AETD - Arch-Enemy Tower Defense
Group 6

Olof Ol-Mars
Erik Nordenhok
Felix Wallén
Johan Gustafson
Jonas Hellgren

Contents

1 Introduction

1.1 Purpose e
1.2 Scope
1.3 Intended audience oL
1.4 Version history L
1.5 Reference
1.6 Glossary
1.7 Summary
2 System Overview
2.1 General Description
2.1.1 Singleplayer mode oL
2.1.2 Multiplayer mode
2.2 Overall Architecture Description
2.3 Detailed Architecture
2.3.1 Dataflow for user input
2.3.2 Input manager control flow
2.3.3 Game engine control flow
2.3.4 Client network manager control flow
3 Design considerations
3.1 Assumptions and considerations
3.2 General constraints
3.2.1 Hardware
3.2.2 Software
3.2.3 Network communication
4 Graphical User Interface
4.1 OVerview v v v e e e
4.1.1 Flowchart
4.2 Detailed descriptions 0oL
421 Mainmenu
422 Joingame
4.2.3 Game-lobby oo
4.24 In-game
4.2.5 Settingsmenu

13
13
13
13
13
14

5 Design Details 27

5.1 Class Responsibility Collaboratior (CRC) Cards 27
5.2 Class Diagram 31
5.3 State Charts, 32
5.4 Interaction Diagrams (Collaboration diagrams). 33
5.5 Detailed Design oo 37
5.5.1 Class: AETD 37
5.5.2 Class: Game. 39
5.5.3 Class: Player 42
5.5.4 Class: Entity L. 43
5.5.5 Class: Projectile 44
5.5.6 Class: Button 45
5.5.7 Class: Tower 46
5.5.8 Class: Monster 49
5.5.9 Class: Graphics 51
5.5.10 Class: Chat 52
5.5.11 Class: Server 54
5.5.12 Class: Client 56
5.5.13 Class: InputParser 58

5.6 Package Diagram 59
6 Functional Test Cases 60
6.0.1 Download the program 60
6.0.2 Install the program 61
6.0.3 Configure game settings 62
6.0.4 Play singleplayer game 63
6.0.5 Host multiplayer game 64
6.0.6 Join multiplayer game 65
6.0.7 Build Towers 66
6.0.8 Select a specific tower 67
6.0.9 Sell towers 68
6.0.10 Upgrade towers 69
6.0.11 View individual tower statistic 70
6.0.12 Monster levels 71
6.0.13 Monster movement 72
6.0.14 Kill monsters 73
6.0.15 Receive information about monster’s health 74
6.0.16 Send monsters to other players 75
6.0.17 Chat with other players 76

1 Introduction

1.1 Purpose

The purpose of this document is to give the reader a good understanding of
the design of the system. After reading this document, one should be able
to implement the system as described in the Requirements Document.

1.2 Scope

This document contains descriptions of the classes and functions, and how
they interact. It also contains information about how the interface will look
like as well as test cases for the functionality to make sure the program will
work as intended when completed

1.3 Intended audience

We expect the readers of this document to be those who are supposed to
implement the system i.e. programmers. There is therefore necessary to
have some programming knowledge to fully understand this document.

1.4 Version history

Date Version Summary

2008-01-28 0.1 Section 2.2 and 2.3 added.

2008-02-04 0.2 Section 4 added.

2008-02-11 0.3 Section 5.1 to 5.4 added.

2008-02-18 0.4 Section 5.5 and 5.6 added.

2008-02-25 0.5 Section 6 added.

2008-03-03 0.6 Section 1 added.

2008-03-05 0.7 Section 3 added.

2008-03-06 0.8 Section 2.1 added.

2008-03-10 1.0 First version of the document compiled.

1.5 Reference

A document that is related to this is the Requirements Document (version
1.0). If there is references to a RD, it is this Requirements Document that
is to be referenced to.

The documents that result from this document is the Implementation
Plan (IP) and the Final Documentation (FD).

1.6

Glossary
Actor

Someone or something that interacts in a use case.

AETD

Arch-Enemy Tower Defense is the name of our game.

Al

Artificial Intelligence, a computer system that acts as if it could think.

Blocking

A tower is blocking if it is placed in such a way that monsters can find
no path between their current position and the goal.

CH+

A programming language that we will use to build our system.

Client

One of the players in a multiplayer game that connects, rather than
create, the game.

Client-computer
The computer of a client player.
Compiler

When compiling the computer translates the written code to a language
that the computer can read.

Executable file

A program that can be executed on a computer.

Functional requirement

A function that will be included in the final product.

GUI

Graphical User Interface is the graphical interface that the system
presents to the user.

Host

One of the players in a multiplayer game that creates, rather than
connects to, a game. There is only one host for every multiplayer
game.

Host-computer

The computer of the host player.
IP-address

An Internet Protocol-address is used for connecting computers over
network. Much like how telephone numbers connects telephones.

Monster

Object moving from one side of the playing field towards the other.
OpenGL

Open Graphics Library is a free source graphical library that contains
functions to implement a graphic environment.

Playing field

An area individual to each player where towers can be built and mon-
sters move.

Socket

A socket is a communication end-point unique to a machine communi-
cating on an Internet Protocol-based network.

Tower

A stationary object placed on a playing field that shoots at monsters
in range.

