

Visual Code Review

Group 5

Daniel Andersson Tenninge

Gustaf Carleson

Johan Björk

Patrik McKiernan

 Design Document, VCR System

2

1. Introduction

Document Design Document

System Visual Code Review

Intended readership Project members, developers
and stakeholders

Date 2008-03-08

Version history

Version Rationale and changes Date Authors
1.0 First version 2008-03-08 Johan Björk

Daniel Tenninge
Gustaf Carleson
Patrik McKiernan

1.1. Overview

This is the Design document for the VCR system provide the design details of the
system.
This document is intended for the developers of the VCR system and will work as a
guideline in the process of developing and implementing the system. Stakeholders in this
project will also have an interest in this document, mostly due to the section describing
the user interface.
This document explains the fundamental architectural design of this system, and will
work as a foundation for the implementation phase. It outlines the software architecture
by structuring different major components into a hierarchical layer with different levels of
detail.
With this document in hand, it will be possible for developers to implement a working
model of the intended system.

1.2. Abstract

This is the Design document of the VCR system, a system that will significantly aid in the
peer code reviewing policy that many software companies employ. The code review
process states that before a developer can incorporate his piece of code into the whole
system, it must be reviewed by a fellow developer to ensure that good software quality
will be guaranteed in the project.

 Design Document, VCR System

3

In several software companies the code review process is still a process that is severely
overlooked. When a developer wants someone to review his code he needs to find
someone, in person, that actually has the time to review his code at the moment. This will
obstruct him from starting to write new code or he will have to disturb someone in the
middle of his or her work. This system will take care of handling these connections
between developers and their respective reviewers. By making it possible for reviewers
to review code when they actually have time for it, will free up time for developers and
reviewers alike, allowing them to continue with their work.

1.3. References

NR Document
1 Requirements document for the VCR system, version 1.0

1.4. Important terms

Abbreviation /
term

Complete word or phrase Description

VCR Visual Code Review The name of the system
under development this
document is referring to.

SCM Source Code Management A system for controlling
multiple revisions in the
source code development
process.

SVN Subversion An SCM system.
See
http://subversion.tigris.org/
for more information.

MySQL MySQL A multi-threaded, multi-user
SQL DBMS system.

DBMS Database Management System Software system for
managing databases.

PySVN PySVN A bridge between Python
scripts and Subversion
system.

UML Unified Modeling Language An object modeling and
specification language.

 Design Document, VCR System

4

Innehållsförteckning
1.  INTRODUCTION  2 

2.  SYSTEM OVERVIEW  6 
2.1.  GENERAL DESCRIPTION  6 
2.2.  OVERALL ARCHITECTURE DESCRIPTION  7 
2.3.  DETAILED DESCRIPTION  9 

3.  DESIGN CONSIDERATIONS  12 
3.1.  ASSUMPTIONS AND DEPENDENCIES  12 
3.2.  GENERAL CONSTRAINTS  12 

4.  GRAPHICAL USER INTERFACE  14 
4.1.  OVERVIEW OF THE USER INTERFACE  14 
4.2.  CONCEPT ART  15 

5.  DESIGN DETAIL  24 
5.1.  CLASS RESPONSIBILITY COLLABORATOR (CRC) CARDS  24 
5.2.  CLASS DIAGRAM  26 
5.3.  STATE CHART  27 
5.4.  INTERACTION DIAGRAM  28 
5.4.1.  DEVELOPER COMMIT  28 
5.4.2.  SERVER COMMIT  29 
5.4.3.  REVIEW PROCESS  29 
5.5.  DETAILED DESIGN  31 
5.5.1.  CLASSES  31 
5.5.2.  DATABASE STRUCTURE  42 
5.6.  PACKAGE DIAGRAM  44 

6.  FUNCTIONAL TEST CASES  45 
6.1.  LOGIN AS DEVELOPER  45 
6.2.  LOGIN AS ADMINISTRATOR  45 
6.3.  REMEMBER ME  45 
6.4.  WRONG PASSWORD  46 
6.5.  LOGOUT  46 
6.6.  ADD DEVELOPER  47 
6.7.  REMOVE DEVELOPER  47 
6.8.  SAVE NEW CHANGES  47 
6.9.  CANCEL CHANGES  48 
6.10.  RESET PASSWORD  48 
6.11.  TEST SAVE WITH NO SELECTED DEVELOPER  49 
6.12.  SWITCH TO BRANCH  49 
6.13.  SELECT DEVELOPER  50 
6.14.  ADD BRANCH  50 
6.15.  REMOVE BRANCH  50 
6.16.  SAVE NEW CHANGES  51 
6.17.  CANCEL CHANGES  51 
6.18.  TEST SAVE WITH NO SELECTED BRANCH  52 
6.19.  SWITCH TO DEVELOPER  52 

 Design Document, VCR System

5

6.20.  SELECT BRANCH  52 
6.21.  SEARCH  53 
6.22.  SELECT CHANGESET  53 
6.23.  CHANGE PAGE  54 
6.24.  SELECT A FILE IN A COMMIT  54 
6.25.  DENIAL OF COMMIT ACCEPTANCE  54 
6.26.  ACCEPT A COMMIT WITHOUT SUPPLYING A COMMENT  55 
6.27.  ACCEPT A COMMIT BY ACCEPTING ALL FILES AND LEAVING A COMMENT  55 
6.28.  REJECT A COMMIT WITHOUT SUPPLYING A COMMENT  56 
6.29.  REJECT A COMMIT AND SUPPLY A COMMENT  56 
6.30.  ACCEPT A SINGLE FILE WITHOUT SUPPLYING A COMMENT  57 
6.31.  ACCEPT A SINGLE FILE AND LEAVE A COMMENT  57 
6.32.  REJECT A SINGLE FILE WITHOUT SUPPLYING A COMMENT  58 
6.33.  REJECT A SINGLE FILE AND LEAVE A COMMENT  58 
6.34.  COMMIT TO BRANCH WITHOUT POLICY  59 
6.35.  COMMIT TO BRANCH WITH POLICY  59 

 Design Document, VCR System

6

2. System Overview

2.1. General Description
Visual Code Review is a system designed to ease the code review process. Code
reviewing is the process to let other developers in a team to verify the quality of the other
persons’ source code. We accomplish this by intercepting all source code submitted to
the company’s Version Control server, and presenting the source code that needs to be
reviewed on a web site.

