

Account This!
Group 9

Johannes Edelstam
Joakim Ekberg

Kristoffer Renholm
Jesper Skoglund

2

 History

Version Comment Authors

1.0 Initial version. Kristoffer Renholm, Johannes
Edelstam, Joakim Ekberg, Jesper
Skoglund

3

Contents
1 Introduction ... 5

1.1 Concerning the design document ... 5

1.2 Glossary ... 5

1.3 Structure .. 6

2 System Overview ... 7

2.1 General Description ... 7

2.2 Overall Architecture Description ... 7

2.3 Detailed Architecture .. 7

2.3.1 Model View Controller .. 7

2.3.2 MVC implementation in Ruby on Rails .. 8

2.3.3 The file structure of a Ruby on Rails project ... 9

2.3.4 RESTful development .. 10

3 Design Considerations ... 11

3.1 Assumptions and Dependencies ... 11

3.2 General Constraints ... 12

4 Graphical User Interface .. 13

4.1 User Interface Overview .. 13

4.2 Concept and Functionality ... 13

4.2.1 Stage 1 – Welcome .. 13

4.2.2 Stage 2 – Launch (optional) ... 15

4.2.3 Stage 3 – Action ... 16

4.3 Detailed Mockups .. 17

4.3.1 Register new company .. 17

4.3.2 User Login .. 18

4.3.3 Update user information ... 18

4.3.4 Update company information ... 19

4.3.5 Create a new user in a company ... 19

4.4 Ask a question ... 20

4.4.1 Create new Fiscal Year ... 20

4.4.2 Change current Fiscal Year .. 21

4.4.3 Creating an accounting plan .. 21

4.4.4 Create a new Voucher ... 22

5 Design Details .. 23

4

5.1 Class Responsibility Collaborator (CRC) Cards ... 23

5.1.1 Models ... 23

5.1.2 Presentation .. 25

5.2 Class Diagram .. 27

5.2.1 Models ... 27

5.2.2 Controllers ... 27

5.3 State Charts ... 27

5.4 Interaction Diagrams ... 28

5.4.1 General HTTP GET Request Sequence ... 28

5.5 Detailed Design .. 28

5.5.1 Database .. 29

5.5.2 Models ... 30

5.5.3 Controllers ... 35

5.6 Package Diagram ... 48

6 Functional Test Cases .. 50

5

1 Introduction
A clarification of the purpose, the scope and the intended audience of this design document is seen

below, prior to an explanation of the textual structure of the document and a brief glossary

explaining the terms that are fundamental for understanding this project.

1.1 Concerning the design document
The purpose of this design document is to serve as a framework meant to support the development

of the AccountThis! bookkeeping system. The design document can rightfully be seen as a collection

of design considerations, including textual and visual clarifications on the many decisions concerning

choice of software architecture and the thoughts underlying the graphical user interface.

The scope of the design document is to be focused on those aspects and factors that need to be

mutually understood and agreed upon by the software developers. This will come to involve the

planned system structure along with the functionality of the used classes and methods. But whilst

connections and relations will be clarified, the document won’t include any more than a few precise

descriptions on how the different parts are to be built. The spotlight of this document is on the

software design, the functionality and the logics that will serve as the backbone of AccountThis!, not

on the specific layout of certain code. A software developer reading the document should be able to

grasp how the system is intended to be developed, hence allowing him/her to analyze the written

code or to contribute to the project by writing any of the missing parts.

System developers do, as have been indicated, constitute one group for whom the design document

has been written. The design document will, by serving as a framework for the development, be able

to assist us (or other programmers) in developing and testing the software. By examining this plan

before the programming commences, it should be possible to detect any structural errors. And by

examining and comparing the contents of this plan to the actual code during the development phase,

one ought to be given better prospects of detecting bugs and glitches. This document is likely to be

of interest for developers, customers and managers alike, and could during its establishment serve as

a platform for knowledge transfer between these actors.

Those not familiar with the rationale of the AccountThis! bookkeeping system are advised to see the

requirements document concerning the project. Whereas the plans seen in the requirements

document serve as a basis for the project, the information seen here (in the design document) will

rather function as a manual for the actual system development.

1.2 Glossary
Below is a list of abbreviations and terms we – the authors and developers of AccountThis! – regard

as essential to grasp in case the contents of this design document are to be fully understood.

 Ajax – Asynchronous JavaScript and XML, Ajax, is a technique (based on a combination of
languages) that can be used for creating web applications [source: Wikipedia].

 Apache – Is the name of a popular HTTP server application [source: Wikipedia].

 CGI – Common Gateway Interface, CGI, is a standard protocol for interfacing external
application software with an information server, commonly a web server [source: Wikipedia].

6

 ERb – ERb is used to integrate Ruby with HTML and can therefore be used to generate HTML
pages with dynamic content, using code written in Ruby.

 HTTP – Hypertext Transfer Protocol (HTTP) is a communications protocol used to transfer
information on intranets and the World Wide Web [source: Wikipedia].

 InnoDB – InnoDB is a storage engine for MySQL, included as standard in all current binaries
distributed by MySQL AB [source: Wikipedia].

 MIME – Multipurpose Internet Mail Extensions (MIME) is an Internet Standard that extends
the format of e-mail [source: Wikipedia].

 Model View Controller (MVC) – a

 Mongrel – Mongrel is an open-source HTTP library and web server for Ruby web applications
[source: Wikipedia].

 MySQL – MySQL is a multithreaded, multi-user SQL database management system (DBMS)
which has, according to MySQL AB, more than 10 million installations [source: Wikipedia].

 REST – Representational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web [source: Wikipedia].

 Ruby on rails – Ruby on Rails is a free web application framework [source: Wikipedia].

 SQL – SQL is a database computer language designed for the retrieval and management of
data in relational database management systems (RDBMS), database schema creation and
modification, and database object access control management [source: Wikipedia].

 UI – The user interface (or Human Machine Interface) is the aggregate of means by which
people interact with the system [source: Wikipedia].

 URL – Uniform Resource Locator (URL), still known as Universal Resource Locator, is a
technical, Web-related term [source: Wikipedia].

1.3 Structure
Following the introductory chapter comes a part that will focus on the system itself. Through reading

this, readers will be granted an opportunity to learn about our choice of system architecture; both in

a more general and in a more detailed manner.

The third chapter will discuss and describe the design considerations, assumptions, dependencies

and general constraints. This part tries to identify what needs to be thought of while devising the

final design solution.

Chapter four portrays the graphical user interface. This part gives an overview of how the interface

will be constructed, what it will look like and how it will communicate with (trigger) the system

functionality.

The fifth chapter explains the design considerations in detail through the use of class responsibility

collaborator cards, class diagrams, state charts, interaction diagrams and package diagrams, in

combination with descriptive text.

Building on what’s already been mentioned about the design is chapter six, where functional test

cases are used to cover and describe the full range of functionality described in the requirements

document.