UDP

User Datagram Protocol, a specific set of rules used in networking.

Use Case
A step-by-step description of a function of the system.

Web-server

A storage space for files on the Internet. It allows users to download
data from the server.

1.7 Summary

The design document is a guide for a programmer to follow when constructing
the game. It starts off with a general overview of the system and issues to
be taken into consideration. It also contains descriptions of the graphical
elements of the game as well as what functions they relate to. All classes in
the game are described in detail, including major methods for each class and
how the classes interact with each other. Finally there are test cases of how
to test the functionality from the RD.

2 System Overview

2.1 General Description

Arch-Enemy Tower Defense is a strategic game which supports both single-
player and multiplayer features. The general idea of the game is to stop a
group of monsters from crossing a certain area and reaching their goal. For
each monsters that manages to cross the area the player looses points and
when a certain amount of monsters have passed the player has been defeated.

2.1.1 Singleplayer mode

In singleplayer mode the player tries to survive for as long as possible with
monsters arriving at set intervals. With the gold earned from killing a mon-
ster the player can choose to build new towers or upgrade existing towers
and thereby improving his defensive capabilities. When playing singleplayer
mode the user has no need for an Internet connection.

2.1.2 Multiplayer mode

In the multiplayer mode two or more players are playing against each other.
Players can see certain information concerning the progress of their oppo-
nents. They can then choose to spend their gold either on building and
upgrading their towers, as in the singleplayer mode, or on sending monsters
to their opponents. One of the players in a multiplayer game will be hosting
by choosing the host option from AETDs main menu. This will allow other
players to connect by choosing the join network game option and then spec-
ifying the IP-address of the host computer. In this mode players can also
chat with each other.

2.2 Overall Architecture Description

Client Server
Network manager + - + Network manager
i x x
¥ l ¥
Game engine #, j Client manager

i

Graphical manager

Data —>»
Control ----»

Input manager f U Ser

Client

The clients job is to handle the game data for the particular user associated
with it and to provide a graphical interface for said user. The Input manager
takes input from the user and sends data to the Game engine. The Game
engine then process the data and sends it to both the Graphical manager
and the Network manager. The Graphical manager updates the graphical
interface from the given data. The Network manager sends the data to the
Network manager in the server.

Server

The servers job is to manage the clients that are connected to it and to
distribute information received from the individual clients to all others. The

communication between the Network manager in the clients and the one in
the server is made with the UDP protocol.

2.3 Detailed Architecture

2.3.1 Dataflow for user input

Client Server | other Clients

The user makes an

input.

Input is captured by
the input manager.

I

The game engine recives
data, which it process.

v

The network manager
sends data to the server. [T The server recives data.

v

The graphical manager The netwo.rk manager

recives data which its asks the client manager

draws which are the connected
clients.

¥

The network manager
sends data to all other
clients. The clients recives data.

¥

The game engine does
calculations with the
new data.

The new data is drawn
on the screen.

10

2.3.2 Input manager control flow

USER INPUT

!

Input manager checks type of input.

v

The approperiate data to send to the
game engine is selected depending on

the input type.

Data is sent to the game engine.

2.3.3 Game engine control flow

INPUT

!

Game engine processes the input.

v v

If the updates need to be relayed to The graphical manager is called if it
other clients, the updates made is sent has to update the interface with the
to the network manager. new information.

11

2.3.4 Client network manager control flow

INPUT

!

Network manager processes the input.

v v

Input is a package sent from the server. Input will be shared with other clients.
Game engine recieves the package. Input is sent to the server as a package.

12

3 Design considerations

3.1 Assumptions and considerations

When designing our system we have made several assumptions considering
the specification of the hardware, software and operating system that the
game is to run on. These assumptions have been made to facilitate the
testing of our system but when designing the system we have made choices
that opens up for a wider interoperability in the future.

Since the majority in our target user audience, users who often use their
computers for entertainment such as games like ours, are using the Microsoft
Windows XP operating systems, we have aimed to make our system work
properly on Microsoft Windows XP. As such we assume that the end user
will run Windows XP and do not guarantee any kind of performance on other
operating systems.

In order to use the multiplayer functionality in our game the user might
need some basic knowledge about the configuration of his firewall and anti-
virus software in case it somehow interferes with the connection between
hosts and clients.

3.2 General constraints
3.2.1 Hardware

Our system should be fully functional on a system with the following hard-
ware setup or something with equal or greater performance.

e A processor operating at 1.4GHz.
e A total memory capacity of 512MB.
e A hard drive space of 50MB.

e A shared video memory of 16MB.

3.2.2 Software

Since the system is written in C++ with graphics rendered in OpenGL we
can include all the files needed to avoid software constraints on the user.

13

3.2.3 Network communication

When using the multiplayer functionality the user should have a minimum
network speed of 1Mbit /s for the game to run smoothly. We are going to use
the UDP protocol when communicating between host and clients.

14

4 Graphical User Interface

4.1 Overview

Arch-Enemy Tower Defense

Start singleplayer game

Host multiplayer game

Join multiplayer game
Change settings

Quit game

Figure 1: Main menu

When the game is started this screen will be presented to the user. It
contains buttons leading to the game itself and the settings menu.

15

Connected players

Group 6 Hello!

Player 2 Hi.

