
DD_group27 appendix 1

DATA MODEL

2007-03-19, 09:27

Qual_users

Many-to-many relationship

0

0

0

Qual_change_control

SERIES
e.g. 30, 35, 45, 80

QUALIFICATION_TYPE
(V, Q)

PROCESS_STEP

EQUIPMENT_
TYPE

Product_equipment

Qual_equipment

Qual_process_step

Qual_material_code

TYPE_LIST
e.g. status

USERS

COMMENT

PRODUCT

SUBQUAL_TYPE
(e.g. DQ, IQ, OQ, PQ,

ProcessQ)

INSTRUCTION_
CATEGORY

Qual_method

ROOM

EQUIPMENT

METHOD

DEPARTMENT

CHANGE CONTROL
(external system)

MATERIAL_CODE

INSTRUCTION

PART_SUBQUAL_TYPE
(R, T, D, C)

DOCUMENT_TYPE
(URS, TFS, VP, QPL,
Rapport, Protokoll ,

Interrimsgk)

OCTAPROPS
(external system)

DOCUMENT
REMAINING_ACTIVITIES

QUALIFICATION
(e.g. 30-1234-V01,
30-1234-Q01-D01)

One-to-many relationship

1(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

TYPE_LIST

Class Value COMMENT_ID Timestamp Userstamp

VARCHAR(40) VARCHAR(40) INT DATETIME VARCHAR(20)

Status – CURRENT, MODIFIED, ...
Qual_status – APPROVED, CANCELED,...
Requal_interval – 1 MONTH, 3 MONTHS, 1 YEAR, ...
Condition – OBSOLETE, REQUAL, APPROVED
Other config values (e.g. Root - Electronic documents root directory)

USERS

USER_ID User_name First_name Last_name Access_level Last_logon

INT VARCHAR(20) VARCHAR(100) VARCHAR(100) VARCHAR(40) DATETIME

COMMENT_ID Timestamp Userstamp

INT DATETIME VARCHAR(20)

Access_level: admin, create, write, read, locked

2(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

QUAL_USERS

QUALIFICATION_ID USER_ID COMMENT_ID

INT INT INT

COMMENT

COMMENT_ID COMMENT_VERSION Status Text Timestamp Userstamp

INT INT VARCHAR(40) VARCHAR(1000) DATETIME VARCHAR(20)

PRODUCT

PRODUCT_ID Product_name Requal_interval Condition COMMENT_ID Timestamp Userstamp

INT VARCHAR(100) VARCHAR(100) VARCHAR(40) INT DATETIME VARCHAR(20)

PRODUCT_EQUIPMENT

PRODUCT_ID EQUIPMENT_ID EQUIP_VERSION COMMENT_ID Timestamp Userstamp

INT INT INT INT DATETIME VARCHAR(20)

3(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

EQUIPMENT

EQUIPMENT_ID EQUIP_VERSION EQUIP_TYPE_ID ROOM_ID Equipment_name Requal_interval

INT INT INT INT VARCHAR(100) VARCHAR(100)

Status Qual_condition DEPARTMENT_ID COMMENT_ID Timestamp Userstamp

VARCHAR(40) VARCHAR(40) INT INT DATETIME VARCHAR(20)

Equipment name – M-nr

EQUIPMENT_TYPE

EQUIP_TYPE_ID Name Status Timestamp Userstamp

INT VARCHAR(100) VARCHAR(40) DATETIME VARCHAR(20)

PROCESS_STEP

PROCESS_STEP_ID PRODUCT_ID Step_name Requal_interval Qual_condition COMMENT_ID

INT INT VARCHAR(100) VARCHAR(100) VARCHAR(40) INT

4(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

Timestamp Userstamp

DATETIME VARCHAR(20)

Sterile prod has same process step for several products, protein purification has unique steps per product, i.e. step name not unique

