
Project Multitris
Group 23

Marcus Dicander
Måns Olson

Tomas Alaeus
Daniel Boström
Oscar Olsson

1

Table of Contents

1. Introduction..4
1.1. Purpose...4
1.2. Scope...4
1.3. Expected readership..4
1.4. Multitris version history...4
1.5. Summary...4
1.6. Related documents..4
1.7. Glossary.. ..5

2. System Overview...6
2.1. General Description..6
2.2. Overall Architecture Description.. ...7
2.3. Detailed Architecture..9

3. Design Considerations..10
3.1. Assumtions and Dependencies...10

3.1.1. Software and hardware dependencies..10
3.1.2. End-user characteristics...10
3.1.3. Minimal system environment specifications..11
3.1.4. Optimal system environment specifications..11
3.1.5. System evolution...11

3.2. General Constraints.. ...11
4. Graphical User Interface...12

4.1. Menu Overview...12
4.2. Functionality description..12
4.3. Forms...13

5. Design Details..19
5.1 Class Responsibility Collaborator (CRC) Cards..19
5.2 Class Diagram... ...22
5.3 State Charts.. ..23
5.4 Interaction Diagrams..24

5.4.1 General Input Handling..24
5.4.2 Host Game...24
5.4.3 Join Game..25
5.4.4 Singleplayer game..25

5.5. Detailed Design..26
5.5.1. Javadoc...26

Interface ApplicationState..26
Class ApplicationStateManager..27
Class Board..31
Class Brick...34
Class CentralServer..37
Class ClientCommunication...41
Class ControllerMap...44
Class GameLogic...46
Class GameServer..50
Class GameSessionState...53

2

Class InputManager...56
Class LobbyState..58
Class MenuState...65
Class Piece...68
Class PieceGenerator..70
Class Player..73

5.6. Package Diagram...80
6. Functional test cases...80

6.1. Test Descriptions...80
6.1.1. Game properties..80
6.1.2. Game sessions...82
6.1.3. Piece movement..83
6.1.4. Brick placement..85
6.1.5. Powerups...86

7. References..87

3

1. Introduction

1.1. Purpose

This document details the design and architecture considerations of the Multitris project. The entire
project is specified in detail, and the specification allows software engineers to implement the project
accordingly.

1.2. Scope

The Design Document details the design and architecture of the Multitris project. Not included are the
project overview and the project requirements; these are both descibed in the Requirements Document
(RD). For further information about the RD, see the “Related Documents” section below.

1.3. Expected readership

This document is intended for the software engineers tasked with implementing the Multitris project.

1.4. Multitris version history

Version Summary Date Authors

Multitris 1.0 First version of the Design Document (DD) 2008-03-07 Oscar Olsson, Marcus
Dicander, Tomas
Alaeus, Daniel Boström,
Måns Olson

1.5. Summary

The Multitris project is described as a client-server architecture system designed with Java, with separate
subsystems for the Client, Server, and Central Server. The graphical user interface is detailed and
represented by prototype images. The system behaviour is outlined in a set of diagrams, including state
charts and interaction diagrams. Each class and its methods are described in the Javadoc documentation
format. For each requirement in the RD, a functional test case is specified to help evalute the system after
implementation.

1.6. Related documents

The Requirements Document (RD) specifies the project overview and the project requirements. It is the
basis for the Design Document, and is referenced throughout this document.

4

1.7. Glossary

Table 2.

Term Explanation

Java A platform-independent programming language.

JRE 1.5 Java Runtime Environment 1.5, which provides a virtual machine for
running Java (2).

LWJGL Lightweight Java Game Library (4), a library for games creation in Java.

Java Webstart A standardized way to launch Java applications from the Internet.

OpenGL Open Graphics Library (3), a standard for hardware accelerated graphics.

Central server The central server is a server that keeps a list of game servers waiting for
players to join. There is only one central server.

Game server The game server is the program that handles the game lobby and game
sessions. There is one game server for each game being played.

Game A game is the time period from the time that the server is launched until it
is shut down. This includes the lobby in which players can talk and wait
for other players, and any game sessions.

Game session A game session is the time period when the user actually plays the game.

Game lobby The game lobby is a process that allows players to communicate and wait
for others during games, between game sessions. In a sense, it is a virtual
meeting room.

Game board A playing field with a grid of a given size that can hold bricks.

Brick A fundamental game element which can connect to other bricks.

Piece Four connected bricks that can be controlled by a player. Pieces can also
collide with each other and bricks.

Powerup A special brick that can be activated by a player to alter the game board or
gameplay.

5

2. System Overview

2.1. General Description

The system is a client-server architecture including three subsystems: the Game Client, the Game Server,
and the Central Server. An active choice was made to implement the project in the object-oriented
language Java, and in this document is documentation of the standard Javadoc format to support that
choice.

The Game Client uses internal States to represent the different modes of operation inherent in the system.
One state represents the menu mode, one state represents the lobby mode, in which players communicate
with each other while waiting for a game to start, and one state represents the games session mode.

Each Game Client instance communicates with a Game Server for singleplayer and multiplayer sessions.
Available Game Server instances can be accessed via the Central Server, whose primary task is to keep a
list of Game Servers.

6

2.2. Overall Architecture Description

7

Fig. 2.1

Multitris is a multiplayer game system organized into a client-server architecture. Figure 2.1 is a Box-
Line diagram that shows the overall architecture. The system consists of three major parts; the Central
Server, the Game Server, and the Game Client. The Central Server keeps a list of Game Servers, which is
publicly available to any Game Clients. Clients can the Central Server to find Game Servers. A Client
can then request a connection to one of the Game Servers in the list.

The Game Server's task is to keep track of a Game Session. A number of Clients can connect to a Game
Server to participate in a Game Session (i.e. playing together). To change the state of the game, for
example by making a move, the Client sends a request to the Game Server.

Each of the three major parts consists of a number of subsystems. The Central Server has a Game Server
List and a Communication interface. Game Servers that wish to be added or removed to the list can
communicate this via the Communication interface. The Central Server can also notify Clients of
available Game Servers via the Communication interface.

The Game Server has a Communication interface that is used to communicate with the Game Client and
Central Server. Incoming requests are passed on to the Server Logic subsystem. The Server Logic gathers
any action requests from the Game Clients, and then notifies each Client of all action requests made via
the Communication interface. Further, the Server Logic subsystem can request the Game Server to be
added or removed from the Central Server's Game List via the Communication interface.

The Game Client consists of a Communication interface, a Application State Manager, a User Interface
subsystem, and an Input Manager. Player input is handled by the Input Manager, which is passed on to
the Application State Manager. The Application State Manager then passes on the data to another system,
depending on the input. The Client regularly recieves a list of requested actions from the Game Server,
and these are then passed on to the Application State Manager which makes changes to the Application
States accordingly.

8

2.3. Detailed Architecture

9

Fig. 2.3

Fig. 2.4

Fig. 2.2

Application
state manager

 User request
Menu session state

Lobby session state

Game session state

In-game

request

In-menu
request

In-lobby request

Player action

Lobby action

Menu selection

Fig. 2.5

Figures 2.2 through 2.4 above are sequence diagrams showing control and data flow in the system.
Figure 2.5 is a Box-Line diagram of how decisions are made in the Application State Manager. The
process is explained in detail below.

The Application State Manager's responsibility is to provide a single interface to the different Application
States. Any change requested by either the User or the Game Server is routed through the Application
State Manager. Depending on the type of change, the Application State Manager will pass on the request
to a different Application State, which will in turn handle the request.

At all times, User input is passed on to the currently active Application State. Important Application
States are the Menu State, the Lobby State, and the Game Session State. The Menu State uses User input
to provide menu functionality. The Lobby State is active when the User is waiting for a Game Session to
start. When it does, the Game Session State will be the active state.

Possible requests are movement requests from the User (for example navigating a menu, or moving a
piece while in a Game Session), and requests to open or close a Game Server for additional users. In
some cases, the requests will need to be passed on via the Communication interface to the server.

3. Design Considerations

3.1. Assumtions and Dependencies

3.1.1. Software and hardware dependencies

We intend to use the Java platform, with the Lightweight Java Game Library wrapper. This is a tool for
developing games in Java and provides access to the OpenGL library.

The game can be launched via any web browser with a Java Webstart plugin. As for operating systems,
cross-platform compability is always an issue. However, OpenGL and LWJGL are confirmed to work on
three major operating systems, namely Windows XP, Mac OS X and Linux. The system will thereforerun
on all these platforms. At least one user, the host, will need to have a specific port open for a multiplayer
session to work.

3.1.2. End-user characteristics

We target casual gamers, i.e. people who play games on a non-regular basis. Our intended user is a male
between 15-35 with access to a computer network. Ideally, the user has enough technical knowledge to
play games via his browser, and will have a Java Runtime Environment JRE installed on his machine.
The user runs either Windows XP, Mac OS X, Linux and has a computer that supports hardware-
accelerated graphics. Additionally, the user should be able to read and understand English. Familiarity
with the game Tetris (1) is also recommended. The user should ideally use the Internet (reads blogs,
search portals, or chats) to find web games.