Non intrusive
The system is designed to be as little intrusive to the daily work of the developers as
possible.

Automatic
The system automatically intercepts source code that matches a certain policy, and puts
them up on the web interface. It further also automatically forwards the source code to
the main company repository when the review is completed.

Mail
The system uses mail to notify developers the status on the review status and comments
made to their source code that is under review.

Subversion
The system supports the Subversion Review Control System to intercept source code
that needs to be reviewed, and present it on the frontend.

Design
Our system is composed of two parts, the backend and the frontend. The backend
collects the source code to be presented for review, inserting it to a common database.
The front end allows the users to verify and leave comments on the source code in a
simple manner.

 Design Document, VCR System

7

2.2. Overall Architecture Description

The reviewer or administrator uses a standard web browser to connect to the back-end
web server part of the VCR system. The user is presented with information in a graphical
user interface. Through the connection with the web server the reviewer is presented with
the current commits and can perform code reviews from the browser. The administrator
is instead presented with possibilities of administrating reviewers and policies through the
web interface.

The web server is a HTTP web server backed up by a PHP interpreter to generate
dynamic HTML pages for the web clients. The web server has a connection to the

 Design Document, VCR System

8

database, through which it can list the commits, with their source code, and information
about reviewers and policies. Through PHP the web server has a connection to the mail
server, which it uses to send mails to the developer about the updated status on their
commits e.g. whether the commit got accepted or not.

The developer uses a Source Code Management (SCM) client to send commits to the
SCM server. The server is notified of the commit and runs python scripts, which in turn
checks the commit and the branch it belongs with what policy it belongs to.
If it needs to be reviewed then the script stores the commit in the database, awaiting
review. The code is otherwise directly committed to the SCM system’s storage. It also
notifies the developer of the whether or not the commit did need reviewing.

 Design Document, VCR System

9

2.3. Detailed Description

2.3.1. Review procedure
Sequence diagrams of examples of communication between components in the system
as defined in the Unified Modeling Language (UML).

 Login

Get Login data

 Login data

 Get user data

 User data
 Authenticated

 List Commits
 Get commits

 Commits
 List commits

 Select commit

 Get source code

 Source code
 Source Code

 Accept

 Get note

 Note to developer
 Update commit status

 Commit status

 Send mail to developer

Get data

 Supply note and commit status

Reviewer /
Web browser

Web server Database Mail server

 Design Document, VCR System

10

2.3.2. Commit process

 Design Document, VCR System

11

2.3.3. Database diagram

This is an entity/relationship diagram describing the database used by the system.

Relationship descriptions:

 1:1
 1:n
 m:n

Entity /
Relationship

Description

User Contains user information such as login, password and e-mail.
Right Describes the review rights a user can posess (i.e. C++, SQL,

req. engineering).
Action The actions that a reviewer can take (i.e. accept, reject).
Policy Consists of a set of rights to be applied to a branch.
Code Contains the committed code and its relevant information.
Branch Represents a branch in the Source Control Management (SCM)

development.
Changeset Every set of code committed belongs to a changeset.
Review Connects objects which are part of a review.
UserRights Connects users with their rights.
PolicyRights Connects policies with their rights.
BranchPolicy Connects a policy to one or more branches.
CodeBranch Connects a piece of code to a branch.
CodeChangeset Connects a piece of code to a changeset.

 Design Document, VCR System

12

3. Design Considerations

3.1. Assumptions and Dependencies

3.1.1. Related software and hardware
The back end as well as the front end of the system requires several external programs
to be installed on the server / servers.

• A SQL database engine. We will use and support MySQL.
• A web server with PHP support. We will use and support Apache.
• A source code management tool. We will use and support SVN.
• Pygments
• PySVN
• Mail server supported by PHP.

3.1.2. Possible and/or probable changes in functionality

Future updates may contain an extended support of source code management tools as
well as extended policy rules.

3.2. General Constraints

Generally speaking, our system is constrained mostly by third party software. These are
specifically the;

• Web server, in how many users it can serve pages to effectively.
• SCM system, in how fast it handles commit operations.
• PHP interpreter, in how quickly it interprets web logic.
• Database system, in how rapidly it stores and retrieves information.
• MTA (Mail Transfer Agent).

Thus, all of these systems constraints apply to our system. Some of these are server
CPU (Central Processing Unit) performance, HDD (Hard Disk Drive) space, amount of
RAM (Random Access Memory) installed, other third party software needed, system time
precision etc.

The availability of our system is also a constraint since it does not function if one or more
of the third party systems are not available. This can be countered with known
techniques such as back-up servers, load balancing, multiple network connections,
UPS’s (Uninterruptible Power Supply) etc.

The Requirements Document (Sec. 4 Non-functional requirements) also presents a few
system constraints concerning the availability and the ease of use of the system which is
going to require testing.

 Design Document, VCR System

13

The system scalability is not a constraint since load balancing of web traffic is possible
and because the SCM system, database system, web server and MTA can reside in
different computers. These have to be connected by a network which is however
constraint by bandwidth (i.e. how much information can be transferred over the network
at any one time) and how high the response time of the network is.

Mainly, the possible number of concurrent users and the degree of effectivity of the
review and developing process is affected by the overall availability and performance of
the system.

 Design Document, VCR System

14

4. Graphical User Interface

4.1. Overview of the user interface

Figure 4. 1

The user is first presented with a login page. After logging in the user will be directed to
either the administrator or the review part depending on the user privileges. The
administrator will first be presented with the page for administrating developers. The
administrator can then switch back and forth between the pages for administrating
branches or developers.
The reviewer will be directed to the review-listing page where she can see all the pending
commits that she is allowed to review.
After selecting a commit, she will be presented with information about that particular
commit including all the files included in the commit.
By selecting a file the user will be presented with the syntax highlighted source code.
On every page there is a log out button, which will redirect the user back to the log in
page. The arrows show in which direction the user can navigate through the pages.