I'm going to start the game
... Everyone ready?

Player 3

Empty slot

Difficulty

Easy Medium Hard
Server IP; 130.237.226.35

Start game

Main menu

Figure 2: Wait screen of the Network game

When a user enters a network game (either hosts or joins one) he will be

placed in the game-lobby. Here he can see who else is connected to the game
and chat with the other connected players.

16

LEX

Player 2 Send monsters

Monsters 7
Towers 5 Lives

Player 3 Send monsters

Monsters 10
Towers 3 Lives 7

Player 4 Send monsters

Monsters 4
Towers 7 Lives
Sell tower

Upgrade tower

Lives 7
Gold 24

Quit game

Figure 3: In-game screenshot

The main graphical user interface (GUI) when playing the game looks like
the image above. It’s divided into the playing field to the left and opponent
information and tower related functions to the right.

It’s on the playing field where all the action takes place. Monsters appear
at the top and try to reach the bottom. The user builds towers on the field
in order to hinder the monsters from reaching their goal.

The opponent information tells the user how his opponents are doing.
With the information given the user can decide if he wants to send monsters.

In the tower related functions, one can build, upgrade and sell towers as
well as see information about towers or monsters. This part of the GUI also
gives functions for chatting and quiting the game.

17

4.1.1 Flowchart

Y VYV

S Main menu

— 1

v

Change settings

Start singleplayer game

——>

Singleplayer game j—

>

Host multiplayer game

>

Multiplayer connect / chat

e

Join multiplayer game

3] joinIP

P»| Quit game

T

Figure 4: Flowchart

Start / Quit

Multiplayer game |}—

This flowchart describes the order in which the images should be inter-
preted. It also tells the order that menus and events will occur and how to
get to a certain point.

18

4.2
4.2.1

Detailed descriptions

Main menu

Start singleplayer game

Host multiplayer game

Join multiplayer game

Change settings

Quit game

Figure 5: The menu-buttons of the Main menu

The “Start singleplayer game” button starts a singleplayer game.

The “Host multiplayer game” button starts up a server in the back-
ground as well as sends the user to the game-lobby as a host.

The “Join multiplayer game” button sends the user to the Join game
ment.

The “Change settings” button sends the user to the settings menu.

The “Quit game” button closes the game.

All buttons above can be initiated either by left-clicking them with the
mouse or typing the underlined letter for the keyboard-shortcut.
This image implements the functional requirements:

Play singleplayer game
Host multiplayer game
Join multiplayer game

Configure game settings

19

4.2.2 Join game

Arch-Enemy Tower Defense

Enter IP: 130.237.226.35

Cancel

Figure 6: Enter the server IP to join a Network game

The join game menu has a prompt in the middle of the screen that
prompts the user for an IP-address to a server. Once the IP of a server
is entered and the user left-clicks the “Join” button he is sent to the game-
lobby as a client. If the user wishes to go back to the main menu he can do
so by left-clicking the cancel button.

This image implements the functional requirements:

e Join multiplayer game.

20

4.2.3 Game-lobby

Connected players

Group 6
Player 2
Player 3

Empty slot

Figure 7: The players connected before the Multiplayer start
At the top left section of the game-lobby there will be a frame containing

the names of the connected players. For the host user there will be a button
next to the names which he can left-click to kick a player from the game.

Difficulty

Easy Medium Hard

Figure 8: The Multiplayer difficulty

Below the connected players there will be a frame showing the difficulty of
the game. The speed and life of the monsters vary with the game-difficulty.
To change the difficulty setting the user left-clicks the box relating to his

choice. The selected difficulty box will then be filled. Only the host can
change the difficulty.

Server IP: 130.237.226.35

Start game

Main menu

Figure 9: Server IP and Start multiplayer game / quit to Main menu

Below the difficulty the IP-address of the server is shown, this is useful
for letting others know what server to connect to. To start the game, the

21

host user must left-click the “Start game” button. If a user wants to leave
the multiplayer session he can do so by left-clicking the “Main menu” button.

Hello!

IR

I'm going to start the game
soon... Everyone ready?

Figure 10: Multiplayer wait-chat

To the right there is a frame for chatting with the other connected players.
To send a message the user types in the chat-prompt at the bottom of the
screen and messages received will be displayed above.

This image implements the functional requirements:

e Chat with other players.

22

4.2.4 In-game

Figure 11: The playing field, with two towers and four monsters

The monsters enters the playing field through the gate at the top and
will start moving towards their goal at the gate in the bottom. Monsters are
represented in the picture with the smileys. Monsters will enter the playing
field at a set interval maintained by the game, as well as when opponents
send monsters to the player. The towers, represented by the squares with
symbols, are built on the playing field by the player. When monsters enter
the range of towers, the towers will automatically attack them. This will be
represented by a small projectile leaving the tower towards the monster.

This image implements the functional requirements:

e Select a specific monster
e Select a specific tower
e Monster movement

e Kill monsters

23

Player 2 Send monsters

Monsters 7
Towers 5 Lives

Figure 12: Multiplayer status bar

This section shows information about the opponents, that is the other
players in the same game. For each other player there will be a separate
field containing his name, number of monsters and towers currently on his
playing field, number of lives the he has left and a button to send monsters
to him. These values are updated via the network when the values change
for the opponent. When the player left-clicks the “Send monsters” button,
additional monsters will appear for the opponent and gold will be debited
for the player.