7

2 System Overview

2.1 General Description
Account This! aims to deliver a bookkeeping system suitable for small companies. Such companies

could for example be hairdressers (almost every hairdresser in Sweden has a one-man-company

which rents a hairdressers chair in a barbershop), consultants or similar small companies. Small

companies often have small budgets where every cent matter. Account This! will be a system for

double-entry booking; the standard used in most businesses and organizations. Unlike other, often

large and complex, bookkeeping systems, ours will be web-based, easy to access and easy to use.

Account This! should thus be able to help its intended users (mainly small companies) do, view and

edit their bookkeeping.

2.2 Overall Architecture Description
The overall system architecture is divided into three major components: the database, the

application and the web server. Each component has its own responsibilities and is communicating

with other components through standardized protocols and communication channels.

Mongrel Instances

Application Code

Application Code

Application Code

Apache

Static Content

(Images, Style Sheets, etc.)

Proxy/Load Balancer

MySQL

InnoDB

Storage Engine

User with a

standard browser

Database Server Application Server Web Server

HTTPSQL

HTTP

The web server serves as the front-end towards the user. It is responsible for serving the user’s

request for static content like pictures and style sheets, and for forwarding the requests to the

Application Server, that will generate a dynamic response or allow user input.

The application server is responsible for running the Account This! code base. Due to lack of

threading in most Ruby applications there is no natural way of processing and responding to

concurrent requests from users. Therefore, multiple instances of the special hosting server software

for Ruby on Rails applications – called Mongrel – will be run concurrently on different TCP/IP ports.

The web server is responsible for distributing the load over these instances in an even manner.

The database server is responsible for persisting data between user sessions. The database server

uses a transactional storage engine with support for relations between tables. This reduces the risk

of data corruption.

2.3 Detailed Architecture

2.3.1 Model View Controller

Model View Controller (MVC) is a well known software design pattern. Its purpose is, like is for many

other design patterns, to organize the code in a maintainable way.

8

The MVC principle divides the application into three separate subsystems called layers. These layers

– Model, View and the Controller – can be described as follow:

 Model - The representation of the domain specific entries that builds up foundation of
the application. This layer could consist of anything from users to shopping charts or
accounts, and so on.

 View - The views purpose is to, as the name hints, present the data in different ways.

 Controller - The controller represents the glue in the application. The controller layer
directs traffic inside the application and will thus handle everything from the querying of
models (for information) to the rendering of end user views.

When building according to the MVC pattern, program code is separated in different layers. The code

never floats around, i.e., the design pattern makes every line of code to live in one of the three

layers.

2.3.2 MVC implementation in Ruby on Rails

This section of the document aims to describe how Ruby On Rails (Rails) implements the Model View

Controller (MVC) design pattern.

When writing program code according to the MVC design pattern each line of code fits into one of

the three layers of the application: model, view or controller.

In accordance with its MVC foundations, Rails is made up of three different subsystems. Separate in

each sense that they could be used individually. These are:

MVC Phase Rails subsystem Purpose

Model ActiveRecord The model provides the bridge between the database

and the Ruby code that builds up the models.

ActiveRecord provides several functions to read,

manipulate, find, etc. to data. One important quality of

ActiveRecord that it generates Ruby-methods from each

field in a database column. Therefore it’s very easy to

translate the database to a set of model objects.

View ActionView The views of a Rails project usually contains of several

XHTML documents with embedded ruby to display the

dynamic content for the specific view.

Controller ActionController The ActionController represents the final glue needed to

connect the view with the model. It handles forms and

determine which view to render according to the data

that the user inputs.

What is Rails then? We now that it’s built up from three components that have different purpose

according to the MVC pattern.

Rails is the only necessary infrastructure that is needed to connect these three different subsystems

together to create a great web framework.

9

Ruby
Rails framework

ActiveRecord

Support libraries

(e.g. ActiveSupport,

ActiveMailer)

ActiveController ActiveView

ERbCGI Library

Relational Database

Web Server

Please consult the glossary seen in chapter one for a description of terms as CGI and ERb. ActionView

will use ERb to generate dynamic content from the controllers displaying views.

2.3.3 The file structure of a Ruby on Rails project

The file structure consists of more or less important directories. They are predefined by Ruby on

Rails. This section describes them and how the files inside them will be named.

app/ Holds most of the source code. All the project specific code is placed here.

app/controllers/ This is where all controllers are placed. They will be named like

vouchers_controller.rb to ensure that the paths will be recognized

automatically by Rails.

app/models/ This is where all the models are placed. They will have names such as

voucher.rb

app/views/ Holds all of the template files that will be rendered from the controllers, or

by another template. They are named like vouchers/show.html.erb. Where

‘html’ could be any format and show is the name of the corresponding action

for show in the vouchers controller. A template could also be named

_voucher.html.erb, making it a partial. Partials are will be used to render

rows describing the vouchers. A file could also be named

vouchers/index.xml.builder, meaning that it is a template able to generate

XML corresponding to the vouchers’ controller index action.

app/views/layouts/ This is where the layouts will be stored. Layouts serve as templates and could

(for example) be named application.html.erb. Each layout will contain html

that can be rendered for each request (e.g. menus and such).

app/helpers/ This directory holds all the helpers. A helper is a View layer function that

functions similar to a template and as such is likely to be used more than

once, in a variety of instances and scenarios. A helper could be named as

vouchers.rb. It will contain methods that the voucher template uses. There

will also be a helper named application.rb which will contain methods

available to all templates.

10

config/ This directory is very much described by its name. Config holds all

configuration files, such as routes.rb which contains information about how

rails should create paths. It also contains databases.yml which describes all

databases that the project is using. Also all configuration files for the

environments are kept here.

components/ This directory was used in previous versions of Rails, but not any more.

db/ Contains the auto generated file schema.rb which describes how the

database tables where created.

db/migrate/ This directory holds all migration files. They describe how all the tables

should be created. They are named as 009_create_vouchers.rb.

doc/ Auto generated project documentation ends up here. This documentation is

generated (from comments in the source code) using RDOC, a utility used to

produce an HTML-API covering each and every function included in the

AccountThis! project.

lib/ Any extensions or classes that isn’t models or controllers ends up here. It

could i.e. be a parser or similar.

public/ This directory holds all files that should be directly available from a web

browser. Like images, javascripts and CSS style sheets.

script/ Everything in this directory is auto generated when the project is created. It

is different scripts to e.g. generate new controllers and models, or to destroy

them and all the files that belong to them.

test/ Testing is important to every large software project. The test/ directory

contain all functional and unit tests along with fixtures. Fixtures are files to

load test data in the databases.

vendor/ Holds libraries that the project relies on. It also contains the plugins directory

which holds all plugins used by the project.

2.3.4 RESTful development

Account This! will be written with the quite new technique called RESTful Rails. REST is short for

Representational State Transfer. The concept is to take advantage of the fact that the HTTP protocol

standard uses more than just POST, and GET. It also uses the methods PUT and DELETE. Every URL

should be mapped to a resource on which you can perform any of these methods instead of using

URLs to trigger certain actions. The URL /vouchers/ can typically be called with the GET method that

would correspond to get all vouchers. A POST to the very same URL would instead correspond to

creating a new voucher. The new voucher would be accessed e.g. at the URL /vouchers/4. A call with

the method PUT to that URL would result in an update of that specific voucher. A call with the

method DELETE would result in destroying that voucher. RESTful also handles different formats in a

very clever way. Since every URL is connected to a specific resource, every URL should theoretically

be able to be called using any format. Like /vouchers.xml and /vouchers/4.xml. This would then

result in getting the output from the voucher controller as XML.