 Design Document, VCR System

15

4.2. Concept art

Figure 4.2.1 “Login page”

Related functional requirements
F.11

Controls and fields
txtLoginName: input for the user’s username.
txtLoginPwd: input for the user’s password.
chkRemember: checkbox used for remembering a user.
btnLogin: login button.
Triggers the event “eventAdminDev” or the “eventReview” depending on the
authorization level of the user.

Directed from
The user is presented with this page, by either surfing to the web server or by the event
“eventLogOut”.

 Design Document, VCR System

16

Figure 4.2.3 “Administrate developers”

Related functional requirements
F.12
F.13
F.14

Controls and fields
txtDevName: input for the developer’s name.
txtDevEmail: input for the developer’s email.
chkDevRights: input for the developer’s rights.
lnkDev: link leading to the current page.
Triggers the event “eventAdminDev”.
lnkBranch: link leading to the administration of branches page.
Triggers the event “eventAdminBranches”
btnAddDev: button used for adding a new developer.
Triggers the event “eventAddDev”.
btnRmvDev: button used for removing selected developer.
Triggers the event “eventRmvDev”.
btnResetPwd: button used for resetting a developers password.

 Design Document, VCR System

17

Triggers the event “eventResetPassword”
btnSaveDev: button used for saving changes made to a developer.
Triggers the event “eventSaveDev”
btnCancelDev: button used to reset changes made to a developer.
Triggers the event “eventCancelDev”.
btnLogOut: button used to log out.
Triggers the event “eventLogOut”.

Directed from
The administrator reaches this page through the event “eventAdminDev”.

 Design Document, VCR System

18

Figure 4.2.4 “Administrate Branches”

Related functional requirements
F.13
F.14

Controls and fields
txtPath: input for the branches path.
txtNrOfReviewers: input for the number of reviewers necessary. chkBranchRights:
input for the branches rights.
lnkDev: link leading to the current page.
Triggers the event “eventAdminDev”.
lnkBranch: link leading to the administration of branches page.
Triggers the event “eventAdminBranches”
btnAddBranch: button used for adding a new branch.
Triggers the event “eventAddBranch”.
btnRmvBranch: button used for removing selected developer.
Triggers the event “eventRmvBranch”.
btnSaveBranch: button used for saving changes made to a branch.

 Design Document, VCR System

19

Triggers the event “eventSaveBranch”
btnCancelBranch: button used to reset changes made to a branch.
Triggers the event “eventCancelBranch”.
btnLogOut: button used to log out.
Triggers the event “eventLogOut”.

Directed from
The administrator reaches this page through the event “eventAdminBranches”.

 Design Document, VCR System

20

Figure 4.2.4 “Review overview page”

Related functional requirements
F.5

Controls and fields
txtSearchField: specify search criteria.
btnSearch: button used for searching on the criteria.
Triggers the event “eventSearch”.
btnSelectPage: button used to select a review listing page.
Triggers the event “eventSelectPage”.
btnLogOut: button used to log out.
Triggers the event “eventLogOut”.
itmMenuSelect: menu item used to show details about a commit.
Triggers the event “eventListReview”.

Directed from
The developer reaches this page from the event “eventReview”.

 Design Document, VCR System

21

Figure 4.2.5 “Commit overview page”

Related functional requirements
F.5
F.6
F.7
F.8
F.10

Controls and fields
txtComments: Reviewer can input a comment to the displayed changeset.
btnChangeSetAccept: The reviewer can accept the changeset.
Triggers the event “eventAcceptChangeset”
btnChangeSetReject: The reviewer can reject the changeset.
Triggers the event ”eventRejectChangeset”
btnLogOut: button used to log out.
Triggers the event “eventLogOut”.
itmMenuSelectFile: menu item used to show details about a file.
Triggers the event “eventListFile”.

Directed from
The developer reaches this page from the event “eventListReview”.

 Design Document, VCR System

22

Figure 4.2.6 “Source code page”

Related functional requirements
F.5
F.6
F.7

Controls and fields
lnkOriginalFile: used to display the original file.
Triggers the event “eventDisplayOldFile”.

 Design Document, VCR System

23

lnkNewFile: used to display the new file.
Triggers the event “eventDisplayNewFile”.
txtComments: Reviewer can input a comment to the displayed sourcecode.
btnAcceptFile: button used to accept this file.
Triggers the event “eventAcceptFile”.
btnRejectFile: button used to reject this file.
Triggers the event “eventRejectFile”.

Directed from
The developer reaches this page from the event “eventListFile”.

 Design Document, VCR System

24

5. Design detail

5.1. Class Responsibility Collaborator (CRC) Cards

5.1.1. VCR System Classes

Class CheckCommit 
Responsibilities Collaborators
Intercept commit

Check if a commit needs reviewing.

Insert information and source code into the
database.

BEDatabase
Highlight
Transaction

Class BEDatabase 
Responsibilities Collaborators
Handle connection to the database for the
backend of the system.

CheckCommit.

Class Highlight 
Responsibilities Collaborators
Handle connection to the syntax highlighting
engine.

CheckCommit.
Pygments

Class FEDatabase 
Responsibilities Collaborators
Handle the connection to the database, for
the frontend of the system.

Standard

Class Standard 
Responsibilities Collaborators
Provide a standard web page template.
Redirect to login page if user is not
authenticated.

FEDatabase
AdminPage
Review

Class AdminPage 
Responsibilities Collaborators
Provide a standard web page template for
AdminDev and AdminBranch.

Standard
AdminDev
AdminBranch

 Design Document, VCR System

25

Class AdminDev 
Responsibilities Collaborators
Administrate developers AdminPage

AdminBranch

Class AdminBranch 
Responsibilities Collaborators
Administrate branches AdminPage

AdminDev

Class Review 
Responsibilities Collaborators
List commits available for review.
List information about a single commit.
Show the source code from a single file in
the commit.