10

3.1.3. Minimal system environment specifications

Supported operating systems: Windows XP, Mac OS X, Linux.
1.0+ GHz Intel Pentium processor or equivalent
512 MB of RAM memory
NVIDIA GeForce 4MX or equivalent
50 MB free hard drive space
JRE installed, version 1.5 or higher

3.1.4. Optimal system environment specifications

Supported operating systems: Windows XP, Mac OS X, Linux.
2.0+ GHz Intel Pentium processor or equivalent
1 GB of RAM memory
NVIDIA GeForce FX 7600 or equivalent
50 MB free hard drive space
JRE installed, version 1.5 or higher

3.1.5. System evolution

There are certain fundamental assumptions on which the system is based. These include:
– The operating system on which the system is run supports Java.
– For the clients, support for OpenGL via LWJGL is also assumed.
– A Java Runtime Environment of version 1.5 or higher is installed.
– The TCP/IP protocol is used for network communication.
– For users wishing to host games, the proper network port is open.

As the system environment evolves, these are some of the changes to the system we may have to make:
– New operating systems may not support OpenGL, in which case a different rendering engine may

have to be used.
– New hardware may not support OpenGL, in which case a different rendering engine may have to be

used.

As the user's needs change, these are some changes to the system we may have to make:
– Users may want to communicate globally, in which case a chat subsystem may have to be added to

the central server. Initially, we will only allow players to communicate within games.
– Users may not want to launch a separate game, in which case conversion to a Java Applet may be

required. Java Applets are played from within the web browser.

3.2. General Constraints

The hardware and software environment constraints are outlined in the above section. For the purpose of
standardization, the game is built using OpenGL graphics technology. This will have a major impact on
system design as the system will have to comply to a set of given standards.

11

The Central Server is a major component of the system. The distributed system packages will contain
information on how to access the Central Server, and all clients will thus be able to communicate with
each other. Therefore, it is a vital resource that must be stable enough for continuous operation. It can be
instanced several times, but the primary global instance must be available at all times.

Since the system is a Java application that can be started via Webstart, the system will need to have a
digital certificate for access to network functions. The reason is that unsigned Webstart applications are
run in a so-called “sandbox” mode with very limited access to the client platform.

4. Graphical User Interface

4.1. Menu Overview

When the application starts the user is presented with the main menu (figure 4.1). The user may choose
between the following options:

Host game
Lets the user start a network game. The user is then promted for a name and the maximum number of
players allowed in the session (figure 4.2). The game then enters a ”waiting for players” lobby state
(figure 4.3). At any time after this, the user may start the game session.

Join game
Prompts the user for a name (figure 4.4). The user is then presented with a list of network games that he
can join (figure 4.5). The user may then select a game to join, upon which he enters the lobby and waits
for the game to start (figure 4.5).

Singleplayer
Let the user start a singleplayer game session (figure 4.6).

Help
Presents the user with help documentation for the game (figure 4.7).

Exit
Exits the game.

Once in a game session, the user can access the menu by pressing ”Escape” on his keyboard.

4.2. Functionality description

During the game, the user can control the falling pieces by moving them left or right with the
corresponding arrow keys, accelerate downward movement with the arrow down key, or rotating them by
pressing the up arrow. In a multiplayer session the users control one piece each and they all share the

12

same game board. The numbers 1 through 3 can be used to activate the corresponding powerups (figure
4.6). The user can also see the names of other users and the team's score, in the top left corner.

Control of a piece ends when the piece reaches the bottom of the board or on top of another fixated brick.
Bricks cannot intersect each other. If two bricks collide, they will either be removed with a penalty to the
score or be moved away from each other, depending on how long the players try to force them together.

If a row is completely filled with bricks, that row will be removed resulting in all the above bricks falling
down until they reach the bottom or a fixated brick. A player that completes a row with one or more
powerup bricks will receive those powerups unless his powerup stack is full (figure 4.6). If the non
completed rows stack up to the top of the screen, the game session ends.

4.3. Forms

Main menu
[Button] Host game; go to Host game

triggers: hostGame()
[Button] Join game; go to Join game

triggers: joinGame()
[Button] Singleplayer; go to Game session

triggers: startSingleplayer()
[Button] Help; go to Help

triggers: showHelp()
[Button] Exit

triggers: exit()
References functional requirement 6.1.1 #6
Accessed at application startup
Displayed by setStateActive(ApplicationStateManager.MENU, true)

Host game
[Text field] Nickname
[Text field] # of players
[Checkbox] Private?
[Button] Create game; go to Host game – waiting for players

triggers: hostGame()
[Button] Back; go to Main menu

triggers: leaveState()
References functional requirement 6.1.2 #8 and #9
Accessed from Main menu
Displayed by hostGame()

Host game - waiting for players
[List] Player list
[Chat area] Chat
[Button] Launch game; go to Game session

triggers: startMultiplayer()

13

[Button] Back; go to Main menu
triggers: leaveState()

References functional requirement 6.1.2 #8, #9 and #11
Accessed from Host game
Displayed by hostGame()

Join game
[Text field] Nickname
[Button] Find games; go to Join game – game list

triggers: listGames()
[Button] Back; go to Main menu

triggers: leaveState()
References functional requirement 6.1.2 #10
Accessed from Main menu
Displayed by joinGame()

Join game – game list
[List] Game list
[Button] Join game; go to Join game – waiting for players

triggers: joinGame()
[Button] Back; go to Join game

triggers: cancel()
References functional requirement 6.1.2 #10
Accessed from Join game
Displayed by listGames()

Join game – waiting for players
[List] Game list
[Chat area] Chat
[Button] Back; go to Join game - game list

triggers: cancel()
References functional requirement 6.1.2 #10 and #11
Accessed from Join game – game list
Displayed by joinGame(String address)

Game session
[Text display] Score
[List] Player list
[List] Powerup list

References functional requirement 6.1.1 #1 through #4
Accessed from Join game – waiting for players, Host game – waiting for
players and Main menu
Displayed by startMultiplayer() and startSingelplayer()

Help
[Text display] Help document

14

[Button] Back; go to Main menu
triggers: cancel()

References functional requirement 6.1.1 #5
Accessed from Main menu
Displayed by showHelp()

Fig. 6.1

15

Fig. 6.2

Fig. 6.3

16

Fig. 6.4

Fig. 6.5

17

Fig. 6.6

Fig. 6.7

18

5. Design Details

5.1 Class Responsibility Collaborator (CRC) Cards

Class ApplicationStateManager
Responsibilities
- Redirects input depending on the current
ApplicationState.

Collaborators
InputManager
ApplicationState

Abstract Class ApplicationState
Responsibilities
- Superclass for the different states.

Collaborators
ApplicationStateManager

Class MenuState
Responsibilities
- Renders menu.
- Handles menu actions.

Collaborators
ApplicationStateManager

Class LobbyState
Responsibilities
- Renders the lobby.
- Handles lobby actions.

Collaborators
ApplicationStateManager
ClientCommunication

Class GameSessionState
Responsibilities
- Renders the current game session.
- Handles game session actions.

Collaborators
ApplicationStateManager
ClientCommunication

Class GameLogic
Responsibilities
- Handles game logic.

Collaborators
Player
Board

19

Class Board
Responsibilities
- Stores fixed Bricks.

Collaborators
GameLogic
Brick

Class Brick
Responsibilities
- Knows which player it belongs to.
- Knows brick type (powerup?).

Collaborators
Board

Class Piece
Responsibilities
- Has a list of bricks contained in the piece.

Collaborators
Brick
PieceGenerator
Player

Class PieceGenerator
Responsibilities
- Generates pieces for players.

Collaborators
Piece
Player

Class Player
Responsibilities
- Keeps track of the player's current piece.
- Keeps track of the player's powerups.
- Keeps track of player info.

Collaborators
PieceGenerator
GameLogic
Piece

Class InputManager
Responsibilities
- Interprets and forwards player actions.

Collaborators
ApplicationStateManager
ControllerMap

20

Class ClientCommunication
Responsibilities
- Handles network communication.

Collaborators
GameServer
CentralServer
ApplicationState

Class ControllerMap
Responsibilities
- Translates player input into commands.

Collaborators
InputManager

Class GameServer
Responsibilities
- Relays player actions to all users.

Collaborators
ClientCommunication

Class CentralServer
Responsibilities
- Keeps a list of all open GameServers.

Collaborators
ClientCommunication

21

5.2 Class Diagram

Legend:

22

Association. The Board
and GameLogic classes
are associated.

Aggregation. For
example, Board has
several Bricks.

Inheritance. The
different states inherit
the ApplicationState.

5.3 State Charts

23

5.4 Interaction Diagrams

5.4.1 General Input Handling

5.4.2 Host Game

24

ApplicationStateMgr

MenuState

LobbyState ClientCommunication

GameServer

CentralServerGameState

3. createServer()

5. connect()

7. publishServer()

6. publishServer()

1. hostGame()

9. startGame()

2. hostGame()

8. createGame()

4. connect()

ApplicationStateMgr

InputManager

ApplicationState

2.forwardAction()

4. performStateAction()

3. getState()

ControllerMap

1. parseInput()

5.4.3 Join Game

5.4.4 Singleplayer game

25

ApplicationStateMgr

MenuState

LobbyState ClientCommunication

GameServer

GameState

5. connect()
1.singlePlayerGame()

7. startGame()

2. singlePlayerGame()

6. createGame()

3.createServer()

4. connect()

ApplicationStateMgr

MenuState

LobbyState ClientCommunication

GameServer

CentralServerGameState

6. connect()

4. getServerList()

3. getServerList()

1. joinGame()

8. startGame()

2. joinGame()

7. createGame()

5. connect()

5.5. Detailed Design

5.5.1. Javadoc

Interface ApplicationState

All Known Implementing Classes:
GameSessionState, LobbyState, MenuState

public interface ApplicationState

This is the interface for the different application states.