ROOM

ROOM_ID DEPARTMENT_ID Room_name Status Timestamp Userstamp

INT INT VARCHAR(100) VARCHAR(40) DATETIME VARCHAR(20)

DEPARTMENT

DEPARTMENT_ID Department_name Timestamp Userstamp

INT VARCHAR(100) DATETIME VARCHAR(20)

INSTRUCTION

INSTRUCTION_ID CATEGORY_ID EQUIPMENT_ID EQUIP_VERSION Instruction_number COMMENT_ID Status

INT INT INT INT VARCHAR(100) INT VARCHAR(40)

5(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

Timestamp Userstamp

DATETIME VARCHAR(20)

INSTRUCTION_CATEGORY

CATEGORY_ID Category_name Timestamp Userstamp

INT VARCHAR(100) DATETIME VARCHAR(20)

e.g. operating instruction, preventive maintenance instruction, re-qualification instruction

MATERIAL_CODE

MATERIAL_CODE_ID MTRLCODE_VERSION PRODUCT_ID DEPARTMENT_ID Material_code Name

INT INT INT INT VARCHAR(60) VARCHAR(100)

Requal_interval Qual_condition COMMENT_ID Timestamp Userstamp

VARCHAR(100) VARCHAR(40) INT DATETIME VARCHAR(20)

Department e.g. for starting materials, media, products
Product may be 0 for e.g. starting material

6(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

METHOD

METHOD_ID Method_number Edition_number Method_name Requal_interval COMMENT_ID DEPARTMENT_ID

INT VARCHAR(100) VARCHAR(40) VARCHAR(255) VARCHAR(100) INT INT

Condition Timestamp Userstamp

VARCHAR(40) DATETIME VARCHAR(20)

SERIES

SERIES_ID Series_number Status COMMENT_ID Timestamp Userstamp

INT INT VARCHAR(40) INT DATETIME VARCHAR(20)

30, 35, 45, 80...

QUALIFICATION_TYPE

QUAL_TYPE_ID Qualification_type Status COMMENT_ID Timestamp Userstamp

INT VARCHAR(100) VARCHAR(40) INT DATETIME VARCHAR(20)

V - validering, K - kvalificering

7(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

SUBQUAL_TYPE

SUBQUAL_TYPE_ID Subqual_type Status COMMENT_ID Timestamp Userstamp

INT VARCHAR(100) VARCHAR(40) INT DATETIME VARCHAR(20)

DQ, IQ, OQ, PQ, ProcessQ

PARTIAL_QUAL_TYPE

PART_QUAL_TYPE_ID Partial_qualification_type Status COMMENT_ID Timestamp Userstamp

INT VARCHAR(100) VARCHAR(40) INT DATETIME VARCHAR(20)

D – delkvalificering; C – “commissioning”, “qualification light”, R - rekvalificering, T – tillägg; H, P, B. F, A, C, D, V, W, S, K “dokbokstav”

QUALIFICATION

QUALIFICATION_ID SERIES_ID Qual_seq QUAL_TYPE_ID Subqual_seq SUBQUAL_TYPE_ID

INT INT INT INT INT INT

PART_QUAL_TYPE_ID Part_qual_seq Qualification_title Qualification_leader PROJECT_ID

INT INT VARCHAR(255) VARCHAR(255) VARCHAR(100)

8(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

Start_date Approval_date End_date Qual_condition Status COMMENT_ID Timestamp Userstamp

DATETIME DATETIME DATETIME VARCHAR(40) VARCHAR(40) INT DATETIME CHAR(20)

QUAL_CHANGE_CONTROL

QUALIFICATION_ID CHANGE_CTRL_ID COMMENT_ID Timestamp Userstamp

INT VARCHAR(100) INT DATETIME VARCHAR(20)

CC eg- “2006-137”

REMAINING_ACTIVITIES

ACTIVITY_ID QUALIFICATION_ID Activity Responsible Status Date_completed Timestamp Userstamp