11

HTTP Verb REST-URL Action URL without REST

GET /vouchers/4 show /vouchers/show/4

DELETE /vouchers/4 destroy /vouchers/destroy/4

PUT /vouchers/4 update /vouchers/update/4

POST /vouchers/ create /vouchers/create

Why RESTful?

 Clean URLs. Every URL becomes very easy to understand.

 Format handling. Every resource can easily be requested with different formats.

 Clear code structure. When you open up a controller it is very easy to understand
what happens on every request, thanks to the use of the HTTP methods.

Why not RESTful?

 Complications while using AJAX. Sometimes you would like to use the same method
for several different outputs. That can however be solved by using formats that is
defined by the developer, such as /vouchers.compact to get a compact list of
vouchers, however the MIME type is still HTML.

 Sometimes these methods just isn’t enough, you would like to create more actions.
You can however do so, but it isn’t totally by the book.

3 Design Considerations
This chapter intends to describe the major issues that must be taken into consideration when

planning and realizing the implementation of the AccountThis! bookkeeping system.

3.1 Assumptions and Dependencies
As AccountThis! is to demand no high-tech hardware nor no installation (except a functional web

browser application) in order to be run, it seems fair to assume that most of the application’s

software dependencies will be based on the specific end-user characteristics. In order to understand

how to successfully design the system, we must thus begin with making sure that we’ve grasped the

demands of the system’s primary audience; our customers.

The context of those using AccountThis! is likely to be all but consistent. While some may be

employed for medium sized companies, others are likely to come from small firms and be bosses of

there own. This poses both opportunities and risks. A person from one industry may not have the

exact same preferences as one from another sphere and the same goes for the third and the fourth

person. To fully satisfy all these desires may be impossible but through looking at what’s important in

ordinary accounting, we identify a few general pain points which the design must be able to cure.

First, it’s evident that no one would use a bookkeeping system that felt unreliable. Second, as

bookkeeping can be a very tedious task, people are likely to refrain from using these systems in case

they could be deemed as being inefficient. Third, systems that come with a steep and demanding

12

learning curve may not be well suited for smaller companies as their employees are likely to work

rather as generalists than as experts.

Several helpful considerations can be tapped from the assumed pain points. To ensure that people

feel reliable when using the system, AccountThis! must not only work as planned, it must also be

equipped with a user interface that speaks of trustworthiness. The obtainment of trustworthiness

may be ensured through adaptation of common design practices from popular sites and systems.

Using a very ordinary design would however risk placing our system in the segment of being nothing

but dull an ordinary, wherefore a certain balance between new and old ideas (that have proven to be

successful) must be withheld. To ensure that our clients find AccountThis! useful, we must also strive

to remove any unnecessary steps in the workflow of the application. It will hence be necessary to

make sure that the system remains quick and easy to navigate, even as it may later come to be

expanded in both size and functionality. To ensure that AccountThis! is easily learnt, it must also be

designed with a variety of cognitive behavioural patterns in mind.

While AccountThis! is currently able to handle most hardware (due to the software’s low system

requirements) and most operating systems, there’s no guarantee that this will always be the case. It

may become necessary to alter the system in the event of new technology or new customer

demands, as to achieve better strategic alignment. The system should be designed with these

considerations in mind. This means that: (1) ; AccountThis! must appeal to its users, and (2) the

application must be extendable (from a coder’s perspective).

3.2 General Constraints
Due to differing legal requirements between different regions, it would be necessary to localize and

adapt AccountThis! in case it was to be launched on a foreign market. While this poses a hinder for a

rapid global expansion, it makes our current job a little easier. Instead of including multi-lingual

support from the start, we can now focus on that of our core market; namely Swedish. While many

multinational companies use similar bookkeeping standards, these are not universal and as lacking

compliance could have fatal implications for the user of the bookkeeping system, we’ll rather focus

on making sure that the bookkeeping system meets all the local criteria. This will most likely improve

the reliability of the functionality seen in AccountThis!, consequently reducing the risks that we, as

developers and owners of the system, would be the subjects for possible lawsuits coming from

disappointed customers.

Security is another issue. What the clients of AccountThis! are meant to enter into the system may be

secret or highly sensitive financial data. The system must therefore – due to the risk of break-in

attempts – not accept more customers and clients than it can possibly handle.

Assessing the quality goals and performance requirements of the AccountThis! system could take a

tremendous amount of time. It will thus be difficult for us to guarantee that the application meets all

of its requirements while it remains in beta phase.

13

4 Graphical User Interface
This chapter explains the logic, the concept and the functionality of the user interface that’s been

planned for use in the AccountThis! bookkeeping system.

4.1 User Interface Overview
The AccountThis! user interface will serve as the link between the system and its clients. This

implicates not only that the interface must – as the chapter concerning design considerations

showed – be both easy and efficient to use, but also that it should be able to encourage potential

users to sign-up. Attracting users can be done in several ways. While promotion and advertising are

two such means, the establishment of a neat user interface is, in this case, a third. Potential clients

that have managed to navigate to the AccountThis! webpage must: (1) get the impression that

AccountThis! is a reliable and efficient bookkeeping system; (2) be able to retrieve more information

about AccountThis!; and (3) find it easy to register for an account. By satisfying these criteria, the

system will be much more likely to catch the attention of the masses than it otherwise would have

been.

4.2 Concept and Functionality
A comprehensive discussion on alternative user interface designs led us to the solution portrayed

below. To meet all the discussed business and clientele needs, we’ll use a user interface that’s

divided into three stages. The first stage represents the opening page a user sees when he/she first

enters the site and the two other stages follow in a chronological manner. While the first stage

contains more visuals than the second stage, the second stage contains more visuals than the third

ditto.

4.2.1 Stage 1 – Welcome

It’s obvious that visual design can be more or less appealing to people. Although there may be no

universal good taste, a user interface may still be classified as being better than another. A good user

interface should satisfy the needs of its users in an efficient manner. It would therefore be careless, if

not entirely dumb, not to have a login function from the very first page of the system, given that

users must login to be able to actually use the system. Any solution involving more steps would pose

a clear obstruction to the user. From a business perspective, it’s also of dire importance that the first

page is able to help entice new clients. To solve this problem, and to satisfy both new and existing

users, we’ve decided to divide the first page of the AccountThis! webpage in two. The leftmost part

of the page will consist of flashy images on which short textual pitches have been applied. Whereas

this may serve a medium for luring prospective customers to signup, the rightmost part of the page

will rather focus on assisting already existing users, as this is where they login. The first fields of the

login box (username and password) bring nothing new to the world of the web based systems but

the buttons seen below have seldom been seen elsewhere. Next to the ordinary login button are

login buttons that will serve as shortcuts, taking verified users straight from the opening page to the

desired (pressed) system function; thereby avoiding the system’s launch guide (stage 2).

