheduleController::Export
8.1 DeadlineController::Add

DeadlineController::Update
DeadlineController::Remove

8.2 DeadlineController::Get
8.3 DeadlineController::GetDeadlinesByUser
9.1 FileController::Add

FileController::Update
FileController::Remove

9.2 FileController::Get
Course::GetAllUsers
10.1 AssignmentController::Add

AssignmentController::Update
AssignmentController::Remove

10.2 AssignmentController::GetAssignmentByCourse
11.1 ResultConftroller::Add
11.2 ResultController::GetResultByUser
12.1 Course::GetAllUsers
12.2 CourseController::Register
Course::AddUser
12.3 CourseController::Apply
12.4 CourseController::Unregister
13.1 UserController::AssignCourseLeader

UserController::AssignCourseAssistant
UserController::AssignSysAdmin

13.2 UserController::AssignCourseAssistant
UserController::RevokeCourseAssistant

13.3 CourseController::Add
CourseController::Update

13.4 UserController::Add

UserController::Update
UserController::Remove

14.1 Cache:Add
Cache::Get
14.2 Cache::Add
Cache::Get
14.3 Cache::Add
Cache::Get

167 (186)

5.6 Package diagram

Systern

Session

Cache Controllers i Business objects

ActivityController NaweControlle: Activity News

Assignment Privilege

AssignmentController PrivilegeController

Course Result

CourseController ResultController

DeadlineController ScheduleController Deadline Schedule

FileController UserController File User

InformationPageController InformationPage

The system can be roughly divided into two packages, one being the controller
package. These classes handle loading and saving of information to the database.
The other package is the business object package, where the classes represent
relevant domain entities such as news, assignments efc. These objects encapsulate
all the data of the related entities and are also responsible for all data validation.

6. Functional Test Cases

Test Case TC1: Authenticate to the System

Functionality to Test: The user shall be able to log in.
Functional Requirement: 1.1
Inputs: - Username
- Password
Expected Outputs: - User session
- Confirmation

Instructions for Tester

1. Input username and password.
2. Selectlogin.
3. Verify that the page has a log out button.

Test Case TC2: View Personal Page

Functionality to Test: The user shall be able to view his or hers personal page.
Functional Requirement: 2.1

168 (186)

Inputs: None
Expected Outputs: - Personal Page

Instructions for Tester

1. Navigate to the "News” under "Personal Links” section of the website.
2. Verify that the personal page is displayed.

Test Case TC3: View Overview of Course News

Functionality to Test: The user shall be able to view an overview of the user’s
courses News.
Functional Requirement: 2.3

Inputs: None
Expected Outputs: - List of course news for the courses the student is registered
for

Instructions for Tester

1. Navigate to the "News” under "Personal Links” section of the website.
2. Verify that the course news for the courses the user is registered for is
displayed.

Test Case TC4: Create Course Website

Functionality to Test: The user shall, if assigned as course leader for a course, be
able to create a course website with the help of a guide.
Functional Requirement: 3.1
Inputs: - Course name
- Credits
- Start period
- End period
- Description of course
- Schedule
- Title of information page
- Content of information page
- Title of deadline
- Time of deadline
- Description of deadline
Expected Outputs: - Course website and confirmation

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website creation guide.

Input course name, credits, start period, end period and description.
Select Continue.

Select a schedule to import.

Select Import.

Select Continue.

Input title and content of an information page.

Select Preview.

VWONOOAWN—

169 (186)

10. Select Save.

11. Select Confinue.

12. Input title, time and description of a deadline.

13. Select Preview.

14, Select Save.

15. Select Continue.

16. Select Create Course Website.

17. Verify that the course welbsite is available by selecting to the course website.

Test Case TC5: Edit Existing Course Description

Functionality to Test: The user shall, if assigned course leader for the course, be
able to edit the existing course description.
Functional Requirement: 4.1
Inputs: - Course Name
- Credits
- Begin Period
- End Period
- Description
Expected Outputs: - Course description
- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).

2. Navigate to a course website.

3. Navigate to the “"Course Description” under “*Course Leader Links” section of a
course website.

4, Edit the course description.

5. Select Save.

6. Verify that the course description is available from the course description
page (TCH).

Test Case TC6: View Course Description

Functionality to Test: The user shall be able to view a course description.
Functional Requirement: 4.2

Inputs: None

Expected Outputs: - Course description

Instructions for Tester

1. Navigate to a course website.
2. Navigate to the "Course Description” page of a course website.
3. Verify that the course description for the course is displayed.