INT INT VARCHAR(500) VARCHAR(200) VARCHAR(40) DATETIME DATETIME VARCHAR(20)

QUAL_PROCESS_STEP

QUALIFICATION_ID PROCESS_STEP_ID COMMENT_ID Timestamp Userstamp

INT INT INT DATETIME VARCHAR(20)

9(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

QUAL_MATERIAL_CODE

QUALIFICATION_ID MATERIAL_CODE_ID MTRLCODE_VERSION COMMENT_ID Timestamp Userstamp

INT INT INT INT DATETIME VARCHAR(20)

QUAL_EQUIPMENT

QUALIFICATION_ID EQUIPMENT_ID EQUIP_VERSION COMMENT_ID Timestamp Userstamp

INT INT INT INT DATETIME VARCHAR(20)

QUAL_METHOD

QUALIFICATION_ID METHOD_ID COMMENT_ID Timestamp Userstamp

INT INT INT DATETIME VARCHAR(20)

DOCUMENT_TYPE

DOC_TYPE_ID Document_type Status COMMENT_ID Timestamp Userstamp

INT VARCHAR(100) VARCHAR(40) INT DATETIME VARCHAR(20)

URS, TS, FS, TFS, VP, QPL, Rapport, Protokoll, Interrimsgk

10(10)Database tables
 (entities, many-to-many relationships) Design Document appendix 1

grey primary or composite key
----- foreign key 2007-03-19, 09:27

DOCUMENT

DOCUMENT_ID DOC_VERSION QUALIFICATION_ID DOC_TYPE_ID Document_title Author

INT INT INT INT VARCHAR(200) VARCHAR(100)

Approval_date Archive_location Archive_ID Electronic_storage_path COMMENT_ID

DATETIME VARCHAR(300) VARCHAR(100) VARCHAR(300) INT

Status Timestamp Userstamp

VARCHAR(40) DATETIME VARCHAR(20)

1(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeType stores of modifies a new class – value pair used to configure the system (e.g. class “status”, value “approved”)
 * in the table type_list. Any given comment is stored in the table comment.
 * Checks for the presence of class-value pair, updates if found, inserts if not present
 * Post-condition: Class – value pair has been stored or modified
 * Called by business layer database connection object
 *
 */
void storeType (String class // category

, String value // new value for category
, String comment // additional information
, String user // user performing operation
)

/*
 * removeType removes a given class – value pair used to configure the system from the table type_list.
 * Checks if the value has been used in database instance tables, if so, does not remove and throws exception
 * Post-condition: Class – value pair has been removed if unused in other database columns
 * Called by business layer database connection object
 *
 */
void removeType (String class // category

, String value // value to remove
) throws ForeignReferencesException

Req. 2.18

2(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getTypeValues returns the given values for a given class from the table type_list. If class is null, values for all classes
 * are returned. Returns null if the given class is not present.
 * Post-condition: Class/value pairs have been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getTypeValues (String class) // type class to return values for

/*
 * storeUser stores a user with the given username, first and last name, and access level in the table users. If the user
 * already exists, first and last name, access level and last logon are updated if not null. Any given comment is stored in the table comment.
 * Checks for presence of user name and performs insert or update accordingly
 * Pre-condition: user name is unique in database
 * Post-condition: user entry in table users has been stored or changed,
 * comment has been saved in table comment and linked if not null
 * Called by business layer database connection object
 *
 */
void storeUser (String user_name // username

, String first_name // user first name
, String last_name // user last name
, String access_level // user access level
, Date last_logon // last logon
, String comment // additional information

)
Req. 2.40

3(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getUser returns the information in a user entry from the table users. If the given user_name is null, records for all users
 * are returned. Returns null if the given user is not present.
 * Post-condition: User information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getUser (String user_name) // user