This image implements the functional requirements:

e Send monsters to other players.

Sell tower

Upgrade tower

Lives 7
Gold 24

Chat Quit game

Figure 13: Player status bar and build tower-menu

This section contains the different towers that the player can build. To
build a tower the user must left-click the button representing the tower from
the menu. The user then left-clicks on the playing field where he wants the
tower to be built. To use the “Sell tower” and “Upgrade tower” buttons, the
user must first left-click a tower already built on the playing field. He can
then left-click the button to preform the task he wanted. At the bottom of
the screen there are buttons for initiating player chat and quitting the game.

This image implements the functional requirements:

24

e Sell towers
e Upgrade towers

e Build towers

Name: Frownie Name: lce tower
Speed: 4
Health: 100

Value: 3
Level: §
Special: None
the monsters 25%

Figure 14: Monster and Tower statistics

When a tower is selected, either from the build menu or on the playing
field, the information box will show information relating to that tower. The
box will contain information about the name, level, value, range, damage
and special abilities for the selected tower. If a monster is selected instead of
a tower the box will show information relating to that specific monster, that
is its name, speed, health, value and special abilities.

This image implements the functional requirements:

e Receive information about monsters health

e View individual tower statistics

| like pie.
Mee too!
In fact, I'm going to shut down the server now, to bake some pie!

Figure 15: The in-game multiplayer chat

When a user left-clicks the chat button or uses the keyboard-shortcut, a
chat-prompt will appear at the bottom of the playing field allowing the user
to send a text message to his opponents. When a message is entered the
user can left-click the “Send” button or use the keyboard-shortcut to send
the message. When the user receives a message it will be shown above the
prompt.

This image implements the functional requirements:

e Chat with other players.

25

Arch-Enemy Tower Defense

Singleplayer settings

Difficulty :
Easy Medium Hard

Multiplayer settings

Name Group 6

Cancel

Figure 16: The Settings menu

4.2.5 Settings menu

This screen shows the settings that a user can change for the game. The
different difficulties for a singleplayer game can be use to determine the speed
and health of monsters, this does not affect multiplayer games. To change
the difficulty setting the user left-clicks the box relating to his choice. The
selected difficulty box will then be filled. Below this there will be a field
where the player can edit the name that will be shown as his name when
playing a multiplayer game. To save any changes made, the user left-clicks
on the “Save” button. To return to the main menu without saving, the user
can left-click the “Cancel” button.
This image implements the functional requirements:

e Configure game settings.

26

5 Design Details

5.1 Class Responsibility Collaboratior (CRC) Cards

Class: AETD

Handle main menus.
Configure player

. Game
settings.
Server
Start server. .
Graphics

Join specific server.
Launch game.

Class: Server

Synchronize information Client

with clients. Game
Control IP address. Player
Control port number. Chat

Class: Tower

Constructs projectiles.

Block monster path. Entity
Upgrade capabilities. Graphics
Control fire rate. Projectile

Select type of projectile.

27

Class: Game

lient
Initialize game board. Clien
- Server
Initialize towers and .
Entity
monsters.
Tower
Count gold.
Monster
Countdown to next wave.
Chat
Class: Monster
Calculates path to exit.
Trigger graphics engine
to draw object. Entity
Speed. Graphics
Hitpoints.
Special ability.
Class: Projectile
Calculates path to monster.
Trigger graphics engine to
draw object. Entity
Speed. Graphics
Damage.
Special ability.
Class: Entity
Defines functions for
towers, monsters and
other visible objects. Graphics

Draw entity.
Remove entity.

28

Class: Graphics

Entity
Draw visible objects. Game

AETD
Class: Chat
Display messages. Graphics
Send new messages to Client
other players. Server
Class: Client
Communicate information

Server
to host computer.

Game
Control IP address. AETD
Control port number.
Class: Player
Number of monsters.
Number of t.owers. AETD
Number of lives.

Game
Amount of gold.

Server

Control player name.
Control player id.

29

Class: Button

AETD
Connnect visual button to Game
a function in another class.| Graphics

Entity
Class: InputParser
Listens for user input
through keyboard and AETD
mouse. Game
Parse commands and Chat
send to designated class.

30

5.2 Class Diagram

Class Diagram for AETD

InputParser

Chat .
AETD
| < v '/ v
Server |« Player Graphics
Client)
| \4 < |
| o Game
» Entity
Button [¢——
Projectile |4 Tower Monster

31

5.3 State Charts

Host a new mulitplayer game

Start server

7

Start client
Server up

Client off

Server off
Client off

Client on

Open lobby and
listen for other clients
Client connects

Server open for to localhost
connections
Send chat message
Start chat
/N Enter text

Chat window
visible

Chat closed

Send to server

k—\

Message entered

Server has

Chat message
chat message

created

Create chat
message

Send chat
to clients

Clients have received
chat message

32

5.4 Interaction Diagrams (Collaboration diagrams)

Create monster collaboration

1: if wavetimer = 0
create_monster = true

2: increase nMonsters
G ame 3: for size of wavesize

monster = createMonster(type)