Standard

5.1.2. Third party classes

Class Pygments 
Provided by: Pygments.org v. 0.9 
Responsibilities Collaborators
Syntax highlights source code. Highlight

Class Transaction 
Provided by: Pysvn.tigris.org v. 1.5.2 
Responsibilities Collaborators
Extract information from SVN CheckCommit

 Design Document, VCR System

26

5.2. Class diagram
The class diagrams are represented using Unified Modeling Language (UML).

Figure 5.2.1: Backend

Figure 5.2.2: Frontend

 Design Document, VCR System

27

5.3. State Chart
The state charts are represented using Unified Modeling Language (UML).

Figure 5.3.1: Commit interception

Figure 5.3.2: Review process

 Design Document, VCR System

28

5.4. Interaction diagram
The sequence interaction diagrams are represented using Unified Modeling Language (UML).

5.4.1. Developer Commit

Figure 5.4.1.1

 Design Document, VCR System

29

5.4.2. Server commit

Figure 5.4.2.1

5.4.3. Review process

Figure 5.4.3.1

 Design Document, VCR System

30

Figure 5.4.3.2

 Design Document, VCR System

31

5.5. Detailed Design

5.5.1. Classes

Class Name: CheckCommit
Attributes: db: A open connection to the database
Methods: Main
Related
Functional
Requirement:

F.1, F.2

Method Name: main()
Parameters: External: SVN transaction id, SVN

repository path.
Return Value: Nonzero: Commit shall be aborted

Zero: Commit shall proceed.
Description: Inserts a changeset into the database

if the code is affected by a review
policy, otherwise commits to SVN
server.

Data Structures: n/a.
Pre-conditions: n/a.
Validity Checks: n/a.
Post-conditions: Commit has been processed.
Called by: External: SVN pre-commit hook i.e. a

blackbox provided by SVN.
Calls: BEDatabase, Highlight

External: PySVN

Class Name: Highlight
Attributes: None
Methods: highlightDiff()
Related
Functional
Requirement:

n/a

Method Name: highlightDiff ()
Parameters: Filename,oldfile(contents),newfile(contents)
Return Value: Highlighted diff
Description: Syntax highlights the diff between two files

in HTML format.
Data Structures: n/a.
Pre-conditions: n/a.
Validity Checks: n/a.
Post-conditions: Syntax is highlighted in HTML
Called by: CheckCommit
Calls: External: Pygments

 Design Document, VCR System

32

Class Name: BEDatabase
Attributes: db: A open connection to the database
Methods: __init__

importSQL()
doSQL()
newChangeSet()
newCode()
getPolicy()
getAuthor()

Related
Functional
Requirement:

F.3

Method Name: __init__()
Parameters: Host, user, password, database,
Return Value: n/a. Throws exception
Description: Imports a .sql file
Data Structures: db; Connection to database.
Pre-conditions: n/a.
Validity Checks: That we can connect to the database.
Post-conditions: Connected to the database.
Called by: CheckCommit
Calls: External: Python mysql module.

Method Name: importSQL()
Parameters: Filename
Return Value: n/a. Throws exception
Description: Imports a .sql file
Data Structures: n/a.
Pre-conditions: n/a.
Validity Checks: n/a
Post-conditions: File has been executed by SQL

engine.
Called by: None
Calls: doSQL

Method Name: doSQL()
Parameters: statement,arguments,cursor
Return Value: Number of rows and row data.

Depending on cursor selected.
Throws exception

Description: Executes statement, replacing any
occurances of % with a argument
from the argumentlist. (sql injection

 Design Document, VCR System

33

safe)
Data Structures: n/a.
Pre-conditions: n/a.
Validity Checks: n/a.
Post-conditions: SQL statement is executed.
Called by: BEDatabase.
Calls: External: Python mysql module.

Method Name: newChangeSet()
Parameters: log, author, date
Return Value: New changeset ID.
Description: Creates a new changeset.
Data Structures: n/a.
Pre-conditions: n/a.
Validity Checks: n/a.
Post-conditions: New changeset created
Called by: CheckCommit
Calls: doSQL

Method Name: newCode()

Parameters: changeSetId,filename,newcontent,hldiff
Return Value: n/a.
Description: Creates a new code entry associated

with changeSetId.
Data Structures: n/a.
Pre-conditions: changeSetId exists in the database.
Validity Checks: n/a
Post-conditions: New code is associated with the

changeSetId.
Called by: CheckCommit
Calls: doSQL

Method Name: getPolicy(filename)
Parameters: Filename
Return Value: policyID.
Description: Searches for an active policy that the

filename is affected by. If more then
one matching is available, it will
return a valid matching, which one is
not defined.

Data Structures: n/a.
Pre-conditions: n/a.
Validity Checks: n/a.
Post-conditions: A policyid is returned if available.
Called by: CheckCommit
Calls: doSQL

 Design Document, VCR System

34

Method Name: getAuthor(changeSetId)
Parameters: changesetID
Return Value: Author of that changeset.
Description: Returns the svn-author of the

changeset.
Data Structures: n/a.
Pre-conditions: The changeset is valid.
Validity Checks: n/a
Post-conditions: Author is returned.
Called by: CheckCommit
Calls: doSQL

Class Name: Standard
Attributes:
Methods: __construct()

check_auth()
check_login()
get_login()
logout()

Related
Functional
Requirement:

F.11

Method Name: __construct()
Parameters: n/a
Return Value: n/a
Description: Constructor for the class Standard.
Data Structures: n/a
Pre-conditions: n/a
Validity Checks: n/a
Post-conditions: n/a
Called by: n/a
Calls: check_auth()

Method Name: check_auth
Parameters: n/a
Return Value: Boolean, true if authenticated false

otherwise.
Description: Checks if the user is logged in.
Data Structures: n/a
Pre-conditions: n/a

 Design Document, VCR System

35

Validity Checks: n/a
Post-conditions: n/a
Called by: __construct()
Calls: n/a

Method Name: get_login()
Parameters: n/a
Return Value: n/a
Description: Redirect the user to the login page.
Data Structures: n/a
Pre-conditions: n/a
Validity Checks: n/a
Post-conditions: n/a
Called by: check_auth()
Calls: n/a