/*
 * assignQualUser stores the given user_name and qualification_id in the table qual_users.
 * Checks for presence of user and qualification and throws an error if not present
 * Post-condition: user qualification access permission has been stored
 * Called by business layer database connection object
 *
 */
void assignQualUser (String user_name // username

, int qual_id // qualification ID
) throws UserNotFoundException, QualificationNotFoundException

/*
 * getQualUsers returns the usernames of the users that have access to the given qualification.
 * Returns null if the given qualification is not present.
 * Post-condition: User information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getQualUsers (int qual_id) // qualification ID

4(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeQualUser removes the given user_id and qualification_id from the table qual_users.
 * Post-condition: user qualification access is no longer present in the table qual_users
 * Called by business layer database connection object
 *
 */
void removeQualUser (String user_name // username

, String qual_id // qualification ID
)

/*
 * storeProduct stores the given product information in the table product. If product ID is not null,
 * the corresponding product is updated. Otherwise a new product is saved. Returns the product ID.
 * Checks that product name is unique in database when saving new product, otherwise throws error.
 * Post-condition: given product has been stored or updated in table product,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 *
 */
int storeProduct (int product_id // product ID

, String product_name // product name
, String requal_interval // re-qualification interval
, String condition // product condition (e.g. obsolete)
, String comment // additional information
, String username // user performing operation

) throws NotUniqueException

Req. 2.22

5(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getProduct returns the information in a product entry from the table users. If the given product name is null, records for all
 * products are returned. Returns null if the given product is not present.
 * Post-condition: Product information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getProduct (String product_name) // product

/*
 * removeProduct removes a given product from the table products if the product ID is not referenced by other tables.
 * Checks if the product has links to other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: Product entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeProduct (int product_id // product ID

) throws ForeignReferencesException

Req. 2.18

6(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeEquipProduct stores the product ID for the given equipment version in the table product_equipment. If the information
 * is already stored, no action is taken.
 * Checks if product ID and equipment ID and version are present in database and throws error if not
 * Post-condition: given equipment - product information has been stored in table product_equipment
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 *
 */
void storeEquipProduct (int equipment_id // equipment ID

, int equipment_version // equipment version (e.g. use for different products)
, int product_id // product ID
, String comment // additional information
, String username // user performing operation

) throws EquipmentNotFound, ProductNotFound

Req. 2.25

/*
 * removeEqipProduct removes the given product ID for the given equipment version in the table product_equipment.
 * Post-condition: given product and equipment linkage is no longer stored in the table product_equipment
 * any corresponding comment has been deleted from the table comment
 * Called by business layer database connection object
 *
 */
void removeEquipProduct (int equipment_id // equipment ID

, int equipment_version // equipment version (e.g. use for different products)
, int product_id // product ID
, String username) // user performing operation

7(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getEquipProduct returns a collection of product ID:s for the given equipment version from the table product_equipment.
 * Returns null if no entries are found.
 * Post-condition: collection of product ID:s and comments have been returned if found
 * Called by business layer database connection object
 *
 */
Collection getEquipProduct (int equipment_id // equipment ID

, int equipment_version) // equipment version (e.g. use for different products)

/*
 * storeEquipment stores the given equipment information in the table equipment. If new_version is “true” and equipment ID is not null
 * a new version of the equipment is stored. If new_version is “false” and equipment ID and version is not null, the equipment
 * information is updated. Returns the equipment ID and version.
 * Checks if the given room, department, equipment type exist in the database and throws exception if not.
 * Post-condition: given equipment information has been stored in table equipment
 * if new_version true, a new equipment version has been created
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
Collection storeEquipment (int equipment_id // equipment ID

, int equip_version // equipment version
, String new_version // true if new version should be created
, String equipment_name // name of the equipment
, int equip_type_id // equipment type ID
, int room_id // room ID
, int department_id // department ID
, String requal // re-qualification interval