Test Case TC7: Add Course News

Functionality to Test: The user shall, if assigned course leader for the course, be
able to add course news to the course.

Functional Requirement: 5.1

Inputs: - Headline

170 (186)

- Content

Expected Outputs: - Course news

- Confirmation

Instructions for Tester

LN~

NOo oA

Authenticate to the system (TC1).

Navigate to a course website.

Navigate to the “"News” under "Course Leader Links” section of a course
website.

Input headline and content of a news.

Select Preview.

Select Save.

Verify that the news is available from the news page (TC10).

Test Case TC8: Edit Existing Course News
Functionality to Test: The user shall, if assigned course leader for the course, be

able to edit existing course news.

Functional Requirement: 5.1

Inputs: - Headline
- Content
Expected Outputs: - Course news
- Confirmation

Instructions for Tester

LN~

®NO O A

Authenticate to the system (TC1).

Navigate to a course website.

Navigate to the “"News” under "Course Leader Links” section of a course
website.

Select news to edit.

Edit the news.

Select Preview.

Select Save.

Verify that the news is available from the news page (TC10).

Test Case TC9: Remove Existing Course News
Functionality to Test: The user shall, if assigned course leader for the course, be

able to remove existing course news.

Functional Requirement: 5.1

Inputs:

- Course news to be removed

Expected Outputs: - Confirmation

Instructions for Tester

1
2,
3

. Authenticate to the system (TC1).

Navigate to a course website.

Navigate to the “"News” under "Course Leader Links” section of a course
website.

Select news to remove.

171 (186)

5. Verify that the news is removed from the news page (TC10).

Test Case TC10: View Course News

Functionality to Test: The user shall be able to view course news.

Functional Requirement: 5.2

Inputs: None

Expected Outputs: - The course news for a course order by date in descending
order

Instructions for Tester

1. Navigate to a course website.
2. Navigate to the "News” section of a course website.
3. Verify that the course news for the course is displayed.

Test Case TC11: Add Information Page

Functionality to Test: The user shall be able to add an information page to the
course website for courses he or she is assigned the
privilege course leader if he or she is authenticated.

Functional Requirement: 6.1

Inputs: - Title
- Content
Expected Outputs: - Information page
- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

N =

Navigate to the ‘Information pages’ management section for a course
website.

3. Input title and content where requested.

4. Select Preview.

5. Select Save.

6. Verify that the information page has been added to the list of information

pages in the'Informafion page" management section, and view the
information page (TC14).

Test Case TC12: Edit Existing Information Page

Functionality to Test: The user shall be able to edit an existing information page
for courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 6.1

Inputs: - The information page to edit
- Title
- Content

Expected Outputs: - Information page
- Confirmation

Instructions for Tester

172 (186)

Authenticate to the system (TC1).

Navigate to the ‘Information pages’ management section for a course
website.

Select an existing information page to edit.

Input updated title and content where requested.

Select Preview.

Select Save.

Verify that the information page has been edited accordingly (TC14).

N~

NoOobhO®

Test Case TC13: Remove EXxisting Information Page

Functionality to Test: The user shall be able to remove an existing information
page for courses he or she is assigned the privilege course
leader if he or she is authenticated.

Functional Requirement: 6.1

Inputs: - Information page to be removed

Expected Outputs: - Confirmation

Instructions for Tester

1. Authenticate to the system (IC1).

2. Navigate to the 'Information pages' management section for a course
website.

3. Select an existing information page to remove.

4. Confirm removal of the selected information page.

5. Verify that the information page has been removed from the list of information
pages in the "Information page" management section.

Test Case TC14: View Information Page

Functionality to Test: The user shall be able to view an information page.
Functional Requirement: 6.2

Inputs: - Selected information page

Expected Outputs: - Information page for viewing

Instructions for Tester

1. Navigate to a course website.
2. Select an information page to view.
3. Verify that the selected information page is displayed.

Test Case TC15: Import Course Schedule

Functionality to Test: The user shall be able to import a course schedule in the
iCalendar format for courses he or she is assigned the
privilege course leader if he or she is authenticated.

Functional Requirement: 7.1

Inputs: - Schedule in the iCalendar format
Expected Outputs: - Schedule
- Confirmation

173 (186)

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the "Schedule" management section for a course website.
Input the location of the iCalendar file, where requested.

Select Import.