14

UI concept image 1

The image above displays the AccountThis! opening page and how it’s divided into two boxes. The

first contains what could be described as AccountThis! advertisement and the second contains the

system’s login functionality; including account verification and shortcuts to the respective clients’

instances of the bookkeeping system.

In case the image on the leftmost part of the opening page is pressed, the user will be transferred to

a site (with a rather similar user interface) containing more detailed information about the system

and the option of opening an AccountThis! account.

Below are sentences describing the functionality of the buttons that are displayed on the opening

page of AccountThis! (these will be placed as can be seen on UI concept image 1).

 Registrera konto – Pressing this button will take the user to another webpage, a form sheet,

where he/she is able to fill in the personal information and specifics required to establish a

new account.

 Glömt ditt lösenord? – Pressing this button take the user to another webpage where he/she

can input an e-mail and trigger a function. This function will, in case the entered e-mail

address is associated with an AccountThis! account, have the system send a message

containing the related user password to the given e-mail address.

 Logga in – Pressing this button will have the system verify the entered user name and

password, thereby rejecting or accepting the user to enter the system.

 Nytt verifikat – Pressing this button will have the system verify the entered user name and

password, thereby rejecting or accepting the user to enter the system. If the user is accepted

to proceed, he/she will immediately be transferred to the new voucher page.

 Påbörjade verifikat – Pressing this button will have the system verify the entered user name

and password, thereby rejecting or accepting the user to enter the system. If the user is

accepted to proceed, he/she will immediately be transferred to a page containing the user’s

voucher drafts.

15

4.2.2 Stage 2 – Launch (optional)

Stage 2 is where users arrive when they use the ordinary login alternative. This, the launch page,

presents an overview of the system’s functionality that may assist users in quickly navigating to the

functions they desire to use. The functions are categorized under relevant headings, and the

headings in turn are to be associated with symbols to further increase the simplicity of learning

AccountThis!.

The planned contents of the launch site are (where font in bold represents headings):

 Bokföring
o Huvudbok
o Nytt verifikat
o Räkenskapsår
o Påbörjade verifikat
o Visa kontoplan

 Mitt företag
o Inställningar
o Användare

 Support
o Ställ fråga
o Vanliga frågor

UI concept image 2

The area below the navigation alternatives displayed above may come to include system

notifications, news or usage history (these alternative changes to the stage 2 user interface are still

under consideration).

16

4.2.3 Stage 3 – Action

The symbols shown above the respective headings on the launch page, stage 2, will remain visible

(but in an altered form) from the stage 3 user interface. As this is the user interface people will

encounter when they perform tasks with AccountThis!, space must be made for the important

content (such as the information contained in the general ledged). The navigation symbols will, for

this reason, be placed in the top right corner of the webpage, where they’ll act as dropdown menus

when highlighted. The concept image seen below (UI concept image 3) displays how the dropdown

menus may look, given that a fictive user are currently highlighting the symbol associated with the

first heading. Note that the appearing alternatives are the same alternatives/functions as those that

were displayed in conjunction with the heading before, when shown on the launch site.

UI concept image 3

17

4.3 Detailed Mockups
This section contains more detailed mockups of the Account This! user interface. Text with yellow

background describes the name of the form element.

4.3.1 Register new company

Requirement: User – 1

Use Case: User – Register new company

18

4.3.2 User Login

Requirement: User – 2

Use Case: User – User login

4.3.3 Update user information

Requirement: User – 4

Use Case: User – Update user information

19

4.3.4 Update company information

Requirement: User – 2

Use Case: Company – Update the company information

4.3.5 Create a new user in a company

Requirement: Company – 1

Use Case: Company – Create a new user in a company

20

4.4 Ask a question
Requirement: User – 1, User – 2

Use Case: Support – Ask a question

4.4.1 Create new Fiscal Year

Requirement: Fiscal Years 1

Use cases: Fiscal Years 1

21

4.4.2 Change current Fiscal Year

Use cases: Fiscal Years 1

4.4.3 Creating an accounting plan

The interface will look very similar when editing an accounting plan.

Requirements: Accounting Plans 1, 2, 5-7

Use cases: Duplicating an accounting plan, Create accounting plan, Adding accounts to an accounting

plan, Removing accounts from an accounting plan

22

4.4.4 Create a new Voucher

Requirements: Vouchers 1, 5, 6.

Use cases: Create a new voucher, Edit a saved voucher, Create a new voucher row, Edit a saved

voucher row, Remove a saved voucher row.

23

5 Design Details

5.1 Class Responsibility Collaborator (CRC) Cards

5.1.1 Models

User

Responsibilities Collaborators

Represent a user in the system.

Knows the required information for a user to login into the
system.
Knows information about the user used across the system.

Associate

Associate

Responsibilities Collaborators

Represent the relation between a user and a company in the
system.

Knows of which kind the relation is.

User
Company

Company

Responsibilities Collaborators

Represent a company in the system.

Knows information about the company used across the system.

Associate
FiscalYear

24

Voucher

Responsibilities Collaborators

Representing a collection of voucher rows which together forms a
voucher.

Knows when it was created.
Can be commented.
Knows which fiscal year (therefor even which company) it belongs
to.

VoucherRow
FiscalYear

VoucherRow

Responsibilities Collaborators

Knows which voucher it belongs to.
Knows when it was created.
Knows which account that has been used.
Knows amount.

Voucher
Account

FiscalYear

Responsibilities Collaborators

Knows which accounts it has.
Knows which company it belongs to.
Knows which vouchers it has.
Knows which accounting plan template was used, if there is one.

Voucher
Account
AccountingPlanTemplate
Company

Account

Responsibilities Collaborators

Represents a bookkeeping account.

Knows name
Knows description
Knows number
Knows parent accounting plan
Knows voucher rows

AccountingPlan
VoucherRow

25

AccountingPlanTemplate

Responsibilities Collaborators

Represents a template collection of accounts that can be used as
a base for an AccountingPlan.

Knows name
Knows description
Knows number
Knows parent accounting plan
Knows accounting plans that implements this template

AccountingPlan
AccountTemplate

AccountTemplate

Responsibilities Collaborators

Represents a bookkeeping account template.

Knows name
Knows description
Knows number
Knows parent accounting plan template

AccountingPlanTemplate

5.1.2 Presentation

UserController

Responsibilities Collaborators

Represents the MVC’s controller layer for working with a user in
the system.

User
Associate
View

CompanyController

Responsibilities Collaborators

Represents the MVC’s controller layer for working with a company
in the system.

Company
Associate
View

26

VouchersController

Responsibilities Collaborators

Representing the MVC’s controller layer for working with
vouchers in the system.

Voucher
VoucherRow

VoucherRowsController

Responsibilities Collaborators

Representing the MVC’s controller layer for working with voucher
rows in the system.

VoucherRow
Account

FiscalYearController

Responsibilities Collaborators

Representing the MVC’s controller layer for working with fiscal
years in the system.

FiscalYear
Company
User

AccountingPlanTemplateController

Responsibilities Collaborators

Representing the MVC’s controller layer for working accounting
plan templates in the system.