8(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

, String status // equipment status (e.g. current, obsolete)
, String qual_condition // qualification condition (e.g. approved,)
, String comment // additional information
, String username // user performing operation
) throws RoomNotFound, DepartmentNotFound, EquipTypeNotFound

Req. 2.24, 2.26

/*
 * getEquipment returns a collection of equipment information for the given equipment version from the tables equipment and comment.
 * Returns null if no entries are found. Returns all equipments if equipment ID and version is null.
 * Post-condition: collection of equipments and comments have been returned if found
 * Called by business layer database connection object
 *
 */
Collection getEquipment (int equipment_id // equipment ID

, int equipment_version) // equipment version (e.g. use for different products)

/*
 * searchEquipment returns a collection of equipment information for the given name and type from the tables equipment and comment.
 * Returns null if no entries are found.
 * Post-condition: collection of equipments and comments have been returned if found
 * Called by business layer database connection object
 *
 */
Collection searchEquipment (String name // equipment name

, int equip_type_id) // equipment type ID

9(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeEquipType stores of modifies a given equipment type in the table equipment_type.
 * Any given comment is stored in the table comment.
 * Checks for the presence of the equipment type, updates if found, inserts if not present
 * Post-condition: Equipment type has been stored or modified
 * Called by business layer database connection object
 *
 */
void storeEquipType (int equip_type_id // equipment type id

, String name // equipment type
, String status // equipment type status (e.g. current, obsolete)
, String comment // additional information
, String user) // user performing operation

/*
 * removeEquipType removes an equipment type from the table equipment_type.
 * Checks if the id is references by other database tables, if so, does not remove and throws exception
 * Post-condition: Equipment type has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeEquipType (String class // category

, String value // value to remove
) throws ForeignReferencesException

Req. 2.18

10(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getEquipType returns a collection of equipment types from the table equipment_types. If equip_type is null, all equipment types
 * are returned. Returns null if the given equipment type is not present.
 * Post-condition: Collection of equipment types and corresponding comments have been returned if data found
 * Called by business layer database connection object
 *
 */
Collection getEquipType (String equip_type) // equipment type to return values for

/*
 * storeProcessStep stores the given process step information in the table process_step. If process step ID is null, a new process step is created.
 * If the process step is already present, the process step information is updated. Returns the process step ID.
 * Checks if the combination of step name and product is unique when creating new process step, throws error if not.
 * Post-condition: given process step information has been stored in table process_step
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
int storeProcessStep (int process_step_id // process step ID

, String step_name // name of the process step
, int product_id // product ID
, String requal // re-qualification interval
, String qual_condition // qualification condition (e.g. approved,)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException

Req. 2.23

11(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getProcessStep returns a collection of process steps and product names from the tables process_step and product.
 * If step_name is null, all process steps and corresponding product names are returned.
 * Returns null if the given step name is not present.
 * Post-condition: Collection of process steps and corresponding products and comments have been returned if data found
 * Called by business layer database connection object
 *
 */
Collection getProcessStep (String step_name) // process step to return values for

/*
 * removeProcessStep removes a given process step from the table process_step if the process step ID is not referenced by other tables.
 * Checks if the process step is referenced by other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: Process step entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeProcessStep (int process_step_id // process step ID

) throws ForeignReferencesException

Req. 2.18

12(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeRoom stores the given room information in the table room. If room ID is not null,
 * the corresponding room is updated. Otherwise a new room is saved. Returns the room ID.
 * Checks that room name is unique in database when saving new room, otherwise throws error.
 *
 * Post-condition: given room has been stored or updated in table room
 *
 * Called by business layer database connection object
 *
 */
int storeRoom (int room_id // room ID

, String room_name // room name
, String status // room status
, String username // user performing operation
) throws NotUniqueException

Req. 2.30

/*
 * getRoom returns the information in a room entry from the table room. If the given room name is null, records for all
 * rooms are returned. Returns null if the given room is not present.
 * Post-condition: Room information has been returned in a collection if data found
 *
 * Called by business layer database connection object
 *
 */
Collection getRoom (String room_name) // room