Method Summary
 void doInputAction(java.lang.String action)

 Updates the state according to user action.

 void render(Graphics g)
 Renders the current state.

Method Detail

render

void render(Graphicsg)

Renders the current state.

Parameters:
g - The graphics context upon which to render the state.

doInputAction

void doInputAction(java.lang.Stringaction)

26

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#render(Graphics)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#doInputAction(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html

Updates the state according to user action.

Parameters:
action - A String representing an action.

Class ApplicationStateManager

java.lang.Object
 ApplicationStateManager

public class ApplicationStateManagerextends java.lang.Object

Keeps track of the current states and switches between them. Input provided by the player is routed to the
state with the lowest int index. Network actions are routed to the GAME if possible, otherwise to the
LOBBY state. This class will extend the BasicGame class and thus have an update loop. This loop will be
responsible for gathering network commands, and will call forwardNetworkActions.

Field Summary
private boolean[] activeStates

 The states currently active.
static int GAME

 Gamestate.
static int LOBBY

 Gamestate.
static int MENU

 Gamestate.
static ClientCommunication network

 For server communication.
private

 ApplicationState[]
states
 Contains the actual states.

Constructor Summary

27

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#states
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#network
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#MENU
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#LOBBY
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#GAME
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#activeStates

ApplicationStateManager()

Method Summary
 void ApplicationStateManager()

 Constructor for the ApplicationStateManager class

 void forwardInput(java.lang.String action)
 Forwards actions from InputManager to the current state.

 void forwardNetworkActions(java.lang.String[] actions)
 Forwards server actions from the ClientCommunication class to current state.

static void main(java.lang.String[] args)
 This is the main method called on application startup.

 void setStateActive(int state, boolean value)
 Sets a state as active.

 void switchState(int state)
 Change the current state.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

MENU

public static final int MENU

Gamestate.

See Also:
Constant Field Values

LOBBY

public static final int LOBBY

Gamestate.

28

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#ApplicationStateManager.MENU
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#switchState(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#setStateActive(int, boolean)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#main(java.lang.String[])
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#forwardNetworkActions(java.lang.String[])
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#forwardInput(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#ApplicationStateManager()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html#ApplicationStateManager()

See Also:
Constant Field Values

GAME

public static final int GAME

Gamestate.

See Also:
Constant Field Values

network

public static ClientCommunication network

For server communication.

states

private ApplicationState[] states

Contains the actual states.

activeStates

private boolean[] activeStates

The states currently active.

Constructor Detail

ApplicationStateManager

public ApplicationStateManager()

Method Detail

29

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#ApplicationStateManager.GAME
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#ApplicationStateManager.LOBBY

ApplicationStateManager

public void ApplicationStateManager()

Constructor for the ApplicationStateManager class

switchState

public void switchState(intstate)

Change the current state.

Parameters:
state - One of the three predefined states MENU, LOBBY and GAME.

forwardInput

public void forwardInput(java.lang.Stringaction)

Forwards actions from InputManager to the current state.

Parameters:
action - A String representing an action.

forwardNetworkActions

public void forwardNetworkActions(java.lang.String[]actions)

Forwards server actions from the ClientCommunication class to current state. This method is
called by the program's update loop.

Parameters:
actions - An array of Strings representing actions to perform.

setStateActive

public void setStateActive(intstate,
 booleanvalue)

Sets a state as active.

30

Parameters:
state - The state to be set.
value - true for active.

main

public static void main(java.lang.String[]args)

This is the main method called on application startup.

Class Board

java.lang.Object
 Board

public class Boardextends java.lang.Object

A class representing a Board.

Field Summary
 Brick

[][]
board
 A matrix containing the Bricks in this Board.

Constructor Summary
Board(int width, int height)
 Constructor for Board.

Method Summary
 void fixPiece(Piece piece)

 Fixates a Piece on the Board by splitting it into Bricks and moving them to this Board.

 Brick getBrick(int x, int y)

31

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#getBrick(int, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#fixPiece(Piece)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#Board(int, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#board
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html

 Gets the Brick in a specific position.

 Brick removeBrick(int x, int y)
 Removes the Brick at the specified position.

 int[] removeRow(int y)
 Removes all the Bricks in the specified row.

 Brick setBrick(int x, int y, Brick brick)
 Adds a Brick to the specified position.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

board

public Brick[][] board

A matrix containing the Bricks in this Board.

Constructor Detail

Board

public Board(intwidth,
 intheight)

Constructor for Board.

Parameters:
width - The width of the Board.
height - The height of the Board.

Method Detail

removeRow

public int[] removeRow(inty)

32

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#setBrick(int, int, Brick)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#removeRow(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html#removeBrick(int, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html

Removes all the Bricks in the specified row. All the bricks above the specified row that has
been fixated will move down one step. If any of the removed bricks contains a powerup it
will be extracted and returned. This method is called by doActions in the GameLogic class.

Parameters:
y - The index of the row to be removed.

Returns:
A list containing the extracted powerups.

See Also:
GameLogic

fixPiece

public void fixPiece(Piecepiece)

Fixates a Piece on the Board by splitting it into Bricks and moving them to this Board. This
method is called by doActions in the GameLogic class.

Parameters:
piece - The Piece to fixate.

See Also:
GameLogic

removeBrick

public Brick removeBrick(intx,
 inty)

Removes the Brick at the specified position. This method is called by doActions in the
GameLogic class.

Parameters:
x - The x-coordinate of the Brick to be removed.
y - The y-coordinate of the Brick to be removed.

Returns:
The Brick that was removed.

See Also:
GameLogic

setBrick

public Brick setBrick(intx,
 inty,
 Brickbrick)

33

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html

Adds a Brick to the specified position. If the specified position already contains a brick it will
be returned. This method is called by doActions in the GameLogic class.

Parameters:
x - The x-coordinate of the brick to be added to the Board.
y - The y-coordinate of the brick to be added to the Board.
brick - The Brick to be added to the Board.

Returns:
The previous Brick the specified position, or null if the specified position was empty.

See Also:
GameLogic

getBrick

public Brick getBrick(intx,
 inty)

Gets the Brick in a specific position. This method is called by doActions in the GameLogic
class.

Parameters:
x - The x-coordinate.
y - The y-coordinate.

Returns:
The brick at the specified position, or null if the specified position was empty.

See Also:
GameLogic

Class Brick

java.lang.Object
 Brick

public class Brickextends java.lang.Object

Class representing a Brick.

34

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html

Field Summary
private

 int
edges
 An int representing where the Brick is connected to other Bricks.

private
 Player

owner
 The player that is or was in control of this Brick.

private
 int

powerupType
 The type of the powerup contained, 0 if none.

Constructor Summary
Brick(Player player, int edges)
 Constructor for Brick.

Method Summary
 int getEdges()

 Gets the neighbors of this Brick.

 Player getPlayer()
 Retrieves the owner of this Brick.

 int getPowerup()
 Retrieves the powerup contained in this brick.

 void removeEdges(int edges)
 Removes edges from this Brick where a bit is set to 1.

 void setPowerup(int powerup)
 Sets the powerup contained in this Brick.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

owner

private Player owner

The player that is or was in control of this Brick.

35

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#setPowerup(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#removeEdges(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#getPowerup()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#getPlayer()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#getEdges()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#Brick(Player, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#powerupType
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#owner
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html#edges

edges

private int edges

An int representing where the Brick is connected to other Bricks. Each bit is 1 if the edge
exists or 0 otherwise. The four least significant bits represent, from most significant to least
significant: Top, right, down, left.

powerupType

private int powerupType

The type of the powerup contained, 0 if none.

Constructor Detail

Brick

public Brick(Playerplayer,
 intedges)

Constructor for Brick.

Parameters:
player - The player controlling the Brick.
edges - The neighbors of the brick.

Method Detail

setPowerup

public void setPowerup(intpowerup)

Sets the powerup contained in this Brick.

Parameters:
powerup - The powerup type, 0 if none.

36

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html

getPowerup

public int getPowerup()

Retrieves the powerup contained in this brick.

Returns:
The type of the powerup contained, 0 if none.

getPlayer

public Player getPlayer()

Retrieves the owner of this Brick.

Returns:
Returns the player that owns the brick.

getEdges

public int getEdges()

Gets the neighbors of this Brick.

Returns:
Returns the number of edges with neighbours.

removeEdges

public void removeEdges(intedges)

Removes edges from this Brick where a bit is set to 1.

Parameters:
edges - The edges to remove.

Class CentralServer

java.lang.Object

37

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html

 CentralServer

public class CentralServerextends java.lang.Object

Class representing the central server.