Method Name: logout()
Parameters: n/a
Return Value: n/a
Description: Ends the users session.
Data Structures: n/a
Pre-conditions: The user is logged in.
Validity Checks: n/a
Post-conditions: n/a
Called by: Standard
Calls: n/a

Class Name: AdminPage
Attributes: n/a
Methods: link_admindev()

link_adminbra()
Related
Functional
Requirement:

n/a

Method Name: link_admindev()
Parameters: n/a
Return Value: Link to the admin developer page.
Description: Returns a link to the admin developer

page.
Data Structures: n/a
Pre-conditions: Logged in with admin rights.
Validity Checks: n/a
Post-conditions: n/a

 Design Document, VCR System

36

Called by: AdminDev, AdminBranch
Calls: n/a

Method Name: link_adminbra()
Parameters: n/a
Return Value: Link to the admin branches page.
Description: Returns a link to the admin branches

page.
Data Structures: n/a
Pre-conditions: Logged in with admin rights.
Validity Checks: n/a
Post-conditions: n/a
Called by: AdminDev, AdminBranch
Calls: n/a

Class Name: AdminDev
Attributes: n/a
Methods: add_developer()

remove_developer()
update_developer()
reset_pwd()

Related
Functional
Requirement:

F.12, F.13, F.14

Method Name: add_developer()
Parameters: n/a
Return Value: False if adding failed, true otherwise.
Description: Adds a new developer to the

database.
Data Structures: USR_User.
Pre-conditions: Logged in as administrator.
Validity Checks: n/a
Post-conditions: A new developer is added to the

database.
Called by: eventAddDev
Calls: n/a

Method Name: remove_developer()
Parameters: developer_id
Return Value: False if remove failed, true otherwise.
Description: Remove a developer from the

database.
Data Structures: USR_User.

 Design Document, VCR System

37

Pre-conditions: Logged in as administrator.
Validity Checks: Check that a developer is selected,

show alert dialog if none is selected.
Post-conditions: A developer is removed from the

database.
Called by: eventRemoveDev
Calls: n/a

Method Name: update_developer()
Parameters: developer_id

developer_name
developer_email
developer_rights

Return Value: True if updated was successful, false
otherwise.

Description: Updates information about a
developer.

Data Structures: USR_User.
Pre-conditions: Logged in as administrator.
Validity Checks: Check that all fields are non-empty, if

not so show an alert dialog.
Post-conditions: Developer is updated with new data.
Called by: eventSaveDev.
Calls: n/a

Method Name: reset_pwd()
Parameters: developer_id
Return Value: False if reset failed, true otherwise.
Description: Reset a developers password.
Data Structures: USR_User.
Pre-conditions: Logged in as administrator.
Validity Checks: Check that a developer is selected,

show alert dialog if none is selected.
Post-conditions: A developers password is reset.
Called by: eventResetPassword
Calls: n/a

Class Name: AdminBranches
Attributes: n/a
Methods: add_branch()

remove_branch()
update_branch()

Related F.13, F.14

 Design Document, VCR System

38

Functional
Requirement:

Method Name: add_branch()
Parameters: n/a
Return Value: False if adding failed, true otherwise.
Description: Adds a new branch to the database.
Data Structures: BRA_Branch
Pre-conditions: Logged in as administrator.
Validity Checks: n/a
Post-conditions: A new branch is added to the

database.
Called by: eventAddBranch
Calls: n/a

Method Name: remove_branch()
Parameters: branch_id
Return Value: False if the remove failed, true

otherwise.
Description: Removes a branch from the

database.
Data Structures: BRA_Branch
Pre-conditions: Logged in as administrator.
Validity Checks: Check that a branch is selected,

show alert dialog if none is selected.
Post-conditions: A branch is removed from the

database.
Called by: eventRemoveBranch
Calls: n/a

Method Name: update_branch()
Parameters: branch_id

branch_path
nr_of_reviewers
rights

Return Value: True is update was successful, false
otherwise.

Description: Updates
Data Structures: Updates information about a branch.
Pre-conditions: Logged in as administrator.
Validity Checks: Check that all the fields are non-

empty and show an alert dialog if not.
Post-conditions: The branch is updated with the new

data.
Called by: eventSaveBranch
Calls: n/a

 Design Document, VCR System

39

Class Name: Review
Attributes: n/a
Methods: get_reviews()

get_review_details()
reject_commit()
accept_commit()
get_source_code()
reject_source()
accept_source()
send_note()

Related
Functional
Requirement:

F.4, F.5, F.6, F.7, F.8, F.9, F.10

Method Name: get_reviews()
Parameters: search_string

page_nr
nr_per_page

Return Value: Data for the specified page.
Description: Retrieves a list containing all commits

up for review for the specified page
based on the developers rights.

Data Structures: CHS_Changeset
Pre-conditions: Logged in as developer.
Validity Checks: n/a
Post-conditions: n/a
Called by: eventReview

eventSelectPage
eventSearch

Calls: n/a

Method Name: get_review_details()
Parameters: commit_id
Return Value: Returns the details of a commit.
Description: Gets the details of a specific commit.
Data Structures: CHS_Changeset
Pre-conditions: Logged in as developer.
Validity Checks: n/a
Post-conditions: n/a
Called by: eventListReview
Calls: n/a

Method Name: reject_commit()

 Design Document, VCR System

40

Parameters: commit_id
note_string

Return Value: True if reject was successful, false
otherwise.