13(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeRoom removes a given room from the table room if the room ID is not referenced by other tables.
 * Checks if the room is referenced by other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: Room entry has been removed if not referenced by other database columns
 *
 * Called by business layer database connection object
 *
 */
void removeRoom (int room_id // room ID

) throws ForeignReferencesException

Req. 2.18

/*
 * storeDepartment stores the given department information in the table department. If departmemt ID is not null,
 * the corresponding department is updated. Otherwise a new department is saved. Returns the department ID.
 * Checks that department name is unique in database when saving new department, otherwise throws error.
 * Post-condition: given department has been stored or updated in table department
 *
 * Called by business layer database connection object
 *
 */
int storeDepartment (int department_id // department ID

, String department_name // department name
, String username // user performing operation

) throws NotUniqueException
Req. 2.30

14(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getDepartment returns the information in a department entry from the table room. If the given department name is null, records for all
 * departments are returned. Returns null if the given department is not found.
 * Post-condition: Department information has been returned in a collection if data found
 *
 * Called by business layer database connection object
 *
 */
Collection getDepartment (String department_name) // department

/*
 * removeDepartment removes a given department from the table department if the department ID is not referenced by other tables.
 * Checks if the department is referenced by other database tables, and if so, does not remove the entry and throws an exception.
 * Post-condition: Department entry has been removed if not referenced by other database columns
 *
 * Called by business layer database connection object
 *
 */
void removeDepartment (int department_id // department ID

) throws ForeignReferencesException

Req. 2.18

15(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeInstruction stores the given instruction information in the table instruction. If instruction ID is null, a new instruction is created.
 * If the instruction is already present, the information is updated. Returns the instruction ID.
 * Checks if the category and equipment version exist in the database, throws error if not.
 * Post-condition: given instruction information has been stored in table instruction,
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
int storeInstruction (int instruction_id // instruction ID

, String instruction // instruction number
, int category_id // instruction category ID
, int equip_id // equipment ID
, int equip_version // equipment version
, String status // status of instruction (e.g. approved)
, String comment // additional information
, String username // user performing operation

) throws CategoryNotFound, EquipNotFound

/*
 * getEquipInstruction returns a collection of instruction information from the tables instruction and comment.
 * Returns null if the given equipment ID is not present.
 * Post-condition: Collection of instructions and comments have been returned if data found
 *
 * Called by business layer database connection object
 *
 */
Collection getEquipInstruction (int equipment_id) // equipment to return instruction for

16(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeCategory stores the given instruction category information in the table instruction category. If category ID is not null,
 * the corresponding category is updated. Otherwise a new category is saved. Returns the category ID.
 * Checks that category name is unique in database when saving new category, otherwise throws error.
 * Post-condition: given category has been stored or updated in table instruction_category
 *
 * Called by business layer database connection object
 *
 */
int storeCategory (int category_id // category ID

, String category_name // category name
, String username // user performing operation
) throws NotUniqueException

/*
 * getCategory returns the information in a category entry from the table instruction_category. If the given category name is null,
 * records for all category are returned. Returns null if the given category is not found.
 * Post-condition: category information has been returned in a collection if data found
 *
 * Called by business layer database connection object
 *
 */
Collection getCategory (String category_name) // instruction category

17(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeCategory removes a given category from the table instruction_category if the category ID is not referenced by other tables.
 * Checks if the category is referenced by other database tables, and if so, does not remove the entry and throws an exception.
 * Post-condition: Category entry has been removed if not referenced by other database columns
 *
 * Called by business layer database connection object
 *
 */
void removeCategory (int category_id // instruction category ID