Verify that the schedule has been added correctly (TC20).

oo~

Test Case TC16: Remove Existing Course Schedule

Functionality to Test: The user shall be able to remove an existing course schedule
for courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 7.1

Inputs: None
Expected Outputs: - Confirmation
Instructions for Tester

Authenticate to the system (TC1).

Navigate to the "Schedule" management section for a course website.

Select remove schedule.

Confirm removal of schedule.

Verify that all the scheduled activities have been removed from the list of
scheduled activities in the "Schedule” management section.

ohownN -~

Test Case TC17: Add Scheduled Activity

Functionality to Test: The user shall be able to add a scheduled activity for
courses he or she is assigned the privilege course leader if he
or she is authenticated.

Functional Requirement: 7.2

Inputs: - Title
- Description
- Starting date
- Starting time
- Ending date
- Ending time

Expected Outputs: - Scheduled activity
- Confirmation

Instructions for Tester

1. Authenticate to the system (TC1).

2. Navigate to the "Schedule" management section for a course website.

3. Input title, starting date, starting time, ending date, ending tfime and
description where requested.

Select Preview.

Select Save.

Verify that the scheduled activity has been added to the course schedule
(TC20) and the compiled schedule (TC21).

SARCUE S

174 (186)

Test Case TC18: Edit Existing Scheduled Activity

Functionality to Test: The user shall be able to edit an existing scheduled activity
for courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 7.2

Inputs: - The scheduled activity to edit
- Title
- Description
- Starting date
- Starting time
- Ending date
- Ending time

Expected Outputs: - Scheduled activity
- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

1.

2. Navigate to the "Schedule" management section for a course website.

3. Select the existing scheduled activity to edit.

4. Input ftitle, starting date, starfing time, ending date, ending fime and
description where requested.

5. Select Preview.

6. Select Save.

7. Verify that the scheduled activity has been edited accordingly (TC20 and
TC21).

Test Case TC19: Remove Existing Scheduled Acitivity

Functionality to Test: The user shall be able to remove an existing scheduled
activity for courses he or she is assigned the privilege course
leader if he or she is authenticated.

Functional Requirement: 7.2

Inputs: - The scheduled activity fo remove

Expected Outputs: - Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the "Schedule" management section for a course website.

Select the existing scheduled activity to remove.

Confirm removal of selected scheduled activity.

Verify that the scheduled activity has been removed from the list of scheduled
activities in the "Schedule" management section.

O~

Test Case TC20: View Scheduled Activity from Course Schedule

Functionality to Test: The user shall be able to view a scheduled activity from the
course schedule.

Functional Requirement: 7.3

Inputs: - The selected scheduled activity to view

Expected Outputs: - Detailed information for the selected scheduled activity

175 (186)

Instructions for Tester

1. Navigate to a course website.

2. Select to view the course schedule.

3. Select a scheduled activity from the course schedule.
4. Verify that the details for the activity are displayed.

Test Case TC21: View Scheduled Activity from Compiled Schedule

Functionality to Test: The user shall be able to view scheduled activities from the
compiled schedule, which can be accessed through the
personal page, and the details of the activities.

Functional Requirement: 7.4

Inputs: - Scheduled activity

Expected Outputs: - The description of the selected activity

Instructions for Tester

1. Navigate to the personal page.

2. Navigate to the “Schedule” section under “Personal Links”.

3. Select a schedule activity to view the description of the activity.
4. Verify that the details for the activity are displayed.

Test Case TC22: Export Schedule in iCalendar Format

Functionality to Test: The user shall be able to export the compiled schedule and
the course schedule on the course website.

Functional Requirement: 7.5

Inputs: - The schedule

Expected Outputs: - The schedule in iCalendar format

Instructions for Tester

Navigate to the personal page or the course website.

Navigate to the "Schedule” section.

Select Export this schedule to iCalendar format.

Verify that the schedule was exported by importing it to Google Calendar
and comparing the activities’ times and descriptions.

PO

Test Case TC23: Add Deadline

Functionality to Test: The user shall be able to add deadlines for courses he or
she is assigned the privilege course leader if he or she is
authenticated.

Functional Requirement: 8.1

Inputs: - Title of the deadline

- Date of the deadline

- Description of the deadline
Expected Outputs: - The added deadline

- Confirmation

176 (186)

Instructions for Tester

NOoOOh®WN =

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the "Deadline” section under "Course Leader Links”.
Input title, date and description for the deadline.