Description: Rejects a commit and supplies note.
Data Structures: CHS_Changeset

REV_Review
Pre-conditions: Logged in as developer.
Validity Checks: Checks that a note is supplied,

otherwise displays an alert dialog.
Post-conditions: The specified commits is rejected.
Called by: eventRejectChangeset
Calls: send_note()

Method Name: accept_commit()
Parameters: commit_id

note_string
Return Value: True if accept was successful, false

otherwise.
Description: Accepts a commit and supplies note.
Data Structures: CHS_Changeset

REV_Review
Pre-conditions: Logged in as developer and no

source file is rejected.
Validity Checks: Checks that a note is supplied,

otherwise displays an alert dialog.
Post-conditions: The specified commits is accepted.
Called by: eventAcceptChangeset
Calls: send_note()

Method Name: get_source_code()
Parameters: source_code_id
Return Value: Highlighted source code.
Description: Returns the highlighted source code

for the specified file.
Data Structures: COD_Code
Pre-conditions: Logged in as developer.
Validity Checks: n/a
Post-conditions: n/a
Called by: eventListFile
Calls: n/a

Method Name: reject_source_code()
Parameters: source_code_id

note_string
Return Value: True if reject was successful, false

otherwise.
Description: Rejects a source file in the commit

and supplies note.

 Design Document, VCR System

41

Data Structures: COD_Code
REV_Source_Review

Pre-conditions: Logged in as developer.
Validity Checks: Checks that a note is supplied,

otherwise displays an alert dialog.
Post-conditions: The specified source file is rejected.
Called by: eventRejectFile
Calls: n/a

Method Name: accept_source_code()
Parameters: source_code_id

note_string
Return Value: True if accept was successful, false

otherwise.
Description: Accepts a source file in the commit

and supplies a note.
Data Structures: COD_Code

REV_Source_Review
Pre-conditions: Logged in as developer.
Validity Checks: Checks that a note is supplied,

otherwise displays an alert dialog.
Post-conditions: The specified source file is accepted.
Called by: eventAcceptFile
Calls: n/a

Method Name: send_note()
Parameters: message

email address
Return Value: True if mail was sent, false otherwise.
Description: Sends an email to the address

specified with the supplied note.
Data Structures: n/a
Pre-conditions: Logged in as developer.
Validity Checks: n/a
Post-conditions: Email is sent to the address with

supplied message.
Called by: accept_commit()

reject_commit()
Calls: n/a

 Design Document, VCR System

42

5.5.2. Database structure

This database that is used by both the FE and the BE-Database classes has this
structure.

Table name Fields Type Foreign keys

USR_User USR_Id
USR_Login
USR_Password
USR_Name
USR_Email

INT, PRIMARY KEY
VARCHAR(10)
TEXT
VARCHAR(50)
VARCHAR(50)

N/A
N/A
N/A
N/A
N/A

Table name Fields Type Foreign keys

RGT_Right RGT_Id
RGT_Name

INT, PRIMARY KEY
VARCHAR(50)

N/A
N/A

Table name Fields Type Foreign keys

POL_Policy POL_Id
POL_Name
POL_Category
POL_AcceptedThreshold

INT, PRIMARY KEY
VARCHAR(50)
VARCHAR(50)
INT

N/A
N/A
N/A
N/A
N/A

Table name Fields Type References foreign key
CHS_Changeset CHS_Id

CHS_USR_Id
CHS_Comment
CHS_Date

INT, PRIMARY KEY
INT
VARCHAR(1024)
DATE

N/A
N/A
USR_User(USR_Id)
N/A

Table name Fields Type Foreign keys
BRA_Branch BRA_Id

BRA_Name
BRA_Path
BRA_POL_Id
BRA_Active

INT, PRIMARY KEY
VARCHAR(50)
VARCHAR(255)
INT
BOOLEAN

N/A
N/A
N/A
POL_Policy(POL_Id)
N/A

Table name Fields Type Foreign keys

COD_Code COD_Id
COD_Path
COD_Filename
COD_CodeText
COD_Diff
COD_BRA_Id
COD_CHS_Id

INT, PRIMARY KEY
VARCHAR(255)
VARCHAR(255)
TEXT
TEXT
INT
INT

N/A
N/A
N/A
N/A
N/A
BRA_Branch(BRA_Id)
CHS_Changeset(CHS_Id)

Table name Fields Type Foreign keys

 Design Document, VCR System

43

RES_ReviewSourc
e

RES_COD_Id
RES_USR_Id
RES_Date
RES_Comment
RES_Action

INT, PRIMARY KEY
INT, PRIMARY KEY
DATE
VARCHAR(1024)
ENUM(‘Accept’,’Reject’),
PRIMARY KEY

COD_Code(COD_Id)
USR_User(USR_Id)
N/A
N/A
N/A

Table name Fields Type Foreign keys
REC_ReviewChan

geset
REC_CHS_Id
REC_USR_Id
REC_Date
REC_Comment
REC_Action

INT, PRIMARY KEY
INT, PRIMARY KEY
DATE
VARCHAR(1024)
ENUM(‘Accept’,’Reject’),
PRIMARY KEY

COD_Code(COD_Id)
USR_User(USR_Id)
N/A
N/A
N/A

Table name Fields Type Foreign keys
URI_UserRights URI_USR_Id

URI_RGT_Id
INT, PRIMARY KEY
INT, PRIMARY KEY

USR_User(USR_Id)
RGT_Right(RGT_Id)

Table name Fields Type Foreign keys
POR_PolicyRights POR_POL_Id

POR_RGT_Id
INT, PRIMARY KEY
INT, PRIMARY KEY

POL_Policy(POL_Id)
RGT_Right(RGT_Id)

 Design Document, VCR System

44

5.6. Package diagram

Figure 5.6.1

This means that A uses B.

 Design Document, VCR System

45

6. Functional Test Cases

6.1. Login as developer

Function being tested:
Logging in to the system as a developer.

Functional Requirements:
F.11

Input:
Username and Password valid for the system.

Expected output:
The user is logged in as a developer and redirected to the Review listing page.

Instructions:

1. Write the username in the username textbox.
2. Write the password in the password textbox.
3. Press the login button.

6.2. Login as administrator

Function being tested:
Logging in to the system as an administrator.

Functional Requirements:
F.11

Input:
Username and password for a valid administrator account.

Expected output:
The user is logged in as an administrator and is redirected to the Administration page.

Instructions:

1. Write username in username textbox
2. Write password in password textbox
3. Press login

6.3. Remember me

Function being tested:
If the system can remember login data.