5: result = send(nMonsters) \ 4

4: result = draw(monster) Monster
Client Graphics
Create tower collaboration
2: verifyCommand() InletPa rser
verifyPath()
increase nTowers 1: create_tower = getCommand() f
decrease gold |
Game 3: tower = createTower()
5: result = send(nTowers. gold) A 4
4: result = draw(tower) Tower

Client

Graphics

33

Sell tower collaboration

2: verifyCommand()
decrease nTowers
increase gold

InputParser

1: sell_tower = getCommand() f

I
[1Game

5: result = send(nTowers, gold)

Client

3: tower = removeTower()

4: result = remove(tower)

Graphics

Tower

Send chat message collaboration

4: result = send(chat)

InputParser

1: chat_message = getCommand() f

\4

Client

Game

| 2: chat = createMessage(chat_message)

3: object= draw(chat)

v

34

v

Graphics

Chat

Send monsters collaboration

2: verifyCommand()
decrease gold

InputParser

1: send_monster, player = getCommand()f

I
[1Game

5: result = send(nMonsterType, monsters)

Client

Start game collaboration
InputParser

Server

A

3: for size of send_monster_length
monsters = createMonster(player)

4: result = draw(monsters)

Graphics

\4

Monster

1: start_game = getCommand()

4

A

5: server = startServer()
(only if hosting a
multiplayer game)

AE

D

Game

2

4: object = draw(chatbox)

\4

Graphics

3: chatbox = intializeChat()

2: start = startGame()
4: game = connect(start, server)

\4

Chat

(only if host) else
game = connect(start, ip)

Startup collaboration

Graphics

1: menu = drawMainMenu() |

v
AETD

A

2:start_command = inputCommand()

InputParser

Upgrade tower collaboration

2: upgrade_tower = getCommand()]
InputParser
1: mark_tower = getCommand() ?
v |
3: if result is false don't build
result = verifyGold() Game
decrease gold 4: tower = upgradeTowerr()
A
6: result = send(gold)
5: if tower image is renewed
object = draw(tower) v
v ‘L
: . Tower
Client Graphics

36

5.5 Detailed Design

All variables are written in a C++ syntax. That means type first and then
the name of the variable. Get/Set functions for variables will be named
getVariableName or setVariableName. Variables will be named variable name.

5.5.1 Class: AETD

Variables

vector<vector <Button>> menu
int current _frame

Graphics graphic_manager
Game game

InputParser input manager

int difficulty

String player name

Client client

Server server

Functions

mainLoop
The main loop for AETD. Iterates over the menu currently showing to decide
what button that has been pressed.

e Input: none.
e Called by: starting the program.

e Validity checks: Checks if there is a connection in Client. Does nothing
in client if not. Checks if there is a connection in Server. Does nothing
in server if not.

e (Calls: sendTo and recvFrom in Client and in Server and drawMenu.

e Return value: none.

showSettingsMenu
Sets current frame to settings menu.

e Input: none.

e (Called by: Button.

37

e Return value: none.

showNetworkLobbyMenu
Sets current frame to network lobby menu.

e Input: none.

Called by: Button.

Validity checks: Checks if a server should be setup. Ignores server
functions if not.

Accesses: Client client and Server server.

Calls: socket and bind in Client and Server.

Return value: none.

showNetworkJoinMenu
Sets current frame to network join menu.

e Input: none.
e Called by: Button.

e Return value: none.

drawMenu
Draws the vector<Button> at current frame in the menu vector.

e Input: none.

Called by: mainLoop.

Validity check: If chat is to be displayed, printHistory is called.

Accesses: vector<vector <Button>> menu.

Calls: All functions in graphics manager and printHistory in chat.

Return value: none.

38

5.5.2 Class: Game

Variables

vector<<Tower> towers
vector<<Monster> monsters
vector<Projectile> projectiles
vector<<Button> buttons
vector<Player> players
Button current target

Functions

mainLoop
Calls the different update and draw functions in game.

Input: none.

Called by: AETD.

Calls: printHistory in chat and moveMonsters, update Towers, updatePlay-
ers, draw and drawDetails.

Return value: none.

moveMonsters
Tterates over all monsters and calls monster functions.

e Input: none.
e (Called by: mainLoop.
e Accesses: vector<Monster> monsters and Player.

e (Calls: moveMonster and getDieFlag in Monster and setGold and get-
Gold in Player.

e Post-condition: Removes the monster if getDieFlag is not 0. Gives the
player gold equal to die flag.

e Return value: none.

39

updateTowers
Tterates over all towers and calls the different tower related functions.

Input: none.
Called by: mainLoop.
Accesses: vector<Tower> towers and Player.

Calls: attackMonster, getSellFlag in Tower and setGold and getGold
in Player.

Post-condition: Removes the tower if getSellFlag is not 0. Gives the
player gold equal to sell flag.

Return value: none.

updatePlayers
Checks client for new updates relating to players. If changes to the local
player has happened set functions in client is called.

Input: none.
Called by: mainLoop.

Validity checks: Checks that the data from the method getInData is
information relating to number of monsters, lives and towers. Ignores
the data otherwise.

Accesses: vector<Player> players, Client client in AETD

Calls: setOutData,getInData in Client and setLives, getLives, setTow-

ers, getTowers, setMonsters and getMonsters in Player and getClient
in AETD.