Select Preview.

Select Save.

Verify that the deadline is available from the deadline page (TC26).

Test Case TC24: Edit Existing Deadline
Functionality to Test: The user shall be able to edit existing deadlines for courses

he or she is assigned the privilege course leader if he or she
is authenticated.

Functional Requirement: 8.1

Inputs: - The selected deadline

- Title of the deadline

- Date of the deadline

- Description of the deadline
Expected Outputs: - The edited deadline

- Confirmation

Instructions for Tester

NOORhLN =

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the "Deadline” section under "Course Leader Links”.
Select deadline to edit.

Edit title, date or description for the deadline.

Select Preview.

Select Save.

Verify that the deadline is available from the deadline page (TC26).

Test Case TC25: Remove Existing Deadline
Functionality to Test: The user shall be able to remove existing deadlines for

courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 8.1

Inputs:

- The selected deadline

Expected Outputs: - Confirmation

Instructions for Tester

SCOoAhLN~

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the "Deadline” section under "Course Leader Links”.
Select deadline to remove.

Select Confirm.

Verify that the deadline is removed from the deadline page (1C26).

177 (186)

Test Case TC26: View Deadlines

Functionality to Test: The user shall be able to view existing deadlines for a
course.

Functional Requirement: 8.2

Inputs: - The ID of a deadline

Expected Outputs: - The selected deadline

Instructions for Tester

1. Navigate to the course website.

2. Navigate to the "Deadline” section under “"Courses “.
3. Select deadline to view.

4, Verify that the selected deadline is displayed.

Test Case TC27: View Overview of Deadlines

Functionality to Test: The user shall be able to view the overview of deadlines for
courses that the user is registered for.

Functional Requirement: 8.3

Inputs: None

Expected Outputs: - A list of deadlines for courses the user is registered for

Instructions for Tester
1. Navigate to the personal page.
2. Navigate to the "Deadline” section under “Personal Links”.

3. Verify that the deadlines for the courses the user is registered for are
displayed.

Test Case TC28: Upload File

Functionality to Test: The user shall be able to upload files for courses that the
user is assigned the privilege course leader if he or she is
authenticated.

Functional Requirement: 9.1

Inputs: - Title of the file

- Description of the file

- File to upload
Expected Outputs: - Uploaded file

- File description

- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Files” section under "Course Leader Links”.

Input title, description and file to upload.

Select Save.

Verify that the uploaded file is available from the file page (TC31).

SCOoAhGN—~

178 (186)

Test Case TC29: Edit Existing File

Functionality to Test: The user shall be able to edit existing uploaded files for

courses that the user is assigned the privilege course leader
if he or she is authenficated.

Functional Requirement: 9.1

Inputs:

- File to be edited

- Title of the file

- Description of the file
- File to upload

Expected Outputs: - Uploaded file

Instruc

NOoOOhWN =

- File description
- Confirmation

tions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Files” section under "Course Leader Links”.
Select file to be edited.

Edit title, description or file to upload.

Select Save.

Verify that the uploaded file is available from the file page (TC31).

Test Case TC30: Remove Existing File
Functionality to Test: The user shall be able to remove existing uploaded files for

courses that the user is assigned the privilege course leader
if he or she is authenficated.

Functional Requirement: 9.1

Inputs:

- File fo be removed

Expected Outputs: - Confirmation
Instructions for Tester

SCOAhON—~

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Files” section under "Course Leader Links”.
Select file to be removed.

Select Confirm.

Verify that the uploaded file is remnoved from the file page (TC31).

Test Case TC31: Download File
Functionality to Test: The user shall be able to download files for courses he or

she is registered for if he or she is authenticated.

Functional Requirement: 9.2

Inputs: - Username
- Password
Expected Outputs: - The selected file

Instructions for Tester

1.

Authenticate to the system (TC1).

179 (186)

O~ wn

Navigate to a course website.

Navigate to the "Uploaded Files” section of a course website.
Select a file to download.

Verify that the file is downloaded.

Test Case TC32: Add Course Assignment
Functionality to Test: The user shall be able to add course assignments for

courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 10.1

Inputs: - Title of the assignment
- Description of the assignment
Expected Outputs: - The added assignment and confirmation

Instructions for Tester

NOOhWN =

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Assignment” section under the “"Course Leader Links”.
Input title and description for the course assignment.

Select Preview.

Select Save.

Verify that the assignment is available from the assignment page (TC35).