Field Summary
private gameServers

 Array of connection sockets, one per game server.
private serverList

 List containing information about any game servers.
private

 ServerSocket
serverSocket
 A ServerSocket for listening to incoming connections.

Constructor Summary
CentralServer()
 Constructor for CentralServer.

Method Summary
 void addGameServer(java.lang.String[] serverInfo)

 Adds a server to the game server list.

 getGameServers()
 Gets the list of game servers.

 java.lang.String
[]

getServer(java.lang.String name)
 Gets the game server with the given name.

 void mainLoop()
 The main loop, which is responsible for checking server availability
(removes game servers that cannot be contacted.

 void removeGameServer(java.lang.String address)
 Removes a server from the game server list.

 void resetTimeout(java.lang.String address)
 Resets the timeout of the given server.

Methods inherited from class java.lang.Object

38

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#resetTimeout(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#removeGameServer(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#mainLoop()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#getServer(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#getGameServers()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#addGameServer(java.lang.String[])
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#CentralServer()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#serverSocket
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#serverList
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/CentralServer.html#gameServers

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

serverSocket

private ServerSocket serverSocket

A ServerSocket for listening to incoming connections.

gameServers

private gameServers

Array of connection sockets, one per game server. These connections are closed as soon as
the server has completed sending its information.

serverList

private serverList

List containing information about any game servers. Contains each server's name, address,
the maximum number of players, information about whether the server is public or not (true
or false), and the server's timeout. The format is as specified: [name address nrOfPlayers
privateGame timeout]

Constructor Detail

CentralServer

public CentralServer()

Constructor for CentralServer.

Method Detail

39

mainLoop

public void mainLoop()

The main loop, which is responsible for checking server availability (removes game servers
that cannot be contacted. The timeout is incremented for each game server in regular
intervals, and any servers with too great a timeout are removed. It is each game server's
responsiblity to contact this central server and reset the timeout.

resetTimeout

public void resetTimeout(java.lang.Stringaddress)

Resets the timeout of the given server.

Parameters:
address - The address of the game server whose timeout to reset.

getServer

public java.lang.String[] getServer(java.lang.Stringname)

Gets the game server with the given name.

Parameters:
name - The name of the game server to retrieve.

Returns:
The information of the game server with the given name, or null if it does not exist.

addGameServer

public void addGameServer(java.lang.String[]serverInfo)

Adds a server to the game server list.

Parameters:
serverInfo - A list of strings containing information about the server.

removeGameServer

public void removeGameServer(java.lang.Stringaddress)

40

Removes a server from the game server list.

Parameters:
address - The unique address of the server to be removed.

getGameServers

public getGameServers()

Gets the list of game servers.

Returns:
A list of strings containing information about the server.

Class ClientCommunication

java.lang.Object
 ClientCommunication

public class ClientCommunicationextends java.lang.Object

A class for handling communication between the client and the GameServer or CentralServer.

Field Summary
static int CENTRAL_SERVER

 An int representing the CentralServer.
private

static java.lang.String
CENTRAL_SERVER_ADDRESS
 The address of the currently active CentralServer.

private Socket centralServerSocket
 A socket connected to the current CentralServer.

static int GAME_SERVER
 An int representing the GameServer.

private
 java.lang.String

gameServereAddress
 The address of the currently active GameServer.

41

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#gameServereAddress
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#GAME_SERVER
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#centralServerSocket
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#CENTRAL_SERVER_ADDRESS
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#CENTRAL_SERVER

private Socket gameServerSocket
 A socket connected to the current GameServer.

Constructor Summary
ClientCommunication(java.lang.String centralServerAddress)
 Constructor for ClientCommunication.

Method Summary
 java.lang.String

[]
getActions(int server)
 Gets any new actions sent by a given server.

 void sendAction(java.lang.String action, int server)
 Sends an action to the current GameServer.

 void setGameServer(java.lang.String gameServerAddress)
 Sets the current GameServer.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

GAME_SERVER

public static final int GAME_SERVER

An int representing the GameServer.

CENTRAL_SERVER

public static final int CENTRAL_SERVER

An int representing the CentralServer.

42

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#setGameServer(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#sendAction(java.lang.String, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#getActions(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#ClientCommunication(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ClientCommunication.html#gameServerSocket

CENTRAL_SERVER_ADDRESS

private static final java.lang.String CENTRAL_SERVER_ADDRESS

The address of the currently active CentralServer.

gameServereAddress

private java.lang.String gameServereAddress

The address of the currently active GameServer.

gameServerSocket

private Socket gameServerSocket

A socket connected to the current GameServer.

centralServerSocket

private Socket centralServerSocket

A socket connected to the current CentralServer.

Constructor Detail

ClientCommunication

public ClientCommunication(java.lang.StringcentralServerAddress)

Constructor for ClientCommunication.

Parameters:
centralServerAddress - The address of the current CentralServer.

Method Detail

43

setGameServer

public void setGameServer(java.lang.StringgameServerAddress)

Sets the current GameServer.

Parameters:
gameServerAddress - The address of the current GameServer.

sendAction

public void sendAction(java.lang.Stringaction,
 intserver)

Sends an action to the current GameServer. This method is called by the doInputAction
methods of the GameSessionState and LobbyState classes.

Parameters:
action - The action to send.
server - The server to send the action to. Should be either GAME_SERVER or
CENTRAL_SERVER.

See Also:
GameSessionState, LobbyState

getActions

public java.lang.String[] getActions(intserver)

Gets any new actions sent by a given server. This method is called by the update loop of the
ApplicationStateManager.

Parameters:
server - The server whose actions to get. Should be either GAME_SERVER or
CENTRAL_SERVER.

See Also:
ApplicationStateManager

Class ControllerMap

java.lang.Object
 ControllerMap

44

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html

public class ControllerMapextends java.lang.Object

A class for mapping user input to in-game commands.

Constructor Summary
ControllerMap()
 Constructor for the ControllerMap.

Method Summary
 java.lang.String parseInput(java.lang.String input)

 Parses an input string and converts it to an in-game action.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

ControllerMap

public ControllerMap()

Constructor for the ControllerMap.

Method Detail

parseInput

public java.lang.String parseInput(java.lang.Stringinput)

Parses an input string and converts it to an in-game action. This method is called by
getAction in the InputManager class.

Parameters:
input - The input to parse.

45

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html#parseInput(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html#ControllerMap()

Returns:
An action depending on the input.

See Also:
InputManager

Class GameLogic

java.lang.Object
 GameLogic

public class GameLogicextends java.lang.Object

The GameLogic class, responsible for the game logic. For example, user commands are handled by the
game logic, which then determines whether they are valid or not.

Field Summary
private
 Board

board
 The game Board used in the current game session.

private

players
 The list of players participating in the game.

Constructor Summary
GameLogic(players, int width, int height)
 The constructor for GameLogic.

Method Summary
 void doActions(java.lang.String[] actions)

 Performs a list of given actions in order from first to last.
private
 void

dropPiece(Player player)
 Moves the given player's piece downward as far as possible, and then fixates it.

 Board getBoard()
 Gets the game Board used in the current game session.

46

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#getBoard()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#dropPiece(Player)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#doActions(java.lang.String[])
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#GameLogic(, int, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#players
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#board
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/InputManager.html

 getPlayers()
 Gets a list of the players participating in the game session.

private
 boolean

movePiece(Player player, int direction)
 Moves a player's piece in the specified direction.

private
 void

rotatePiece(Player player, int clockwise)
 Rotates the player's piece a given number of steps.

private
 void

usePowerup(Player player, int slot)
 Uses the powerup in the given slot, held by the given player.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

players

private players

The list of players participating in the game.

board

private Board board

The game Board used in the current game session.

Constructor Detail

GameLogic

public GameLogic(players,
 intwidth,
 intheight)

The constructor for GameLogic.

Parameters:

47

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#usePowerup(Player, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#rotatePiece(Player, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#movePiece(Player, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html#getPlayers()

players - The players participating in the game session.
width - The width of the Board.
height - The height of the Board.

Method Detail

getBoard

public Board getBoard()

Gets the game Board used in the current game session. This method is called by the render
method of the GameSessionState class.

Returns:
the board

See Also:
GameSessionState

getPlayers

public getPlayers()

Gets a list of the players participating in the game session.

Returns:
A list containing the participating players.

doActions

public void doActions(java.lang.String[]actions)

Performs a list of given actions in order from first to last. Each action is represented as a
string. For example, rotating "player three"'s current piece counter-clockwise one step could
be similar to "p3 ccw1". This method is called by doNetworkActions in GameSessionState.
This method calls usePowerup, movePiece, rotatePiece, and dropPiece.

Parameters:
actions - A list of strings representing the actions to perform.

See Also:
GameSessionState

48

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Board.html

usePowerup

private void usePowerup(Playerplayer,
 intslot)

Uses the powerup in the given slot, held by the given player. This method is called by
doActions.

Parameters:
player - The player that is holding the powerup to be used.
slot - The slot containing the powerup.

movePiece

private boolean movePiece(Playerplayer,
 intdirection)

Moves a player's piece in the specified direction. The piece is only moved if the requested
move is valid. This method is called by doActions.

Parameters:
player - The player whose piece to move.
direction - The direction in which to move the piece.