Return value: none.

draw
Calls graphic with the interface and all entities it has to draw.

Input: none.

Called by: mainLoop.

40

e Accesses: Graphics graphics, vector<Tower> towers, vector<Monster>
monsters, vector<Projectile> projectiles, vector<Button> buttons and
vector<Player> players.

e Calls: drawEntity in Graphics with the entities from the vectors and
getLives, getTowers, getMonsters for each player.

e Return value: none.

drawDetail
Calls graphic with data from the current selected target to draw the detailed
information box.

e Input: none.
e (Called by: mainLoop.

e Validity checks: Checks if Button current target is a tower. If not it
will ignore the tower functions. Checks if Button current target is a
monster. If not it will ignore the monster functions.

e Accesses: Graphics graphics, vector<<Tower> towers and vector<Monster >
monsters.

e Calls: printString in Graphics and getName, getRate, getLevel, get-
Damage from Tower and getName, getHp, getSpeed, getLevel from
Monster.

e Return value: none.

41

5.5.3 Class: Player

Variables

int monsters
int towers
int lives

int gold
String name
int playerID

Functions

Get functions for all variables
Returns the different variables.

e Input: none.
e Called by: Game.

e Return value: the variable value.

Set functions for all variables
Set the different variables.

e Input: the variable value.
e Called by: Game.

e Return value: none.

42

5.5.4 Class: Entity

Variables

String image name
Coordinate pos

Functions

Get functions for all variables
Returns the different variables.

e Input: none.
e Called by: Game.

e Return value: the variable value.

43

5.5.5 Class: Projectile

Variables

Monster target
float speed

Functions

moveProjectile
Moves the projectile towards the target at the speed set by float speed.

Input: none.

Called by: moveProjectiles in Tower.

Accesses: Monster.

Calls getHp, getPos and setDisplayHp in Monster.

Post-condition: When the position of the projectile is equal to the
position of the target it will set the display hp of the target to its hp.
If hp is less than or equal to zero it will set the die flag to value.

Return value: none.

44

5.5.6 Class: Button

Buttons will contain a pointer to the function that will be executed when the
button is clicked. The function will be specified in the constructor. Buttons
inherit from Entity.

Variables

functionPointer function pointer
Functions

buttonFunction()
Calls the function associated with the button.

e Input: none.
e Called by: AETD and Game.
e Calls: the function specified by function pointer.

e Return value: none.

45

5.5.7 Class: Tower

Tower inherits from Button and every tower-type will have its own subclass
inheriting from the tower class that contains specialized methods for the
specific tower-type.

Variables

float range

float damage

int rate

int level

int time to_ fire

int value

int sell flag

Monster target
vector<Projectile> projectiles

Functions

findMonster
Iterates over the monsters currently on the playing-field to find any monster
in range.

e Input: none.

Called by: attackMonster.

Accesses: vector<Monster > monsters in Game and Monster target.

Calls: getPos in Monster.

Post-condition: The first monster to be found in range will be set to
target.

e Return value: True if a monster is found in range.

attackMonster
Attacks the target is attacked with the damage given by the variables.

e Input: none.

e Called by: Game.

46

Validity checks: Check that Monster target is not null or out of range.
Calls findMonster if check fails. Also checks that timeToFire is true.
Otherwise it waits.

Accesses: Monster target.

Calls: timeToFire and findMonster.

Return value: none.

upgrade
Upgrades the tower to the next level, increasing the different variables as
appropriate.

Input: none.
e (Called by: Button.

e Validity checks: Checks that the tower is not max level and that the
player has enough gold for an upgrade.

o Accesses: Player.
e Calls: getGold in Player.
e Post-condition: Tower is at the appropriate level.

e Return value: none.

sell
Sets sell flag to int value.

Input: none.

Called by: Button.

Accesses: vector<Monster> monsters.

Calls: calculatePath in Monster.

Return value: none.

47

timeToFire
Decreases time to_fire with 1.

e Input: none.
e Called by: attackMonster.
e Post-condition: Sets time to_fire to int rate if it is 0.

e Return value: True if time to_fire is 0, false otherwise.

moveProjectiles
Iterates over all projectiles and calls moveProjectile.

e Input: none.
e (Called by: attackMonster.
e Calls: moveProjectile in Projectile

e Return value: none.

Get functions for all variables
Returns the different variables.

e Input: none.
e Called by: Game.

e Return value: the variable value.

48

5.5.8 Class: Monster

Monster inherits from Button and every monster-type will have its own sub-
class inheriting from the monster class that contains specialized methods for
the specific monster-type.

Variables

int hp

int display hp

int die_flag

int level

float speed
list<Coordinate> path

Functions

calculatePath
Calculates the shortest path between the current position and the goal and
saves it in list<Coordinate> path.

e Input: none.

e Called by: constructor and sell in Tower.

e Post-condition: The path will not be saved if the method returns false.
e Return value: False if there is no path, true otherwise.

moveMonster
Moves the monster towards the next coordinate in the path at the set speed.

e Input: none.
e Called by: Game.
e Return value: none.
setDisplayHp
Sets display hp.
e Input: New int value for display hp.
e (Called by: Projectile.

e Return value: none.

49

Get functions for all variables
Returns the different variables.

e Input: none.
e Called by: Game and Projectile.

e Return value: the variable value.