Functional Requirements:

 Design Document, VCR System

46

F.11

Input:
Username and password for a valid account.

Expected output:
The user can automatically access any login protected page, without entering username
and password again.

Instructions:

1. Write username in username textbox.
2. Write password in password textbox.
3. Click the “Remember me” checkbox.
4. Press login.
5. Close your browser window
6. Open and try to access the website.

6.4. Wrong password

Function being tested:
If the system can report invalid password.

Functional Requirements:
F.11

Input:
Username and password that do not correspond to a valid account.

Expected output:
The user is redirected back to the login page, with an indicator that the wrong password
was entered.

Instructions:

1. Write username in username textbox
2. Write password in password textbox
3. Press login

6.5. Logout

Function being tested:
That you are able to logout after having logged in as either developer or administrator.

Functional Requirements:
F.11

Input:
N/A

 Design Document, VCR System

47

Expected output:
The user is redirected back to the login page, having to enter a password and username
to get back to the site.

Instructions:

1. Login (Follow test “Login as Developer” or “Login as Administrator)
2. Press Logout

6.6. Add Developer

Function being tested:
Adding a developer to the system.

Functional Requirements:
F.12

Input:
N/A

Expected output:
A new developer is added to the systems database.

Instructions:

1. Click the “Add developer” button on the “Administrate developers” page.

6.7. Remove Developer

Function being tested:
Remove a developer to the system.

Functional Requirements:
F.12

Input:
N/A

Expected output:
A developer is removed from the systems database.

Instructions:

1. Click the “Remove developer” button on the “Administrate developers” page.

6.8. Save new changes

Function being tested:
Save new changes made to a selected developer.

 Design Document, VCR System

48

Functional Requirements:
F.12

Input:
Name and email for the developer and any selected rights for that developer.

Expected output:
The information is about the developer is updated and is shown when she is selected
from the list of developers.

Instructions:

1. Enter the “Administrate developers” page.
2. Select a developer.
3. Make changes to the information displayed.
4. Click the “Save” button.

6.9. Cancel changes

Function being tested:
Cancellation of changes made to a developer.

Functional Requirements:
F.12

Input:
N/A

Expected output:
The information displayed about the developer is set back to what is stored, thereby
removing any changes made.

Instructions:

1. Enter the “Administrate developers” page.
2. Select a developer.
3. Make changes to information.
4. Click the “Cancel button”.

6.10. Reset password

Function being tested:
Resetting a developer’s password.

Functional Requirements:
F.12

Input:
N/A

 Design Document, VCR System

49

Expected output:
A new randomized password is set and is then email to the selected developer.

Instructions:

1. Select a developer.
2. Click on the “Reset password” button on the “Administrate developers” page.

6.11. Test save with no selected developer

Function being tested:
Trying to click the save button with no selected developer.

Functional Requirements:
F.12

Input:
N/A

Expected output:
An alert dialog shall be displayed informing the user that no developer is selected and
therefore the save function is not applicable.

Instructions:

1. Enter the “Administrate developer” page.
2. Click on the “Save” button.

6.12. Switch to branch

Function being tested:
Switching from administrating developers to administrating branches.

Functional Requirements:
F.14

Input:
N/A

Expected output:
The administrator is redirected from the “Administrate developers” page to the
“Administrate branches” page.

Instructions:

1. Enter the “Administrate developers” page.
2. Click on the link titled “Branches”.

 Design Document, VCR System

50

6.13. Select developer

Function being tested:
Selecting a particular developer from the list of developers.

Functional Requirements:
F.12

Input:
N/A

Expected output:
A developer is selected and information about the developer is displayed in the fields.
The information displayed includes, the developers name and email and also the rights of
the developer.

Instructions:

1. Enter the “Administrate developers” page.
2. Select a developer from the list of developers by clicking on a name.

6.14. Add branch

Function being tested:
Adding a branch and setting policies to it.

Functional Requirements:
F.14

Input:
Path to where the branch is located, number of reviewers required and their rights.

Expected output:
The new branch gets added to the list of available branches.

Instructions:

1. Press the “Add branch” button.
2. Enter the path to the branch in the path textbox.
3. Enter number of reviewers required in the # of reviewers’ textbox.
4. Select the rights required by the reviewers.
5. Press the save button.

6.15. Remove branch

Function being tested:
Removing all the review policies from a branch.

Functional Requirements:

 Design Document, VCR System

51

F.14

Input:
The branch selected for removal.

Expected output:
The selected branch is removed from the list of branches being controlled by review
policies.

Instructions:

1. Select a branch from the list over available branches.
2. Press the remove branch button.

6.16. Save new changes

Function being tested:
Saving new changes to an already added branch.

Functional Requirements:
F.14

Input:
Path to where the branch is located, number of reviewers required and their rights.

Expected output:
The information about the branch is updated with the new one.

Instructions:

1. Select a branch from the list over available branches.
2. Change the information in the appropriate text boxes.
3. Press the save button.

6.17. Cancel changes

Function being tested:
Cancel an ongoing change in the information about a branch.

Functional Requirements:
F.14

Input:
None.

Expected output:
All the text boxes gets updated with the old information about the selected branch and
none of the new one is stored.

Instructions:

 Design Document, VCR System

52

1. Select a branch in the list over available branches.
2. Make some changes in the text boxes.
3. Press the cancel button.

6.18. Test save with no selected branch

Function being tested:
Trying to change settings without having selected a branch.

Functional Requirements:
F.14

Input:
Path to where the branch is located, number of reviewers required and their rights.

Expected output:
A dialog box will appear stating the no branch is selected. None of the new information is
stored.

Instructions:

1. Make sure the no branch is selected.
2. Enter some information in the text boxes.
3. Press the save button.

6.19. Switch to developer

Function being tested:
Switching from the branch settings page to the developer settings page.

Functional Requirements:
F.12

Input:
None.

Expected output:
The user is presented with the developer settings page.

Instructions:

1. Press the developer link.

6.20. Select branch

Function being tested:
Selecting a branch.