AccountPlanTemplate
AccountTemplate

AccountTemplateController

Responsibilities Collaborators

Representing the MVC’s controller layer for working account
templates in the system.

AccountPlanTemplate
AccountTemplate

SupportController

Responsibilities Collaborators

Responsible for sending user support question to the staff support
mailbox.

User

27

5.2 Class Diagram
The below seen class diagrams have been constructed using the Standard Skylight Model Entity

Relations Method (SSMERM).

5.2.1 Models

User Associate Company

AccountingPlanTemplate FiscalYear Account

Voucher VoucherRowAccountTemplate

1 * * 1
1

*

1 *1 *
1

*

1

*

1 *

1

*

5.2.2 Controllers

ApplicationController

UsersController

AssociatesController

CompaniesController

SessionController

SupportController

FiscalYearsController

AccountsController

VouchersController

VoucherRowController

5.3 State Charts
Considering whether to use state charts or not to, we decided on the latter alternative. While state

charts may generally be an efficient tool for depicting complex relationships and flows between (or

within) different actions along with their underlying processes, they couldn’t contribute with much to

this specific design document. This is since the previous chapters have already described how

AccountThis! is intended to function and how it is meant to be used.

28

5.4 Interaction Diagrams

5.4.1 General HTTP GET Request Sequence

Sequence of a typical HTTP GET request.

Browser Routing Controller

HTTP GET

Model

Invoke

Invoke

Data

View

Render

Response

5.5 Detailed Design

Below are detailed design descriptions for each class, method and accessor (for information

concerning accessors, please see: http://en.wikipedia.org/wiki/Accessor) that is to be implemented

in the final version of AccountThis!. This subchapter is based on the requirements document along

with the overall design information and will serve as a general template (or a backbone) to which the

actual program code can be compared and evaluated. By analyzing the detailed design, one should

easily be able grasp what need to be done to build the system. This provides an overview of the

system, granting us – as developers – better odds of discovering mistakes and logical errors before

they appear in the fully implemented code. Discovering errors in an early phase of development is

deemed to be less costly than having errors appear in the near complete version.

29

5.5.1 Database

account_templates

PK id int

 name varchar(255)

 description varchar(255)

 number varchar(255)

FK1 accounting_plan_template_id int

 created_at datetime

 updated_at datetime

vouchers

PK id int

 comment varchar(255)

FK1 fiscal_year_id int

 replaced_by int

 created_at datetime

 updated_at datetime

fiscal_years

PK id int

 name varchar(255)

FK2 company_id int

FK1 accounting_plan_template_id int

 created_at datetime

 updated_at datetime

accounting_plan_templates

PK id int

 name varchar(255)

 created_at datetime

 updated_at datetime

users

PK id int

 login varchar(255)

 email varchar(255)

 crypted_password varchar(40)

 salt varchar(40)

 created_at datetime

 updated_at datetime

 remember_token varchar(255)

 remember_token_expires_at datetime

 name varchar(255)

 address_street varchar(255)

 address_postal varchar(255)

 address_city varchar(255)

 phone_number varchar(255)

accounts

PK id int

 name varchar(255)

 description varchar(255)

 number varchar(255)

FK1 fiscal_year_id int

 created_at datetime

 updated_at datetime

associates

PK id int

FK2 user_id int

FK1 company_id int

 created_at datetime

 updated_at datetime

companies

PK id int

 name varchar(255)

 form varchar(255)

 org_nr varchar(255)

 address_street varchar(255)

 adress_postal varchar(255)

 address_city varchar(255)

 phone_number varchar(255)

 created_at datetime

 updated_at datetime

voucher_rows

PK id int

FK2 voucher_id int

FK1 account_id int

 amount int

 replaces_id int

 replaced_by int

 destroyed_at datetime

 destroyed_by int

 created_at datetime

 updated_at datetime

30

5.5.2 Models

5.5.2.1 User

5.5.2.1.1 Accessors

Name Type Description

id Fixnum The user’s internal identification.

name String The user’s full name.

login String The user’s login name.

address_street String The user’s street address.

address_postal String The user’s postal address.

address_city String The user’s city.

email String The user’s email.

phone_number String The user’s phone number.

associates Array The associates that this user has.

companies Array The companies that this user belongs to.

updated_at Time User updated time.

created_at Time User creation time.

5.5.2.1.2 Methods

self.authenticate

Authenticates the user with their login name and unencrypted password.

Parameters login, password

Return Value Returns the User with the provided login if login and password matches,

otherwise nil.

Pre-condition

Post-condition

self.encrypt

Encrypt the password with the given salt (for information concerning salt, please see:

http://en.wikipedia.org/wiki/Salt_(cryptography)).

Parameters password, salt

Return Value Returns the given password in an encrypted form.

Pre-condition N/A (not applicable)

31

Post-condition That the password was encrypted with an SHA1 hex digest algorithm using

the given salt.

encrypt

Encrypt the password with the user’s salt (for information concerning salt, please see:

http://en.wikipedia.org/wiki/Salt_(cryptography)).

Parameters password

Return Value Returns the given password in an encrypted form.

Pre-condition N/A

Post-condition That the password was encrypted with an SHA1 hex digest algorithm using

the user’s salt.

authenticated?

Checks if the user is authenticated with the provided password.

Parameters password

Return Value Returns true if the user is authenticated otherwise false.

Pre-condition N/A

Post-condition That the password was encrypted with an SHA1 hex digest algorithm using

the user’s salt.

encrypt_password

Before the use is saved the password will be encrypted so the saved password will be in an encrypted

form.

Parameters

Return Value Returns nil.

Pre-condition N/A

Post-condition That the password is encrypted and stored in the database.

password_required?

Checks whatever a password is required for the current user.

Parameters

Return Value Returns true if no password is required for the current user, otherwise

false.

32

Pre-condition N/A

Post-condition N/A

5.5.2.2 Associate

5.5.2.2.1 Accessors

Name Type Description

id Integer Internal identification.

user User The user that the associate has.

company Company The company that the associate has.

updated_at Time The associate’s updated time.

created_at Time The associate’s creation time.

5.5.2.3 Company

5.5.2.3.1 Accessors

Name Type Description

id Integer Internal identification.

name String The company’s name.

form String The company’s form.

associates Array The associates this company has.

users Array The users that belongs to this company.

org_nr String The company’s organizational number.

address_street String The company’s street address.

address_postal String The company’s postal address.

address_city String The company’s city.

phone_number String The company’s phone number.

updated_at Time Company updated time.

created_at Time Company creation time.

5.5.2.4 FiscalYear

5.5.2.4.1 Accessors

Name Type Description

id Fixnum Internal identification of the fiscal year

33

company Company The company that the fiscal year belongs to.

voucher_rows Array The vouchers associated with the fiscal year.

created_at Time The date and time when the fiscal year was
created.

accounting_plan_template AccountingPlanTemplate The accounting plan template that was
initially used to create the accounts that
belongs to the fiscal year.

accounts Array The accounts associated with the fiscal year.

name String The name of the fiscal year (i.e. “2007”)

5.5.2.5 Account

5.5.2.5.1 Accessors

Name Type Description

id Fixnum Internal identification of the account.

name String Name of the account.

description String Description of the account.

number String The account number.

created _at Time Date and time when the instance was created.

updated_at Time Date and time when the instance was updated.

fiscal_year FiscalYear The accounting plan template in which the account
template is created.