50

5.5.9 Class: Graphics

Variables

Functions

printString
Prints a string at the position given by the coordinate.

e Input: The string and coordinate to print.
e Called by: AETD and Game.

e Return value: none.

drawEntity
Draws an entity with the image and at the coordinate specified by the entity
variables.

e Input: an Entity to print.

Called by: AETD and Game.

Accesses: Entity.

Calls: getlmageName and getPos in Entity.

Return value: none.

drawSquare
Draws a colored square between the coordinates specified.

e Input: The color and the coordinates of the upper left and lower right
corners of the square.

e Called by: AETD and Game.

e Return value: none.

51

5.5.10 Class: Chat

Variables

vector< String> history
Coordinate pos

Functions

addInputMessage
Calls Client with the message received from the InputManager and adds the
it to history.

e Input: The string to send.

e Called by: InputManager.

e Accesses: Client and vector<String> history.
e Calls: setOutData in Client.

e Return value: none.

addNetworkMessage
Adds the message from the Client to history.

e Input: The string received.
e Called by: printHistory.

e Validity checks: Checks that the data from the method getInData is
information relating to the chat. Ignores the data otherwise.

e Accesses: vector<String> history.
e Calls: getInData in Client.

e Return value: none.

52

printHistory
Calls graphic with the history variable and the positions given by the coor-
dinate.

e Input: none.
e Called by: AETD and Game.
e Calls: printString in Graphics and addNetworkMessage.

e Return value: none.

53

5.5.11 Class: Server

Variables

queue<String> out_data
queue<String> in_data
vector<<int> port
vector<<int> ip

Functions

sendTo
Sends out data to the clients.

e Input: none.
e Called by: AETD and Game.
e Accesses: queue<String> out_data.

e Return value: none.

recvFrom
Receives data from a client and stores it to in_data.

e Input: none.
e Called by: AETD and Game.
e Accesses: queue<String> in_data

e Return value: none.

socket
Creates an endpoint at the server.

e Input: none.
e Called by: AETD and Game.

e Return value: none.

54

bind
Function for setting up the connection with the clients socket.

e Input: none.
e Called by: AETD and Game.
e Accesses: vector<int> port and vector<<int> ip.

e Return value: none.

%)

5.5.12 Class: Client

Variables

queue<String> out_data
queue<String> in_data
int port

int ip

Functions

sendTo
Sends out_data to the server.

e Input: none.

Called by: AETD and Game.
e Accesses: queue<String> out_data.

Return value: none.

recvFrom
Receives data from the server and stores it to in_data.

e Input: none.
e Called by: AETD and Game.
e Accesses: queue<String> in_data

e Return value: none.

socket
Creates an endpoint at the client.

e Input: none.
e Called by: AETD and Game.

e Return value: none.

56

bind
Function for setting up the connection with the servers socket.

e Input: none.
e Called by: AETD and Game.

e Return value: none.

d7

5.5.13 Class: InputParser

Variables

bool left state
Coordinate pos
char key

Functions

chatMsg
Sends a written chat message to Chat.

e Input: none.
e Validity checks: Checks that the string written is a chat message.
e (Calls: addInputMessage in Chat

e Return value: none.

leftClick
Checks if the location of the click was the location of a button.

e Input: none.
e Calls: buttonFunction

e Return value: none.

Get functions for all variables
Returns the different variables.

e Input: none.
e Called by: Game or AETD.

e Return value: the variable value.

58

5.6 Package Diagram

aetd I

AETD Communication

. Client
Physical Server

—) Chat
InputParser

Graphics

Game

Objects

Entity
Tower
Projectile
Monster
Button
Player

Figure 17: Package Diagram

29

6 Functional Test Cases

6.0.1

Download the program
Description

The program should be available to download from our homepage.

Test-precondition

User must have Internet access.

Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 18.
Section 6.3.1 page 22.

Input

Address to webserver.

Output

File downloaded to the users computer.

Instruction

1. Enter the address to our homepage in a web browser.
2. Click the download link.
3. Wait until file is downloaded.

60

6.0.2 Install the program

e Description

Install the game on the users computer.

e Test-precondition

Installation file downloaded to the users computer.

e Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 18.
Section 6.3.1 page 22.

e Input
Where to install the program.

e Output

Program installed on the users computer.

e Instruction

1. Run the install file.
2. Choose install path.
3. Wait until the installation finish.

61

6.0.3 Configure game settings

Description

Alter settings such as player name.

Test-precondition

User is in the main menu.

Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 18.
Section 6.3.8 page 27.

Input

Users choice of alterations to game settings.

Output

Selected game settings have been altered.

Instruction

1. Click on the “Settings” button.
2. Alter the settings as preferred.

3. Click on the “Save” button to save and exit to main menu.

62

6.0.4 Play singleplayer game

e Description

To start a singleplayer game without having and Internet connection.

e Test-precondition

User is in the main menu.

e Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 18.
Section 6.3.2 page 23.

e Input

None.

e Output

The single player game starts.

e Instruction

1. Click on the “Start singleplayer game” button.

63

6.0.5 Host multiplayer game

e Description

The user makes his computer the host computer of a multiplayer game.

e Test-precondition

User is in the main menu.

e Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 18.
Section 6.3.3 page 24.

e Input

None.

e Output
The multiplayer lobby is displayed.

e Instruction

1. Click on the “Host multiplayer game” button.

64

6.0.6 Join multiplayer game

Description

The user connects to a host computer of a multiplayer game.