Returns:
True if the piece was successfully moved, false otherwise.

rotatePiece

private void rotatePiece(Playerplayer,
 intclockwise)

Rotates the player's piece a given number of steps. This method is called by doActions, and
in turn calls the rotate method of the Piece class.

Parameters:
player - The player whose piece to rotate.
clockwise - The number of steps to rotate in a clockwise direction. Negative values
will rotate the piece counter-clockwise.

See Also:
Piece

49

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html

dropPiece

private void dropPiece(Playerplayer)

Moves the given player's piece downward as far as possible, and then fixates it. This method
is called by doActions.

Parameters:
player - The player whose piece to drop.

Class GameServer

java.lang.Object
 GameServer

public class GameServerextends java.lang.Object

Class representing a game server. The class uses sockets to collect input from the clients, which are then
sent with timestamps to each client. Each client is then responsible for determining whether a command
is valid or not.

Field Summary
private actions

 Array of actions to perform.
private
 boolean

gameStarted
 The gameStarted property.

private int numberOfPlayers
 The number of players in the game.

private players
 Array of connection sockets, one per player.

private
 ServerSocket

serverSocket
 A ServerSocket for listening to incoming connections.

private int timeStamp
 The timeStamp property holds the current time stamp of the server.

50

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#timeStamp
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#serverSocket
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#players
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#numberOfPlayers
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#gameStarted
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#actions
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html

Constructor Summary
GameServer(int numberOfPlayers)
 Constructor for GameServer.

Method Summary
 void mainLoop()

 The main loop, responsible for collecting commands and activating sendPulse at given
intervals.

 void sendPulse()
 Synchronizes the clients by sending collected commands, bundled with timestamps.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

serverSocket

private ServerSocket serverSocket

A ServerSocket for listening to incoming connections.

players

private players

Array of connection sockets, one per player.

actions

private actions

Array of actions to perform.

51

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#sendPulse()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#mainLoop()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameServer.html#GameServer(int)

gameStarted

private boolean gameStarted

The gameStarted property. True when the game session is running, false otherwise.

numberOfPlayers

private int numberOfPlayers

The number of players in the game.

timeStamp

private int timeStamp

The timeStamp property holds the current time stamp of the server. It is incremented once
each time a pulse is sent.

Constructor Detail

GameServer

public GameServer(intnumberOfPlayers)

Constructor for GameServer.

Parameters:
numberOfPlayers - The number of players to participate in the game.

Method Detail

mainLoop

public void mainLoop()

The main loop, responsible for collecting commands and activating sendPulse at given
intervals.

52

sendPulse

public void sendPulse()

Synchronizes the clients by sending collected commands, bundled with timestamps. This
method is called by mainLoop.

Class GameSessionState

java.lang.Object
 GameSessionState

All Implemented Interfaces:
ApplicationState

public class GameSessionStateextends java.lang.Objectimplements ApplicationState

A class representing the game session state.

Field Summary
private

 java.lang.StringBuffer
chatMessage
 The chatMessage being written.

private boolean isChatting
 The isChatting property, indicating whether the user is currently
entering a chat message or not.

private GameLogic logic
 The GameLogic instance used in this game session.

private
 ApplicationStateManager

manager
 The ApplicationStateManager controlling this state.

Constructor Summary

53

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#manager
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#logic
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#isChatting
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#chatMessage
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html

GameSessionState(ApplicationStateManager manager, players,
int width, int height)
 The constructor for GameSessionState.

Method Summary
 void doInputAction(java.lang.String action)

 Updates the state according to user action.

 void doNetworkActions(java.lang.String[] actions)
 Updates the state according to the given server actions.

private
 void

leaveState()
 Leaves the GameSessionState and enters the MenuState.

 void render(Graphics g)
 Renders the current state.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

manager

private ApplicationStateManager manager

The ApplicationStateManager controlling this state.

logic

private GameLogic logic

The GameLogic instance used in this game session.

isChatting

private boolean isChatting

54

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#render(Graphics)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#leaveState()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#doNetworkActions(java.lang.String[])
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#doInputAction(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameSessionState.html#GameSessionState(ApplicationStateManager, , int, int)

The isChatting property, indicating whether the user is currently entering a chat message or
not.

chatMessage

private java.lang.StringBuffer chatMessage

The chatMessage being written.

Constructor Detail

GameSessionState

public GameSessionState(ApplicationStateManagermanager,
 players,
 intwidth,
 intheight)

The constructor for GameSessionState.

Parameters:
manager - The manager of this state.
players - A list containing the different players to participate in the game session.
width - The width of the Board.
height - The height of the Board.

Method Detail

render

public void render(Graphicsg)

Renders the current state.

Specified by:
render in interface ApplicationState

Parameters:
g - The graphics context upon which to render the state.

doInputAction

public void doInputAction(java.lang.Stringaction)

55

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#render(Graphics)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html

Updates the state according to user action. This method calls sendAction in
ClientCommunication unless isChatting is true, in which case chatMessage is updated.

Specified by:
doInputAction in interface ApplicationState

Parameters:
action - A String representing an action.

doNetworkActions

public void doNetworkActions(java.lang.String[]actions)

Updates the state according to the given server actions. This method calls the doActions
method of the GameLogic class.

Parameters:
actions - An array of Strings representing actions to perform.

See Also:
GameLogic

leaveState

private void leaveState()

Leaves the GameSessionState and enters the MenuState.

Class InputManager

java.lang.Object
 InputManager

public class InputManagerextends java.lang.Object

A class that gathers user input, passes it through a ControllerMap, and then sends it to an
ApplicationStateManager.

56

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#doInputAction(java.lang.String)

Field Summary
private int inputDeviceId

 An integer representing the current input device.
private

 ApplicationStateManager
manager
 The ApplicationStateManager to recieve any input.

private ControllerMap map
 Maps player input to in-game commands, for easy setup of
multiple input configurations.

Constructor Summary
InputManager(ControllerMap cmap, int inputDeviceID)
 Constructor for the InputManager class.

Method Summary
 java.lang.String getAction(java.lang.String input)

 Get the in-game action associated with the the given input.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

inputDeviceId

private int inputDeviceId

An integer representing the current input device.

manager

private ApplicationStateManager manager

The ApplicationStateManager to recieve any input.

57

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/InputManager.html#getAction(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/InputManager.html#InputManager(ControllerMap, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/InputManager.html#map
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/InputManager.html#manager
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/InputManager.html#inputDeviceId

map

private ControllerMap map

Maps player input to in-game commands, for easy setup of multiple input configurations.

Constructor Detail

InputManager

public InputManager(ControllerMapcmap,
 intinputDeviceID)

Constructor for the InputManager class.

Parameters:
cmap - The ControllerMap to use in this InputManager.
inputDeviceID - The ID of the input device to use.

Method Detail

getAction

public java.lang.String getAction(java.lang.Stringinput)

Get the in-game action associated with the the given input. This method is called when input
is gathered, and in turn calls the parseInput method of the ControllerMap class.

Parameters:
input - A string containing the user input.

Returns:
A string representing the associated action, as given by the ControllerMap.

See Also:
ControllerMap

Class LobbyState

java.lang.Object
 LobbyState

58

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ControllerMap.html

All Implemented Interfaces:
ApplicationState

public class LobbyStateextends java.lang.Objectimplements ApplicationState

Class representing a lobby state.Implements the ApplicationState interface. The lobby state contains the
host and join multiplayer submenus together with a chat area.

Field Summary
private int activeWindow

 The submenu currently beeing navigated.
private static int HOST_WINDOW

 One possible submenu.
private boolean isHost

 True if a game session is being hosted.
private static int JOIN_WINDOW

 One possible submenu.
private static int LIST_WINDOW

 One possible submenu.
private static int LOBBY_WINDOW

 One possible submenu.
private

 ApplicationStateManager
manager
 The ApplicationStateManager controlling this state.

private int numberOfPlayers
 The number of players set in a hosted game.

Constructor Summary
LobbyState(ApplicationStateManager manager)
 Constructor for LobbyState.

Method Summary
private
 void

cancel()
 Goes one step back in the menu hierarchy.

private
 void

createGame(java.lang.String nickname, int numberOfPlayers,

59

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#createGame(java.lang.String, int, boolean)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#cancel()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#LobbyState(ApplicationStateManager)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#numberOfPlayers
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#manager
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#LOBBY_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#LIST_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#JOIN_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#isHost
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#HOST_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#activeWindow
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html

boolean privateGame)
 Creates a new game session.

 void doInputAction(java.lang.String action)
 Updates the state according to user action.

 void doNetworkActions(java.lang.String[] actions)
 Updates the state according to the given server actions.

 void hostGame()
 Sets up a hosted game.

private
 void

joinGame(java.lang.String address)
 Joins a hosted multiplayer game session.

private
 void

launchGame()
 Starts a multiplayer game session.

private
 void

leaveState(int newState)
 Leaves the LobbyState and enters the MenuState or GameSessionState.

 void listGames()
 Gets available games from CentralServer.

 void render(Graphics g)
 Renders the current state.

private
 void

sendMessage(java.lang.String message)
 Constructs a chat message to be sent to the server.

private
 void

showMessage(java.lang.String message)
 Displays a received chat message.

private
 void

startMultiplayer()
 Starts a multiplayer game session.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

HOST_WINDOW

private static final int HOST_WINDOW

One possible submenu.