Functional Requirements:

 Design Document, VCR System

53

F.14

Input:
None.

Expected output:
The branch gets selected and its information is shown in the text boxes.

Instructions:

1. Select a branch in the list over available branches.

6.21. Search

Function being tested:
That you are able to search the changesets

Functional Requirements:
F.2
F.5

Input:
A search string

Expected output:
The user is presented with a RevList with only matching items

Instructions:

1. Follow testcase 1.1 to login
2. Enter a search string into the searchfield and press enter

6.22. Select changeset

Function being tested:
That you can select changesets

Functional Requirements:
F.2
F.5

Input:
Select a changeset

Expected output:
The user is redirected to the Review Single page for the selected changeset.

Instructions:

1. Follow testcase 1.1 to login
2. Select any changeset

 Design Document, VCR System

54

6.23. Change page

Function being tested:
That you can display all pages of the changesets.

Functional Requirements:
F.2
F.5

Input:
Selected pagenumber

Expected output:
The user is presented with a Rev Listing with different items.

Instructions:

1. Follow testcase 1.1 to login
2. Select a pagenumber

6.24. Select a file in a commit

Function being tested:
To display the source code of a file in a commit.

Functional Requirements:
F.4

Input:
The selected file to display.

Expected output:
A new form showing the selected file content and a field where you can leave a
comment.

Instructions:

1. In a browser window, log in as a developer.
2. Open a commit up for review.
3. Select a file by clicking at the name of the file in the list to open it.

6.25. Denial of commit acceptance

Function being tested:
The denial of acceptance of the entire commit if at least one file in it has been rejected.

Functional Requirements:
F.6

Input:

 Design Document, VCR System

55

The commit or change set that you want to accept.

Expected output:
A message informing the user that part of or the entire commit has been rejected.

Instructions:

1. In a browser window, log in as a developer.
2. Open a commit and reject at least one file in it.
3. Try to accept the entire commit.

6.26. Accept a commit without supplying a comment

Function being tested:
The acceptation of a commit even if the user has chosen not to comment on the action
taken.

Functional Requirements:
F.6

Input:
The commit/change set that you want to accept.

Expected output:
The status of the commit will be updated in the list of commits up for review.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Accept the commit without leaving a comment.

6.27. Accept a commit by accepting all files and leaving a comment

Function being tested:
The acceptation of a commit when the user has accepted all files separately and wishes
to leave a comment on the entire commit before accepting it.

Functional Requirements:
F.6

Input:
The commit/change set that you want to accept.

Expected output:
The status of the commit will be updated in the list of commits up for review.

Instructions:

 Design Document, VCR System

56

1. In a browser window, log in as a developer.
2. Open a commit and accept the files in it, one by one.
3. In the window containing the files in the commit, write a comment in the comment

window.
4. Try to accept the entire commit.

6.28. Reject a commit without supplying a comment

Function being tested:
The rejection of a commit when you have not supplied a comment.

Functional Requirements:
F.6

Input:
The commit/change set that you want to reject and the comment.

Expected output:
The status of the commit will be updated in the list of commits up for review and the
comment saved in the database.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Reject the commit without leaving a comment.

6.29. Reject a commit and supply a comment

Function being tested:
The rejection of a commit when you choose to supply a comment.

Functional Requirements:
F.6

Input:
The commit/change set that you want to reject and the comment.

Expected output:
The status of the commit will be updated in the list of commits up for review and the
comment saved in the database.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Write a comment in the comment field.
4. Reject the commit.

 Design Document, VCR System

57

6.30. Accept a single file without supplying a comment

Function being tested:
The acceptation of a commit when the user doesn’t supply a comment.

Functional Requirements:
F.4
F.6

Input:
The file name of the source code you want to accept and the change set it belongs to.

Expected output:
The status of the file in the commit up for review will be updated.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Select a file belonging to that commit.
4. Accept the file.

6.31. Accept a single file and leave a comment

Function being tested:
The acceptation of a single file belonging to a commit when the user has chosen to leave
a comment.

Functional Requirements:
F.4
F.6

Input:
The file name of the source code you want to accept, the change set it belongs to and
the comment.

Expected output:
The status of the file in the commit up for review will be updated and the comment saved
in the database.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Select a file belonging to that commit.
4. Leave a comment in the comment field.
5. Accept the file.

 Design Document, VCR System

58

6.32. Reject a single file without supplying a comment

Function being tested:
The rejection of a single file when the user has not supplied a comment.

Functional Requirements:
F.4
F.6

Input:
The file name of the source code you want to accept and the change set it belongs to.

Expected output:
The status of the file in the commit up for review will be updated and the comment saved
in the database.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Reject the commit without leaving a comment.

6.33. Reject a single file and leave a comment

Function being tested:
The rejection of a single file belonging to a commit when the user has chosen to leave a
comment.

Functional Requirements:
F.4
F.6

Input:
The file name of the source code you want to reject, the change set it belongs to and the
comment.

Expected output:
The status of the file in the commit up for review will be updated and the comment saved
in the database.

Instructions:

1. In a browser window, log in as a developer.
2. Select a commit up for review.
3. Select a file belonging to that commit.
4. Leave a comment in the comment field.
5. Reject the file.

 Design Document, VCR System

59

6.34. Commit to branch without policy

Function being tested:
That the code will be committed to the SVN.

Functional Requirements:
F.1
F.2

Input:
A commit created by a third-party SVN client.

Expected output:
The user receives the normal message indicating success from its SVN client.

Instructions:

1. Commit to the company “Visual Code Review” protected SVN server, following
normal procedures for this action.

2. Make sure it is stored safely in the SVN repository.

6.35. Commit to branch with policy

Function being tested:
That the code will not be commited directly to the SVN repository, and that it will be
added into the database.

Functional Requirements:
F.1
F.2

Input:
A commit created by an thirdparty SVN client.

Expected output:
The user receives a message from Visual Code Review indicating that it is due for code
review.

Instructions:

1. Commit to the company “Visual Code Review” protected SVN server, to a branch
that has a policy, following normal procedures for this action.