5.5.2.6 Voucher

5.5.2.6.1 Accessors

Name Type Description

id Fixnum Internal identification of the voucher.

voucher_rows Array The voucher rows that belongs to a voucher.

fiscal_year FiscalYear The fiscal year that the voucher belongs to.

created_at Time The date and time when the voucher was created.

comment String An optional comment to the voucher.

replaces Voucher The voucher that this voucher replaces (if any).

replaced_by Voucher The voucher that replaces this voucher (if any).

5.5.2.7 VoucherRow

5.5.2.7.1 Accessors

Name Type Description

34

id Fixnum The id.

voucher Voucher The voucher that the voucher row belongs to.

account Account The account that this voucher row refers to.

created_at Time The date and time when the voucher row was created.

amount Fixnum The amount specified by a voucher row, can be negative.

replaces VoucherRow The voucher row that this voucher row replaces (if any).

replaced_by VoucherRow The voucher row that replaces this voucher row (if any).

destroyed_at Time The time and date when the voucher row was destroyed, if it is
destroyed.

destroyed_by User The user that destroyed the voucher row, if it is destroyed.

5.5.2.8 AccountingPlanTemplate

5.5.2.8.1 Accessors

Name Type Description

id Fixnum Internal identification of accounting plan templates.

name String Name of the accounting plan.

accounts Array Set of accounts for the accounting plan.

created_at Time Date and time when the instance was created.

updated_at Time Date and time when the instance was updated.

5.5.2.8.2 Methods

use_in_fical_year

Export accounts from the accounting plan to a fiscal year and sets the fiscal year’s account template
accessor.

Parameters fiscal_year

Return Value N/A

Pre-condition Parameter fiscal_year cannot be null.

Post-condition All or none accounts have been copied to the fiscal year.

5.5.2.9 AccountTemplate

5.5.2.9.1 Accessors

Name Type Description

id Fixnum Internal identification of the account
template.

name String Name of the account template.

description String Description of the account template.

number String The account number.

35

created _at Time Date and time when the instance was
created.

updated_at Time Date and time when the instance was
updated.

accounting_plan_template AccountingPlanTemplate The accounting plan template in which the
account template is created.

5.5.3 Controllers

5.5.3.1 UsersController

The controller is reached by /companies/:company_id/users/

5.5.3.1.1 Methods

index

The default action for this controller.

Parameters

Return value A list of users for the selected company as rows in HTML.

Preconditions A user must be logged in.

Postconditions

new

The action for rendering a form for a new user in the selected company.

Parameters

Return value A form as HTML for a new user in the selected company.

Preconditions A user must be logged in.

Postconditions

edit

The action for rendering a form to update a user.

Parameters

Return value A form as HTML for updating a user.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

create

36

The action for saving a new user.

Parameters

Return value A redirect to the index action or the form for creating a new user
with error messages if errors occurred.

Preconditions A user must be logged in. Post parameters from the new action
must be present.

Postconditions A new fiscal year is created or an error message is returned.

update

The action for saving an updated user.

Parameters

Return value A redirect to the index action or the form for updating the user
with error messages if errors occurred.

Preconditions A user must be logged in. Post parameters from the edit action
must be present.

Postconditions The user is updated.

destroy

The action for destroying a user.

Parameters

Return value A redirect to the index action with or without error messages.

Preconditions A user must be logged in.

Postconditions The user is destroyed or an error message is returned.

show

The action for rendering a user.

Parameters

Return value HTML for a user.

Preconditions A user must be logged in.

Postconditions

5.5.3.2 SessionController

The controller is reached by /session/

37

5.5.3.2.1 Methods

create

The action for logging a user into the system.

Parameters The username, the password and a URL address.

Return value The user will be redirected, and given authorization, to another
webpage in case the username and password matches. If it
doesn’t, he or she will automatically be brought back to the
original webpage, where a message stating that the entered
username or password was incorrect is now to be shown.

Preconditions That the user isn’t logged in.

Postconditions

destroy

The action for logging out a user from the system.

Parameters

Return value A redirect to the start page.

Preconditions That the user is logged in.

Postconditions

5.5.3.3 AssociatiesController

The controller is reached by /users/:user_id/associates and /companies/:company_id/associates

Methods

index

The default action for this controller.

Parameters

Return value A list of associates rows as HTML.

Preconditions A user must be logged in.

Postconditions

edit

The action for editing an associate.

Parameters

Return value A form as HTML for updating associates.

38

Preconditions A user must be logged in.

Postconditions

update

The action for saving an updated associate.

Parameters

Return value A redirect to the index action or the form for updating the
associate with error messages if errors occurred.

Preconditions A user must be logged in. Post parameters from the edit action
must be present.

Postconditions The associate is updated.

destroy

The action for destroying a associate.

Parameters

Return value A redirect to the index action with or without error messages.

Preconditions A user must be logged in.

Postconditions The associate is destroyed or an error message is returned.

5.5.3.4 CompaniesController

The controller is reached by /companies/.

5.5.3.4.1 Methods

new

The action for rendering a form for a new company and the initial user.

Parameters

Return value A form as HTML for a new company and the initial user.

Preconditions

Postconditions

edit

The action for rendering a form to update a company.

Parameters

39

Return value A form as HTML for updating a fiscal year.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

create

The action for saving a new company.

Parameters

Return value A redirect to the index action or the form for creating a company
with error messages if errors occurred.

Preconditions A user must be logged in. Post parameters from the new action
must be present.

Postconditions A new company is created or an error message is returned.

update

The action for saving an updated company.

Parameters

Return value A redirect to the index action or the form for updating the
company with error messages if errors occurred.

Preconditions A user must be logged in. Post parameters from the edit action
must be present.

Postconditions The company is updated.

show

The action for rendering a company.

Parameters

Return value HTML for a company.

Preconditions A user must be logged in.

Postconditions

5.5.3.5 SupportController

The controller is reached from /support/.

5.5.3.5.1 Methods

index

40

The default action for this controller.

Parameters

Return value A HTML form for a new support request.

Preconditions

Postconditions

new

The action for rendering a form for a new support request.

Parameters

Return value A HTML-form for a new support request.

Preconditions

Postconditions

submit

The action for submitting a support request through e-mail to the support staff.

Parameters

Return value A confirmation of the submitted support request.

Preconditions Post parameters from the new action must be present.

Postconditions

5.5.3.6 FiscalYearsController

The controller is reached by /fiscal_years/

5.5.3.6.1 Methods

index

The default action for this controller.

Parameters

Return value A list of voucher rows as HTML.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

new

The action for rendering a form for a new fiscal year.

Parameters

41

Return value A form as HTML for a new fiscal year.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

edit

The action for rendering a form to update a fiscal year.

Parameters

Return value A form as HTML for updating a fiscal year.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

create

The action for saving a new fiscal year.