60

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#startMultiplayer()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#showMessage(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#sendMessage(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#render(Graphics)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#listGames()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#leaveState(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#launchGame()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#joinGame(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#hostGame()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#doNetworkActions(java.lang.String[])
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/LobbyState.html#doInputAction(java.lang.String)

See Also:
Constant Field Values

JOIN_WINDOW

private static final int JOIN_WINDOW

One possible submenu.

See Also:
Constant Field Values

LIST_WINDOW

private static final int LIST_WINDOW

One possible submenu.

See Also:
Constant Field Values

LOBBY_WINDOW

private static final int LOBBY_WINDOW

One possible submenu.

See Also:
Constant Field Values

manager

private ApplicationStateManager manager

The ApplicationStateManager controlling this state.

activeWindow

private int activeWindow

The submenu currently beeing navigated.

61

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#LobbyState.LOBBY_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#LobbyState.LIST_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#LobbyState.JOIN_WINDOW
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/constant-values.html#LobbyState.HOST_WINDOW

isHost

private boolean isHost

True if a game session is being hosted.

numberOfPlayers

private int numberOfPlayers

The number of players set in a hosted game.

Constructor Detail

LobbyState

public LobbyState(ApplicationStateManagermanager)

Constructor for LobbyState.

Parameters:
manager - The manager of this state.

Method Detail

render

public void render(Graphicsg)

Renders the current state.

Specified by:
render in interface ApplicationState

Parameters:
g - The graphics context upon which to render the state.

doInputAction

public void doInputAction(java.lang.Stringaction)

62

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#render(Graphics)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html

Updates the state according to user action.

Specified by:
doInputAction in interface ApplicationState

Parameters:
action - A String representing an action.

doNetworkActions

public void doNetworkActions(java.lang.String[]actions)

Updates the state according to the given server actions.

Parameters:
actions - An array of Strings representing actions to perform.

listGames

public void listGames()

Gets available games from CentralServer.

hostGame

public void hostGame()

Sets up a hosted game.

cancel

private void cancel()

Goes one step back in the menu hierarchy.

leaveState

private void leaveState(intnewState)

Leaves the LobbyState and enters the MenuState or GameSessionState.

63

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#doInputAction(java.lang.String)

Parameters:
newState - The state to enter.

showMessage

private void showMessage(java.lang.Stringmessage)

Displays a received chat message.

Parameters:
message - A String representing a chat message.

sendMessage

private void sendMessage(java.lang.Stringmessage)

Constructs a chat message to be sent to the server.

Parameters:
message - A String representing the message to be sent.

startMultiplayer

private void startMultiplayer()

Starts a multiplayer game session.

createGame

private void createGame(java.lang.Stringnickname,
 intnumberOfPlayers,
 booleanprivateGame)

Creates a new game session.

Parameters:
nickname - The nickname of the hosting player.
numberOfPlayers - The number of players allowed.
privateGame - True if this game session is to be hidden.

64

launchGame

private void launchGame()

Starts a multiplayer game session.

joinGame

private void joinGame(java.lang.Stringaddress)

Joins a hosted multiplayer game session.

Parameters:
address - The address to the host.

Class MenuState

java.lang.Object
 MenuState

All Implemented Interfaces:
ApplicationState

public class MenuStateextends java.lang.Objectimplements ApplicationState

A class representing the menu state of the game.

Field Summary
private

 ApplicationStateManager
manager
 The ApplicationStateManager controlling this state.

Constructor Summary
MenuState(ApplicationStateManager manager)

65

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#MenuState(ApplicationStateManager)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#manager
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html

 The constructor for MenuState.

Method Summary
 void doInputAction(java.lang.String action)

 Performs a menu action depending on the action string provided.
private
 void

exit()
 Exits the game.

 void render(Graphics g)
 Renders the state.

private
 void

showHelp()
 Displays the help documention for the game.

private
 void

showLobby(boolean host)
 Switches to the lobby state.

private
 void

startSingleplayer()
 Starts a singleplayer game session.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

manager

private ApplicationStateManager manager

The ApplicationStateManager controlling this state.

Constructor Detail

MenuState

public MenuState(ApplicationStateManagermanager)

The constructor for MenuState.

Parameters:

66

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationStateManager.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#startSingleplayer()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#showLobby(boolean)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#showHelp()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#render(Graphics)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#exit()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/MenuState.html#doInputAction(java.lang.String)

manager - The ApplicationStateManager to control this state.

Method Detail

render

public void render(Graphicsg)

Renders the state.

Specified by:
render in interface ApplicationState

Parameters:
g - The graphics context upon which to render the state.

doInputAction

public void doInputAction(java.lang.Stringaction)

Performs a menu action depending on the action string provided.

Specified by:
doInputAction in interface ApplicationState

Parameters:
action - A string representing the action the user wants to perform.

showHelp

private void showHelp()

Displays the help documention for the game.

showLobby

private void showLobby(booleanhost)

Switches to the lobby state.

Parameters:
host - True if the user has requested to host a game, false if he wants to see a list of
games.

67

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#doInputAction(java.lang.String)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/ApplicationState.html#render(Graphics)

exit

private void exit()

Exits the game.

startSingleplayer

private void startSingleplayer()

Starts a singleplayer game session.

Class Piece

java.lang.Object
 Piece

public class Pieceextends java.lang.Object

The Piece class, representing all the different piece types.

Field Summary
private
 Brick[

][]

matrix
 An array containing the Bricks held in the current piece.

private
 char

name
 The name of the piece type.

private
 Player

owner
 The owner of this Piece.

private
 int

rotationState
 The current rotation state of the piece.

68

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html#rotationState
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html#owner
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html#name
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html#matrix
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html

Constructor Summary
Piece(Player player, char pieceType)
 Constructor for Piece.

Method Summary
 boolean rotate(int clockwise)

 Rotates the piece clockwise a given number of steps.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

matrix

private Brick[][] matrix

An array containing the Bricks held in the current piece.

name

private char name

The name of the piece type. Must be either I, J, L, O, S, T or Z.

rotationState

private int rotationState

The current rotation state of the piece.

69

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html#rotate(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html#Piece(Player, char)

owner

private Player owner

The owner of this Piece.

Constructor Detail

Piece

public Piece(Playerplayer,
 charpieceType)

Constructor for Piece.

Parameters:
player - The Player who controls this piece.
pieceType - The type of piece.

Method Detail

rotate

public boolean rotate(intclockwise)

Rotates the piece clockwise a given number of steps. This method is called by the rotatePiece
method in the GameLogic class.

Parameters:
clockwise - The number of steps to rotate clockwise. Negative values rotates the
piece counter-clockwise.

See Also:
GameLogic

Class PieceGenerator

java.lang.Object
 PieceGenerator

70

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html

public class PieceGeneratorextends java.lang.Object

A class representing a piece generator. When instanced, the piece generator will create two bags that each
hold one of each piece in random order. When a bag is empty the other bag will take over while the first
one is refilled.

Field Summary
private Player myPlayer

 The Player object controlling the PieceGenerator.
static java.util.ArrayList<
java.util.ArrayList<Brick[]

[]>>

pieceStates
 A list representing the different possible pieces.

private Random rand
 Used to generate random numbers internally.

private ShuffleBag[] s
 A list of "bags" that hold randomly generated pieces.

Constructor Summary
PieceGenerator(Player player, int seed)
 Constructor for PieceGenerator.

Method Summary
 Piece getNext()

 Get the next randomly generated piece.

 Piece peekNext(int offset)
 Looks at a future piece held in one of the ShuffleBags.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

71

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#peekNext(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#getNext()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#PieceGenerator(Player, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#s
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#rand
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#pieceStates
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html#myPlayer
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html

pieceStates

public static java.util.ArrayList<java.util.ArrayList<Brick[][]>> pieceStates

A list representing the different possible pieces. The outer list holds different piece types, the
inner list holds all possible rotations.

rand

private Random rand

Used to generate random numbers internally.

myPlayer

private Player myPlayer

The Player object controlling the PieceGenerator.

s

private ShuffleBag[] s

A list of "bags" that hold randomly generated pieces.

Constructor Detail

PieceGenerator

public PieceGenerator(Playerplayer,
 intseed)

Constructor for PieceGenerator.

Parameters:
player - The player that this PieceGenerator belongs to.
seed - A random seed for this PieceGenerator.

Method Detail

72

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Brick.html

getNext

public Piece getNext()

Get the next randomly generated piece.

Returns:
A random Piece.

peekNext

public Piece peekNext(intoffset)

Looks at a future piece held in one of the ShuffleBags.

Parameters:
offset - The offset index of the piece. The next piece is at index 0.

Returns:
The piece with the given offset in the list of upcoming pieces.

Class Player

java.lang.Object
 Player

public class Playerextends java.lang.Object

A class representing a player.

Field Summary
private Piece currentPiece

 The piece that the player is currently controlling.
private int id

 The player's id (to avoid name collisions).

73

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#id
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#currentPiece
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html

private
 java.lang.String

name
 The name of the player.

private
 PieceGenerator

pieceGenerator
 A generator that generates random pieces for the player .

private int[] powerups
 A list containing the player's powerups.