Test Case TC33: Edit Existing Course Assignment
Functionality to Test: The user shall be able to edit existing course assignments for

courses he or she is assigned the privilege course leader if
he or she is authenticated.

Functional Requirement: 10.1

Inputs: - Title of the assignment
- Description of the assignment
Expected Outputs: - The edited assignment and confirmation

Instructions for Tester

NOORA®N -~

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Assignment” section under the “"Course Leader Links”.
Select assignment to edit.

Edit title and description for the course assignment.

Select Preview.

Select Save.

Verify that the assignment is available from the assignment page (TC35).

Test Case TC34: Remove Exisiting Course Assignment
Functionality to Test: The wuser shall be able to remove existing course

assignments for courses he or she is assigned the privilege
course leader if he or she is authenticated.

Functional Requirement: 10.1

180 (186)

Inputs: - Title of the assignment
- Description of the assignment
Expected Outputs: - Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Assignment” section under the “"Course Leader Links”.
Select course assignment to remove.

Select Confirm.

Verify that the assignment is removed from the assignment page (TC35).

SCOhALN~

Test Case TC35: View Course Assignments

Functionality to Test: The user shall be able to view existing course assignments
for a course.

Functional Requirement: 10.2

Inputs: None

Expected Outputs: - List of course assignments for the course

Instructions for Tester

1. Navigate to the course website.
2. Navigate to the “Assignment” section.
3. Verify that the assignments for the course are displayed.

Test Case TC36: Register Results

Functionality to Test: The user shall be able to register results for existing course
assignments for courses he or she is assigned the privilege
course leader or course assistant if he or she is

authenticated.
Functional Requirement: 11.1
Inputs: - Grade

- Course assignment to assign grade to
- User to assign grade to
Expected Outputs: - Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “"Results” section under the "Course Leader Links”.
Enter grades for the users and assignments.

Select Save.

Verify that the grade is available from the register results page (TC36).

SCOoAhLN~

Test Case TC37: View Results

Functionality to Test: The user shall be able o view existing results for a course he
or she is registered for if he or she is authenticated.

181 (186)

Functional Requirement: 11.2
Inputs: None
Expected Outputs: - List of results for the course

Instructions for Tester
1. Authenticate to the system (IC1).
2. Navigate to the course website.

3. Navigate to the "Results” section.
4, Verify that the user’s results for the course are displayed.

Test Case TC38: View Registered Students

Functionality to Test: The user shall be able to view registered users for courses he
or she is assigned the privilege course leader if he or she is
authenticated.

Functional Requirement: 12.1

Inputs: None

Expected Outputs: - List of students registered for the course

Instructions for Tester

1. Authenticate to the system (IC1).

2. Navigate to the course website.

3. Navigate to the "Registrations” section under the "Course Leader Links”.
4. Verify that the registered users for the course are displayed.

Test Case TC39: Confirm Application to Get Registered for Course

Functionality to Test: The user shall be able to accept applying users for courses
he or she is assigned the privilege course leader if he or she
is authenticated.

Functional Requirement: 12.2

Inputs: - Users

Expected Outputs: - List of students for the course

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Navigate to the “Registrations” section under the "Course Leader Links”.
Select student applications to accept.

Select Verify the Selected Users.

Verify that the user is registered for the course (TC38).

SCOoArLN—

Test Case TC40: Apply for Course

Functionality to Test: The user shall be able to apply for a course which he or she
isn‘t already registered in.

Functional Requirement: 12.3

Inputs: None

Expected Outputs: - Updated student status

182 (186)

- Confirmation
Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Select Apply for Course.

Select Apply.

Verify that the student application can be confirmed from the Course Leader
Registrations page (TC39).

oo~

Test Case TC41: Unregister Registered Student

Functionality to Test: A course leader shall be able to remove a previously
registered student from a course.

Functional Requirement: 12.4

Inputs: None

Expected Outputs: - Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Navigate to the course website.

Select the registration option from the Course Leader Links submenu.

Select the Remove (unregister) link corresponding to the student that shall be
unregistered

Select Confirm.

Verify that the student is no longer listed as a registered student for the course
(TC38).

hon -~

oo

Test Case TC42: Add User Account

Functionality to Test: A system administrator shall be able to add user accounts.
Functional Requirement: 13.4
Inputs: - Username
- Password
Expected Outputs: - New User
- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Select Users from the System Administrator submenu.
Input username and password.