Parameters

Return value A redirect to the index action or the form for creating a new fiscal
year with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year must have been chosen.
Post parameters from the new action must be present.

Postconditions A new fiscal year is created or an error message is returned.

update

The action for saving an updated fiscal year.

Parameters

Return value A redirect to the index action or the form for updating the fiscal
year with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year must have been chosen.
Post parameters from the edit action must be present.

Postconditions The fiscal year is updated.

destroy

The action for destroying a fiscal year.

Parameters

42

Return value A redirect to the index action with or without error messages.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions The fiscal year is destroyed or an error message is returned.

show

The action for rendering a fiscal year.

Parameters

Return value HTML for a fiscal year.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

5.5.3.7 AccountsController

The controller is reached by /fiscal_years/:fiscal_year_id/accounts/.

5.5.3.7.1 Methods

index

The default action for this controller.

Parameters

Return value A list of accounts as HTML.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

new

The action for rendering a form for a new account.

Parameters

Return value A HTML-form for a new account.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

edit

The action for rendering a form to update an account.

Parameters

Return value A form as HTML for updating an account.

43

Preconditions A user must be logged in and a fiscal year and an account must
have been chosen.

Postconditions

create

The action for saving a new account.

Parameters

Return value A redirect to the index action or the form for creating a new
account with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year must have been chosen.
Post parameters from the new action must be present.

Postconditions A new account is created or error messages are returned.

update

The action for saving an updated account.

Parameters

Return value A redirect to the index action or the form for updating the account
with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year and an account must
have been chosen. Post parameters from the edit action must be
present.

Postconditions The account is updated.

destroy

The action for destroying an account.

Parameters

Return value A redirect to the index action with or without error messages.

Preconditions A user must be logged in and a fiscal year and an account must
have been chosen. The account cannot be referred to from any
voucher row.

Postconditions The selected account is destroyed or the user has been notified of
the failure of the operation.

show

The action for rendering displaying an account

44

Parameters

Return value HTML for an account.

Preconditions A user must be logged in and a fiscal year and an account must
have been chosen.

Postconditions

5.5.3.8 VouchersController

The controller is reached by /fiscal_years/:fiscal_year_id/vochers/.

5.5.3.8.1 Methods

index

The default action for this controller.

Parameters

Return value A list of vouchers as HTML.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

new

The action for rendering a form for a new voucher.

Parameters

Return value A form as HTML for a new voucher.

Preconditions A user must be logged in and a fiscal year must have been chosen.

Postconditions

edit

The action for rendering a form to update a voucher.

Parameters

Return value A form as HTML for updating a voucher.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen.

Postconditions

create

The action for saving a new voucher.

45

Parameters

Return value A redirect to the index action or the form for creating a new
voucher with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year must have been chosen.
Post parameters from the new action must be present.

Postconditions A new voucher is created or an error message is returned.

update

The action for saving an updated voucher.

Parameters

Return value A redirect to the index action or the form for updating the voucher
with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen. Post parameters from the edit action must be
present.

Postconditions A new voucher is created which overrides the old one.

destroy

The action for destroying a voucher.

Parameters

Return value A redirect to the index action with or without error messages.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen.

Postconditions A new voucher is created which overrides the old one. All voucher
rows are marked as destroyed.

show

The action for rendering a voucher.

Parameters

Return value HTML for a voucher.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen.

Postconditions

5.5.3.9 VoucherRowsController

The controller is reached by /fiscal_years/:fiscal_year_id/vochers/:voucher_id/voucher_rows/

46

5.5.3.9.1 Methods

index

The default action for this controller.

Parameters

Return value A list of voucher rows as HTML.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen.

Postconditions

new

The action for rendering a form for a new voucher row.

Parameters

Return value A form as HTML for a new voucher row.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen.

Postconditions

edit

The action for rendering a form to update a voucher row.

Parameters

Return value A form as HTML for updating a voucher row.

Preconditions A user must be logged in and a fiscal year, a voucher and a
voucher row must have been chosen.

Postconditions

create

The action for saving a new voucher row.

Parameters

Return value A redirect to the index action or the form for creating a new
voucher row with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year and a voucher must
have been chosen. Post parameters from the new action must be
present.

Postconditions A new voucher row is created or error messages is returned.

47

update

The action for saving an updated voucher row.

Parameters

Return value A redirect to the index action or the form for updating the voucher
row with error messages if errors occurred.

Preconditions A user must be logged in and a fiscal year, a voucher and a
voucher row must have been chosen. Post parameters from the
edit action must be present.

Postconditions A new voucher row is created which overrides the old one.

destroy

The action for destroying a voucher row.

Parameters

Return value A redirect to the index action with or without error messages.

Preconditions A user must be logged in and a fiscal year, a voucher and a
voucher row must have been chosen.

Postconditions The voucher row is marked as destroyed or an error message is
returned.

show

The action for rendering a voucher row.

Parameters

Return value HTML for a voucher row.

Preconditions A user must be logged in and a fiscal year, a voucher and a
voucher row must have been chosen.

Postconditions

48

5.6 Package Diagram

Controllers Views

Models

50

Functional Test Cases

Reference Test Expected Result Pass Fail Comment

1.1 RD Users 1 1. Browse to the Register page.
2. Fill out the form with all the
required information.
3. Press the create button.

• A success notification is shown.
• The login screen is shown.
• The user is able to login to the system using
his new username and password.

 

1.2 RD Users 2 1. Browse to the login page.
2. Fill out the form with your
username and password.
3. Press of the quicklinks or just
press login.

• The user is logged in.
• On 3, if a quicklink is pressed the user is
forwarded to the selected function in an
logged in state.

 

1.3 RD Users 3 1. Login to the system.
2. Click the logout link.

• A success notification is shown.
• The user is presented with the startpage
again.

 

1.4 RD Users 4 1. Login to the system.
2. Navigate to the page where your
information is shown.
3. Click the link where it says that
you can edit your information.
4. Edit your information after your
taste.
5. Click the save button.

• A success notification is shown.
• The users updated information shows at the
users page.

 

51

Reference Test Expected Result Pass Fail Comment

2.1 RD Company 1 1. Login to the system.
2. Navigate to the page where you
can add new users to your company.
3. Fill out the with the email of the
new user.
4. Click the create button.
5. The new user receives an email
with an link.
6. The user clicks the link and is
presented with a form for all the
additional information for the new
user.
7. The new user clicks create.

• A success notification is shown.
• The user should have received an email with
the register link
 • When the new user has filled out the form
and clicked create he should be able to login
into the system.

 

2.2 RD Company 2 1. Login to the system.
2. Navigate to the page where your
company’s information is shown.
3. Click the link where it says that
you can edit your information.
4. Edit your information after your
taste.
5. Click the save button.

• A success notification is shown.
• The company’s updated information shows
at the company page.

 

3.1 RD Fiscal years 1 -Login to the system.
-Navigate to the Fiscal years page.
-Click start new fiscal year.

• A confirm question appears which asks you if
you are certain.
• A success notification is shown.
• The fiscal years page appears.