Constructor Summary
Player(java.lang.String name, int id, int slots, int seed)
 Constructor for Player.

Method Summary
 void addPowerup(int powerup)

 Add a powerup to the player's list of powerups.

 Piece getCurrentPiece()
 Returns player's current piece.

 int[] getPowerUps()
 Get a list of the player's powerups.

 void newPiece()
 Generates a new piece and gives the player control of it.

 int removePowerup(int index)
 Remove a given powerup from the player's powerup list.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

currentPiece

private Piece currentPiece

The piece that the player is currently controlling.

74

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#removePowerup(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#newPiece()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#getPowerUps()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#getCurrentPiece()
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#addPowerup(int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#Player(java.lang.String, int, int, int)
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#powerups
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#pieceGenerator
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html
file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Player.html#name

powerups

private int[] powerups

A list containing the player's powerups. Each powerup is represented by an int, defining the
type.

name

private java.lang.String name

The name of the player.

id

private int id

The player's id (to avoid name collisions).

pieceGenerator

private PieceGenerator pieceGenerator

A generator that generates random pieces for the player .

Constructor Detail

Player

public Player(java.lang.Stringname,
 intid,
 intslots,
 intseed)

Constructor for Player.

Parameters:
name - the name of the player.
id - the id of the player.

75

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/PieceGenerator.html

slots - the maximum number of powerups that can be held by this player.
seed - a random seed for the PieceGenerator.

Method Detail

getCurrentPiece

public Piece getCurrentPiece()

Returns player's current piece.

Returns:
The player's current piece.

getPowerUps

public int[] getPowerUps()

Get a list of the player's powerups.

Returns:
An int array containing the player's puwerups.

removePowerup

public int removePowerup(intindex)

Remove a given powerup from the player's powerup list.

Parameters:
index - The index of the powerup to be removed.

Returns:
An integer representing the removed powerup. If the supplied index is invalid -1 is
returned.

addPowerup

public void addPowerup(intpowerup)

Add a powerup to the player's list of powerups.

Parameters:
powerup - An integer representing the type of powerup to add.

76

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/Piece.html

newPiece

public void newPiece()

Generates a new piece and gives the player control of it. This method is called from a
GameLogic doActions method when needed.

See Also:
GameLogic

5.5.2. Requirement references

The table below links each requirement in the RD to the design in the DD. Each requirement is numbered
according to the corresponding requirement of the RD.

Requirements Document Design Document implementation

#1 Game pieces The Piece and Brick classes.

#2 Boundaries The Board and GameLogic classes (specifically, the
movePiece method in the GameLogic class).

#3 Falling pieces The Piece, GameLogic and GameServer classes (the
GameLogic doNetworkActions recieves pulses from the
GameServer when it is to move a Piece downward).

#4 Score The GameLogic handles this in the various methods that
move and rotate Pieces and Bricks.

#5 Get help The MenuState class's showHelp method.

#6 Menu system The MenuState class's render method shows the options,
while input is handled by doActions.

#7 Start singleplayer game session The MenuState class's startSingleplayer method.

#8 Host multiplayer game The MenuState and LobbyState classes handle this. In
MenuState the showLobby method is used, and in the
LobbyState createGame and launchGame are used.

#9 Host private game Same as above, with a String to indicate that the game is
private sent to the CentralServer from the createGame
method.

#10 Join multiplayer game The MenuState and LobbyState classes handle this. In the
MenuState the showLobby method is used, and in the
LobbyState listGames is used.

77

file:///afs/nada.kth.se/home/o/u1brntvo/mvk/DD/javadoc2.0/GameLogic.html

#11 Chat with other users The LobbyState and GameSessionState respectively handles
this with doInputActions and doNetworkActions.

78

#12 Move piece vertically The GameLogic class's dropPiece handles this.

#13 Move piece horizontally The GameLogic class's movePiece handles this.

#14 Rotate piece The GameLogic class's rotatePiece handles this.

#15 Collide with other player-controlled
bricks

The GameLogic class's movePiece and dropPiece handle this.

#16 Piece control The GameLogic class's doActions and the Player class's
newPiece handle this.

#17 Fixate piece The GameLogic class's movePiece and dropPiece and the
Board class's fixPiece handle this.

#18 Remove row The GameLogic class's movePiece and dropPiece and the
Board class's removeRow handle this.

#19 Finishing a game session The GameLogic class's createPiece handles this.

#20 Obtain powerup The GameLogic class's doActions, the Board class's
removeRow and the Player class's addPowerup handle this.

#21 Create powerup The GameLogic class's doActions, the Board class's
removeRow and getBrick, and the Brick class's setPowerup
handle this (That is, when a row is removed, doActions will
call getBrick and change that Brick to a powerup Brick using
setPowerup).

#22 Use powerup The GameLogic class's doActions and the Player class's
removePowerup handle this.

79

5.6. Package Diagram

6. Functional test cases

Below are test cases ordered by the functionality requirement covered. Each test case corresponds to the
requirement with the same number in the Requirements Document.

6.1. Test Descriptions

6.1.1. Game properties

#1 Game pieces
Requirement: There shall be seven different pieces which can be placed. Each piece consists of four parts called
bricks.
Input: Controller input
Output: Visible effect; seven different game pieces shown
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Move the first piece that falls down to the leftmost part of the board.

80

3. For the next six pieces, verify that each piece is visibly different from the all previous pieces.

#2 Boundaries
Requirement: There shall be boundaries that restricts piece movement. Specifically, there is the top, lower and side
boundaries. No piece may pass any boundary other than the top one.
Input: Controller input
Output: Visible effect; the piece cannot be moved outside the boundaries
Step-by-step procedure:

1. Select “Sinleplayer” from the main menu.
2. Move the first piece that falls down to the leftmost part of the board and verify that it can go no further.
3. Move the second piece that falls down to the rightmost part of the board and verify that it can go no

further.
4. Let the third piece fall to the ground, and verify that it gets fixed to the bottom of the board.

#3 Falling pieces
Requirement: Any piece controlled by a player shall move downward with a given speed, that is increased when a
piece gets fixated.
Input: Controller input
Output: Visible effect; a piece will have a downward speed that increases as the game progresses
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Verify that a piece is shown at the top of the board, and that it has a downwards speed.
3. Fixate the first piece to the board.
4. Verify that the speed increases (there may not be noticeable effect after only one piece was fixated, so

fixate 10 pieces before measuring the speed again).

#4 Score
Requirement: The system shall keep and display a total score that is altered when pieces are fixated or pieces
collide.
Input: Controller input
Output: Visible effect; the score meter will increase when a row is removed
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Fixate pieces so that a complete row is formed.
3. Verify that the score is increased.
4. Enter the main menu, and select “Host game”.
5. Start the game and have somebody join it.
6. Launch the game session.
7. Move the two player-controlled pieces together.
8. Keep trying to move the pieces into each other for one second.
9. Verify that the pieces are destroyed and the score decreased.

#5 Get help
Requirement: The system shall provide a manual for the user. The manual shall describe how to start, stop and
play a game session, as well as how to navigate pieces.
Input: Controller input
Output: The game displays the help documentation
Step-by-step procedure:

1. Select “Help” from the main menu.
2. Verify that said points (start, stop, playing a game session, navigating pieces) are included in the help

81

documentation.

#6 Menu system
Requirement: The system shall allow the user to choose from one of the following options through a menu system:
Singleplayer, Host game, Join game, Help, Exit game.
Input: Controller input
Output: Visible effects; different screens are shown depending on user input.
Step-by-step procedure:

1. Select “Host game” from the main menu.
2. Verify that the host game screen is shown.
3. Go back to the main menu.
4. Select “Join game” from the main menu.
5. Verify that the join game screen is shown.
6. Go back to the main menu.
7. Select “Singleplayer” from the main menu.
8. Verify that a game session is started.
9. Go back to the main menu.
10. Select “Help” from the main menu.
11. Verify that the help screen is shown.
12. Go back to the main menu.
13. Select “Exit” from the main menu.
14. Verify that the application was shut down.

6.1.2. Game sessions

#7 Start singleplayer game session
Requirement: The player shall be able to start a singleplayer game session.
Input: Controller input
Output: A game session is started
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Verify that a game session starts (the board is shown).

#8 Host multiplayer game
Requirement: The system shall allow a user to start a game that other users are able to join.
Input: Controller input.
Output: A multiplayer game session is started
Step-by-step procedure:

1. Select “Host game” from the main menu.
2. Enter name and number of players as appropriate. Do not check the “Private game” checkbox.
3. Start the game.
4. Have somebody launch the client, select “Join game” from the main menu, find the game in the game list,

and enter it.
5. Verify that the player is shown in the player list.
6. Launch the multiplayer game session.
7. Verify that a multiplayer game session was started.

#9 Host private game
Requirement: The user shall be able to host a private network game. This should be the same as hosting a standard

82

network game, except that the game will not show up in the game list for other users. However, the central server
should still keep track of the game to allow the desired users to join it by entering its name.
Input: Controller input
Output: A multiplayer game session is started.
Step-by-step procedure:

1. Select “Host game” from the main menu.
2. Enter name and number of players as appropriate. Check the “Private game” checkbox.
3. Start the game.
4. Have somebody launch the client, select “Join game” from the main menu, and input the game name.
5. Verify that the player is shown in the player list.
6. Launch the multiplayer game session.
7. Verify that a multiplayer game session was started.