Select Add.

Select Confirm.

Verify that the new user can log in (TCT).

SCohAhLN—~

Test Case TC43: Edit User Password

Functionality to Test: A system administrator shall be able to edit user’s
passwords.
Functional Requirement: 13.4

183 (186)

Inputs: - Username
- Password
Expected Outputs: - Updated User
- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Select Users from the System Administrator submenu.

Input the username into the username field under Edit Existing User.
Select the Edit Password link corresponding to the user.

Input the new password.

Press the save button.

Verify that the user can log in using the new password (TC1).

NooOohkowN -~

Test Case TC44: Remove User Account

Functionality to Test: A system administrator shall be able to remove user
accounts,

Functional Requirement: 13.4

Inputs: - Username

Expected Outputs: - Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Select Users from the System Administrator submenu.

Input the username into the username field under Edit Existing User.
Select the Remove link corresponding to the user.

Select Confirm.

Verify that the user can no longer log in (TC1).

SCOohLN—

Test Case TC45a: Edit User Privileges

Functionality to Test: A system administrator shall be able to edit user privileges
to make other users System Administrators.

Functional Requirement: 13.1

Inputs: - Username

Expected Outputs: - Updated user
- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Select Users from the System Administrator submenu.

Input the username into the username field under Edit Existing User.

Select the Edit Privileges link corresponding to the user.

Select the System Administrator checkbox.

Select Save.

Select Confirm.

Verify that the user has access to the System Administrator functions of the
system such as editing user privileges (TC450q).

N OhWN =

184 (186)

Test Case TC45b: Edit User Privileges

Functionality to Test: A system administrator shall be able to edit user privileges
to make other users Course Leader or Course Assistant.

Functional Requirement: 13.1

Inputs: - Username
- Course Code

Expected Outputs: - Updated user

- Confirmation
Instructions for Tester

Authenticate to the system (TC1).

Select Users from the System Administrator submenu.

Input the username into the username field under Edit Existing User.

Select the Edit Privileges link corresponding to the user.

Select the Course Leader or Course Assistant checkbox.

Input course code.

Select Save.

Select Confirm.

Verify that the user has access to Course Leader/Course Assistant functions
such as registering results (TC36).

VWONOOAWN—

Test Case TC46: Add Course Assistant

Functionality to Test: A course leader shall be able to assign course assistants to
courses they are responsible for.

Functional Requirement: 13.2

Inputs: - Username

Expected Outputs: - Added Course Assistant
- Confirmation

Instructions for Tester

Authenticate to the system (TC1).

Authenticate with the system.

Select Course Assistants from the Course Leader Links submenu.

Input the username.

Select Continue.

Select Confirm.

Verify that the user can now add results for students registered for the course
(TC306).

NoOohkowN -~

Test Case TC47: Remove Course Assistant

Functionality to Test: A course leader shall be able to remove course assistants to
courses they are responsible for.

Functional Requirement: 13.2

Inputs: - Course
- Username

Expected Outputs: - Confirmation

Instructions for Tester

185 (186)

o~ N—

Authenticate with the system.

Select Course Assistants from the Course Leader Links submenu.

Select the Remove link corresponding to the Course leader to remove.

Select Confirm.

Verify that the user no longer has access to Course Leader functions for the
course, such as adding course assistants (TC46).

Test Case TC48: Add Course

Functionality to Test: A System Administrator shall be able to add courses to the
system.

Functional Requirement: 13.3

Inputs: - Course Code

Expected Outputs: - New Course and Confirmation

Instructions for Tester

SCOoArLN—

Authenticate with the system.

Select Courses from the System Administrator submenu.

Input the course code in the field corresponding to Add Course Code.
Select Add.

Select Confirm.

Verify that a Course Leader can now be assigned to the course (TC45b).

Test Case TC49: Edit Existing Course

Functionality to Test: A System Administrator shall be able to edit existing courses

in the system.

Functional Requirement: 13.3

Inputs: - Course Code (old)
- Course Code (new)
Expected Outputs: - Updated Course and Confirmation

Instructions for Tester

VONO O AN~

Authenticate with the system.

Select Courses from the System Administrator submenu.

Input the course code in the field corresponding to Edit Course Code.

Select Search.

Select the Edit link corresponding to the course to be edited.

Input the new Course Code

Select Save.

Select Confirm.

Verify that a Course Leader can be assigned to the course using the new
course code but not the old one (TC45b).

186 (186)