Test-precondition

User is in the main menu.

Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 18.
Section 6.3.4 page 24.

Input
IP-address to the host.

Output
The multiplayer lobby is displayed.

Instruction

1. Click on the “Join multiplayer game” button.
2. Enter the IP-address of desired host.
3. Click on the “Join” button.

65

6.0.7 Build Towers

Description

To purchase and place a tower on the playing field.

Test-precondition

User is in a game and can afford the selected tower type.

Reference to Requirements Document

Section 4.1 page 13.

Section 6.1 page 19.

Section 6.3.5 page 25.

Input

A valid position where the tower should be built and the type of tower
the user wishes to build.

Output

A tower of the correct type is built on the playing field where the user
specified.

Instruction

1. Select a tower type from the menu by clicking on its symbol.

2. Move the mouse to the position on the playing field where the
tower is to be built.

3. Click the mouse to build the tower.
4. Wait until the tower is built.

66

6.0.8 Select a specific tower
e Description

Select a tower already built on the playing field.

e Test-precondition

Tower built on the playing field.

e Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 19.
Section 6.3.6 page 26.
Section 6.3.9 page 28.

e Input
A position of a tower built on the playing field.

e Output

Tower selected gets marked.

e Instruction

1. Click on a tower on the playing field.

67

6.0.9 Sell towers

Description

Sell a tower already built on the playing field.

Test-precondition

User is in a game and has at least one tower on his playing field.

Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 19.
Section 6.3.9 page 28.

Input
A tower on the playing field.

Output

The selected tower is sold and removed from the playing field.

Instruction

1. Select the tower to be sold on the playing field.
2. Click the “Sell tower” button to sell the tower.
3. Wait until the tower is removed from the playing field.

68

6.0.10 Upgrade towers

e Description

Upgrade a tower already built on the playing field.

e Test-precondition
User is in a game and has at least one tower on his playing field and can
afford to upgrade the selected tower. The selected tower is not already
max level.

¢ Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 19.
Section 6.3.6 page 26.

e Input
A tower on the playing field.

e Output
The selected tower is upgraded.

e Instruction

1. Select the tower to be upgraded on the playing field.
2. Click the “Upgrade tower” button to upgrade the tower.
3. Wait until the tower is upgraded to a higher level.

69

6.0.11 View individual tower statistic

e Description

See information about the selected tower.

e Test-precondition

Tower built on the playing field.

e Reference to Requirements Document

Section 4.1 page 13.
Section 6.1 page 20.

e Input
A tower on the playing field.

e Output

Tower statistic is displayed in the tower information box.

e Instruction

1. Click on a tower on the playing field.

2. Observe tower statistic in the tower information box.

70

6.0.12 Monster levels

Description

Monsters will appear at set intervals and at increasing levels.

Test-precondition

User must be in a game.

Reference to Requirements Document

Section 4.1 page 14.
Section 6.1 page 20.

Input

None.

Output

The level of the monster in the monster information box has changed.

Instruction

1. Observe the level of the monsters in the current wave.

2. Observe the level of the monsters in the next wave.

71

6.0.13 Monster movement

e Description

The monsters will automatically move from one side of the playing field
to their goal, always choosing the shortest path available.

e Test-precondition

User must be in a game.

¢ Reference to Requirements Document

Section 4.1 page 14.
Section 6.1 page 20.

e Input

None.

e Output

Monster is moving on screen.

e Instruction

1. Observe the monster moving on the screen.

72

6.0.14 Kill monsters

e Description

Monsters can be killed by towers.

e Test-precondition

User must be in a game and have built a tower.

e Reference to Requirements Document

Section 4.1 page 14.
Section 6.1 page 20.

e Input

None.

e Output

Information about how many monster one player has is updated for
the other players when in multiplayer mode.

e Instruction

1. Monster passes a tower.

73

6.0.15 Receive information about monster’s health

Description

See information about the selected monster.

Test-precondition

User must be in a game and a monster must be visible on the screen.

Reference to Requirements Document

Section 4.1 page 14.
Section 6.1 page 21.

Input

None.

Output

Information about how many health point the specific monster have
displayed in the monster information box.

Instruction

1. The user left-clicks with the mouse on a specific monster.

74

6.0.16 Send monsters to other players

Description

Player can send monsters to other players in a multiplayer game.

Test-precondition

User must be in a multiplayer game and have enough gold to send
monsters.

Reference to Requirements Document

Section 4.1 page 14.
Section 6.1 page 21.
Section 6.3.7 page 27.

Input

None.

Output

The monster counter is updated in another players information box.
Gold is deducted.

Instruction

1. The user presses the “Send monster” button on the information
box of another player.

7

6.0.17 Chat with other players

Description

The users can send text messages to each other.

Test-precondition

The user must be in a multiplayer game.

Reference to Requirements Document

Section 4.1 page 14.
Section 6.1 page 21.
Section 6.3.10 page 28.

Input
The message that is to be sent to the other players.

Output

The text written is displayed on the screen.

Instruction

1. The user presses the “Chat” button.

2. The user types the message that are to be sent to the other users
and presses the “Send” button.

76