#10 Join multiplayer game

Requirement: The system shall allow users to join previously hosted games.
Input: Controller input
Output: A multiplayer game was joined.
Step-by-step procedure:

1. Have somebody launch the client and host a game with a given name.
2. Select “Join game” from the main menu.
3. Enter the game name.
4. Verify that the player lobby is shown.

Test: Letting another user start a network game session and joining it.

#11 Chat with other users

Requirement: The user shall be able to chat with other users when in a game. At any time during a game, a user
should be able to send a message that will be displayed to all participating users.
Input: Controller input
Output: A message is received.
Step-by-step procedure:

1. Select “Host game” from the main menu.
2. Enter name and number of players as appropriate. Do not check the “Private game” checkbox.
3. Start the game.
4. Have somebody launch the client, select “Join game” from the main menu, find the game in the game list,

and enter it.
5. Launch the multiplayer game session.
6. Press the “Chat” controller key, enter a chat message, and then press the “Chat” controller key again.
7. Verify that the other user recieves the message.
8. Have the other user write a message and send it.
9. Verify that you receive a message.

6.1.3. Piece movement

#12 Move piece vertically
Requirement: The user shall be able to increase the downward speed of the current piece by a constant factor.

83

Test: Starting a game session and making sure the piece can be accelerated downwards.
Input: Controller input
Output: Visible effect; the piece is accelerated downward
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Press the “Down” controller key to accelerate the piece.
3. Verify that the piece's downward speed increases.

#13 Move piece horizontally
Requirement: The user shall be able to move the piece horizontally with constant steps.
Input: Controller input
Output: Visible effect; the piece is moved sideways
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Press the “Left” conroller key to move the piece to the left.
3. Verify that the piece is moved to the left.
4. Press the “Right” controller key to move the piece to the right.
5. Verify that the piece is moved to the right.

#14 Rotate piece
Requirement: The user shall be able to rotate the piece he controls, either clockwise or counter-clockwise.
Input: Controller key
Output: Visible effect; the piece is rotated
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Press the “Rotate clockwise” controller key to rotate the piece clockwise.
3. Verify that the piece is rotated clockwise.
4. Press the “Rotate counter-clockwise” controller key to rotate the piece counter-clockwise.
5. Verify that the piece is rotated counter-clockwise.

#15 Collide with other player-controlled bricks
Requirement: Two non-fixed bricks that collide shall either be removed or moved apart. If they are removed, each
player shall gain a new piece and a fixed score shall be subtracted from the total score.
Input: Controller input
Output: Visible effect; the pieces are removed or moved apart
Step-by-step procedure:

1. Select “Host game” from the main menu.
2. Enter name and number of players as appropriate. Do not check the “Private game” checkbox.
3. Start the game.
4. Have somebody launch the client, select “Join game” from the main menu, find the game in the game list,

and enter it.
5. Launch the multiplayer game session.
6. Move the two player-controlled pieces together.
7. Keep trying to move the pieces into each other for one second.
8. Verify that the pieces are removed.
9. Verify that the score decreases.
10. Verify that each player recieves a new piece.
11. Move the new player-controlled pieces together.
12. Move the pieces apart before one second has passed.
13. Verify that the pieces are moved apart.

84

6.1.4. Brick placement

#16 Piece control
Requirement: When game session starts the user shall receive a brick to control. After a brick has been fixated the
user shall receive a new brick.
Input: Controller input
Output: Visible effect; a piece is shown at the top of the board
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Verify that a piece is shown.
3. Press the “Drop” controller key to fixate the piece.
4. Verify that the piece was fixated.
5. Verify that a new piece is shown.

#17 Fixate piece
Requirement: When the vertical movement is obstructed by a fixated piece or the lower boundary, the piece shall
stop moving and be taken out of player control.
Input: Controller input
Output: A piece stops moving and is no longer controlled by the player
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Press the “Drop” controller key to fixate the piece.
3. Verify that the piece is no longer moving.
4. Press the “Left” controller key to try moving the fixated piece left.
5. Verify that the piece was not moved.
6. Verify that the new piece was moved instead.

#18 Remove row
Requirement: Complete brick rows reaching between the two side boundaries shall be removed and points shall be
added to the total score.
Input: Controller input
Output: Visible effect; the completed remove is removed and all bricks above the removed row are moved
downwards.
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Move pieces so that a complete row is formed.
3. Verify that the row is removed.
4. Verify that the score is increased.
5. Verify that all bricks above the removed row are moved downwards.

#19 Finishing a game session
Requirement: When a piece gets fixated above the top boundary, the game session shall be terminated and the total
score presented to the user. In a multiplayer game session, all participating players shall be presented with the total
score.
Input: Controller input
Output: Visible effect; the game over screen is shown
Step-by-step procedure:

85

1. Select “Host game” from the main menu.
2. Enter name and number of players as appropriate. Do not check the “Private game” checkbox.
3. Start the game.
4. Have somebody launch the client, select “Join game” from the main menu, find the game in the game list,

and enter it.
5. Launch the multiplayer game session.
6. Press the “Drop” controller key to fixate each piece shown until a piece gets fixated above the top

boundary.
7. Verify that the game session is terminated.
8. Verify that the total score is shown to both participating players.

6.1.5. Powerups

#20 Obtain powerup
Requirement: The user shall be able to obtain powerups contained in completed rows.
Input: Controller input
Output: Visible effect; the obtained powerup is shown in the powerup list
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Move pieces so that a complete row is formed, with at least one brick still on the board. One brick will

then be changed into a powerup brick.
3. Move pieces so that the row containing the powerup is completed.
4. Verify that the powerup is shown in the powerup list.

#21 Create powerup
Requirement: When a row is removed, a random brick on the game board shall be replaced with a powerup brick.
If there are no bricks on the game board, nothing happens.
Input: Controller input
Output: Visible effect; one brick is changed into a powerup.
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Move pieces so that a complete row is formed, with at least one brick still on the board.
3. Verify that one brick is changed into a powerup brick.

#22 Use powerup
Requirement: At any time during a game session, the player shall be able to activate a powerup that he has
obtained. This will affect gameplay or the game board. A list of powerups with corresponding effects is given in
Table 1.
Input: Controller input
Output: Visible effect, as described in table 1 below.
Step-by-step procedure:

1. Select “Singleplayer” from the main menu.
2. Move pieces so that a complete row is formed, with at least one brick still on the board. One brick will

then be changed into a powerup brick.
3. Move pieces so that the row containing the powerup is completed. This powerup will be shown in the

powerup list.
4. Press the corresponding “Use powerup” controller key to use the powerup.
5. Verify that the powerup affects the game according to Table 1.

86

Table 1.
Powerup Effect
Clear row Removes all bricks in the bottom row from the game board.
Clear partial row Removes all bricks in a given part of the bottom row from the game board.
Clear field Removes all bricks on the game board.
Mirror flip Allows the player to flip pieces horizontally.
Gravity Pulls all bricks on the board as far down as possible, which removes any gaps.
No gravity Removes gravity for the current piece, removing its falling speed.
Foresight Shows upcoming pieces to the player.

7. References

(1) Tetris – http://en.wikipedia.org/wiki/Tetris
(2) The Java Runtime Environment, JRE – http://java.sun.com/
(3) OpenGL – http://www.opengl.org/
(4) Lightweight Java Game Library – http://www.lwjgl.org/ (a Java library for making games)

87

	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Expected readership
	1.4. Multitris version history
	1.5. Summary
	1.6. Related documents
	1.7. Glossary

	2. System Overview
	2.1. General Description
	2.2. Overall Architecture Description
	2.3. Detailed Architecture

	3. Design Considerations
	3.1. Assumtions and Dependencies
	3.1.1. Software and hardware dependencies
	3.1.2. End-user characteristics
	3.1.3. Minimal system environment specifications
	3.1.4. Optimal system environment specifications
	3.1.5. System evolution

	3.2. General Constraints

	4. Graphical User Interface
	4.1. Menu Overview
	4.2. Functionality description
	4.3. Forms

	5. Design Details
	5.1 Class Responsibility Collaborator (CRC) Cards
	5.2 Class Diagram
	5.3 State Charts
	5.4 Interaction Diagrams
	5.4.1 General Input Handling
	5.4.2 Host Game
	5.4.3 Join Game
	5.4.4 Singleplayer game

	5.5. Detailed Design
	5.5.1. Javadoc
	Interface ApplicationState
	Class ApplicationStateManager
	Class Board
	Class Brick
	Class CentralServer
	Class ClientCommunication
	Class ControllerMap
	Class GameLogic
	Class GameServer
	Class GameSessionState
	Class InputManager
	Class LobbyState
	Class MenuState
	Class Piece
	Class PieceGenerator
	Class Player

	5.6. Package Diagram

	6. Functional test cases
	6.1. Test Descriptions
	6.1.1. Game properties
	6.1.2. Game sessions
	6.1.3. Piece movement
	6.1.4. Brick placement
	6.1.5. Powerups

	7. References