 

52

Reference Test Expected Result Pass Fail Comment

4.1 RD Vouchers 1,5 -Login to the system.
-Navigate to the vouchers page.
-Click create new voucher.
-Set required fields.
-Click add new voucher row.
-Fill required fields.
-Repeat 5-6.
-Click delete next to one of the

voucher rows.
-Change the filled fields of the other

voucher row.
-Click save

• A success notification is shown.
• The voucher appears in the list.
• The voucher has the voucher rows that
where supposed to be created.

 

4.2 RD Vouchers 2,6 -Login to the system.
-Navigate to the vouchers page.
-Make sure that there is at least one

voucher with at least 2 voucher
rows.

-Click edit next to a voucher.
-Alter values in the fields.
-Click delete next to a voucher row.
-Click new voucher row.
-Fill out the required fields.
-Click save.

• A success notification is shown.
• The voucher appears in the list.
• The voucher has the voucher rows that
where supposed to be created.
• The voucher has the voucher rows that
where supposed to be created.

 

4.3 RD Vouchers 3 -Login to the system.
-Navigate to the vouchers page.
-Make sure that at least 1 voucher

appears in the list.
-Click replace next to a voucher.
-Preform test 4.1.4-1.1.10

• A success notification is shown.
• The voucher appears in the list.
• The voucher has the voucher rows that
where supposed to be created.
• The old voucher that you clicked replace next
to is marked as deleted and marked as
replaced by the new one.

 

53

Reference Test Expected Result Pass Fail Comment

4.4 RD Vouchers 4 -Login to the system.
-Navigate to the vouchers page.
-Make sure that at least 1 voucher

appears in the list.
-Click delete next to a voucher.

• A success notification is shown.
• The voucher appears in the list, but is marked
as removed.

 

5.1 RD Support 1 1. Enter the send questions page.
2. Input a textual query into the text
field.
3. Press the send button.

• A success notification is shown.
• The query is stored and made available to
the support staff.

 

5.2 RD Support 2 1. Enter the send questions page.
2. Input a textual query into the text
field.
3. Press the send button.

• A reference containing time and user
information shall be attached to the query.
• The support staff must be able to find
information on whom the question was sent
from, and when it was sent.

 

6.1 RD Accounting
plans 1

1. Login to the system.
2. Browse to the page handling
accounting plans.
3. Produce an accounting plan using
the options shown.
4. Press the create button.

• The new accounting plan shall be stored in
the system.
• The new accounting plan shall be made
accessible and ready for use by the user/firm
that produced the plan.

 

6.2 RD Accounting
plans 2

1. Login to the system.
2. Browse to the page handling
accounting plans.
3. Use the option showing existing
accounting plans.
4. Pick and edit one of the shown
accounting plans.
5. Press the create button.

• On 3. All plans that have been created by the
user or are predefined by the system itself
shall be shown in the list.
• On 4. Picking an existing accounting plan
shall alter the accounting plan creation options
so that they correlate with the chosen design.
• On 5. The new accounting plan shall be
stored in the system.
• On 5. The new accounting plan shall be made
accessible and ready for use by the user/firm
that produced the plan.

 

54

Reference Test Expected Result Pass Fail Comment

6.3 RD Accounting
plans 3

1. Login to the system.
2. Browse to the page handling
accounting plans.
3. Use the option showing existing
accounting plans.

• All plans that have been created by the user
or are predefined by the system itself shall be
shown in the list.
• No accounting plans created by other firms
shall be shown.

 

6.4 RD Accounting
plans 4

1. Login to the system.
2. Browse to the page handling
accounting plans.
3. Use the option showing existing
accounting plans.
4. Pick a plan.
5. Press the remove button.

• In case the accounting plan is not being used
in a fiscal year associated with the user, the
accounting plan shall: (1) be removed from the
system; (2) no longer show in the user’s list of
existing accounting plans.
• In case the accounting plan is being used in a
fiscal year associated with the user, a message
saying so shall appear. Nothing will be
removed if this is the case.

 

6.5 RD Accounting
plans 5

1. Login to the system.
2. Browse to the page handling the
currently used accounting plans.
3. Pick an account.
4. Press the add button to add the
account to the accounting plan.
5. Save or create the accounting
plan.

• The just added account shall show in the
accounting plans list of active accounts.
• The added account shall, when the change is
saved (or the accounting plan is created), be
shown among the other accounts belonging to
the accounting plan.

 

6.6 RD Accounting
plans 6

1. Login to the system.
2. Browse to the page handling the
currently used accounting plans.
3. Pick an account.
4. Press the edit button to edit the
account to the accounting plan.
5. Edit the account.
6. Add the edited account.
7. Save or create the accounting
plan.

• On 4. Customization menus shall appear
when the edit button is pressed.
• On 5. It shall be possible to edit the specifics
of the account by altering the information
that’s shown in the now activated edit menus.
• On 6. The just added account shall show in
the accounting plans list of active accounts.
• On 7. The added account shall, when the
change is saved (or the accounting plan is
created), be shown among the other accounts
belonging to the accounting plan.

 

55

Reference Test Expected Result Pass Fail Comment

6.7 RD Accounting
plans 7

1. Login to the system.
2. Browse to the page handling the
currently used accounting plans.
3. Pick an account.
4. Press the remove button to
remove the account from the
accounting plan.
5. Save or create the accounting
plan.

• The added account shall, when the change is
saved (or the accounting plan is created), no
longer be shown among the other accounts
belonging to the accounting plan.

 

	Introduction
	Concerning the design document
	Glossary
	Structure

	System Overview
	General Description
	Overall Architecture Description
	Detailed Architecture
	Model View Controller
	MVC implementation in Ruby on Rails
	The file structure of a Ruby on Rails project
	RESTful development

	Design Considerations
	Assumptions and Dependencies
	General Constraints

	Graphical User Interface
	User Interface Overview
	Concept and Functionality
	Stage 1 – Welcome
	Stage 2 – Launch (optional)
	Stage 3 – Action

	Detailed Mockups
	Register new company
	User Login
	Update user information
	Update company information
	Create a new user in a company

	Ask a question
	Create new Fiscal Year
	Change current Fiscal Year
	Creating an accounting plan
	Create a new Voucher

	Design Details
	Class Responsibility Collaborator (CRC) Cards
	Models
	Presentation

	Class Diagram
	Models
	Controllers

	State Charts
	Interaction Diagrams
	General HTTP GET Request Sequence

	Detailed Design
	Database
	Models
	User
	Accessors
	Methods

	Associate
	Accessors

	Company
	Accessors

	FiscalYear
	Accessors

	Account
	Accessors

	Voucher
	Accessors

	VoucherRow
	Accessors

	AccountingPlanTemplate
	Accessors
	Methods

	AccountTemplate
	Accessors

	Controllers
	UsersController
	Methods

	SessionController
	Methods

	AssociatiesController
	Methods

	CompaniesController
	Methods

	SupportController
	Methods

	FiscalYearsController
	Methods

	AccountsController
	Methods

	VouchersController
	Methods

	VoucherRowsController
	Methods

	Package Diagram

	Functional Test Cases