) throws ForeignReferencesException

Req. 2.18

/*
 * storeMtrlCode stores the given material code information in the table material_code. If material code ID is null,
 * a new material code is created. If the material code is already present, the information is updated.
 * If new_version is set to true, a new version of the material code is created. Returns the material code ID.
 *
 * Checks if the material code is unique when creating new material code, throws exception if not.
 * Checks if product ID and department ID exist in the database, throws exception if not.
 *
 * Post-condition: given material code information has been stored in table material_code,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 */
int storeMtrlCode (int mtrl_code_id // material code ID

, int mtrl_code_version // material code version
, String new_version // true if new version should be created

18(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

, int department_id // department ID
, int product_id // product ID
, String name // material name
, String requal_interval // re-qualification interval
, String qual_condition // qualification condition (e.g. approved,)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException, ProdNotFoundException, DeptNotFoundException

/*
 * getMtrlCode returns a collection of material codes and product names from the tables material_code, product and comment.
 * If step_name is null, all material codes and the corresponding product names are returned.
 * Returns null if the given material code is not present.
 * Post-condition: Collection of material codes and corresponding products and comments have been returned if data found
 * Called by business layer database connection object
 *
 */
Collection getMtrlCode (String code_name) // material code to return records for

19(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeMtrlCode removes a given material code from the table material_code if the material code ID is not referenced by other tables.
 * Checks if the material code is referenced by other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: Material code entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeMtrlCode (int mtrl_code_id // material code ID

) throws ForeignReferencesException

Req. 2.18

/*
 * storeMethod stores the given method information in the table method. If method ID is null,
 * a new method is created. If the method is already present, the information is updated.
 * Returns the method ID.
 *
 * Checks if the method is unique when creating new method, throws exception if not.
 * Checks if department ID exist in the database, throws exception if not.
 *
 * Post-condition: given method information has been stored in table method,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 */
int storeMethod (int method_id // method ID

, int department_id // department ID
, String method_name // method name
, String requal_interval // re-qualification interval

20(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

, String qual_condition // qualification condition (e.g. approved,)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException, DeptNotFoundException

Req. 2.27

/*
 * getMethod returns a collection of methods and departments from the tables method, department and comment.
 * If method_name is null, all method and the corresponding departments are returned.
 * Returns null if the given method is not present.
 * Post-condition: Collection of method and corresponding departments and comments have been returned if data found
 * Called by business layer database connection object
 *
 */
Collection getMethod (String method _name) // method to return records for

/*
 * removeMethod removes a given method from the table method if the method ID is not referenced by other tables.
 * Checks if the method is referenced by other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: method entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeMethod (int method _id // method ID

) throws ForeignReferencesException

Req. 2.18

21(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeSeries stores the given series information in the table series. If series ID is not null,
 * the corresponding series is updated. Otherwise a new series is saved. Returns the series ID.
 * Checks that series is unique in database when saving new series, otherwise throws error.
 * Post-condition: given series has been stored or updated in table series,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 *
 */
int storeSeries (int series_id // series ID

, String series_number // product name
, String status // series status (e.g. current)
, String comment // additional information
, String username // user performing operation

) throws NotUniqueException

Req. 2.31

/*
 * getSeries returns the information in a series entry from the tables series and comment. If the given series name is null, records for all
 * series are returned. Returns null if the given series is not present.
 * Post-condition: series information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getSeries (String series_number) // number of series

22(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeSeries removes a given series from the table series if the series ID is not referenced by other tables.
 * Checks if the series has links to other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: series entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeSeries (int series_id // series ID

) throws ForeignReferencesException

Req. 2.18

/*
 * storeQualType stores the given qualification type information in the table qualification_type.
 * If qualification type ID is not null, the corresponding qualification type is updated.
 * Otherwise a new qualification type is saved. Returns the qualification type ID.
 * Checks that qualification type is unique in database when saving new qualification type, otherwise throws error.
 * Post-condition: given qualification type has been stored or updated in table qualification_type,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 *
 */
int storeQualType (int qual_type_id // qualification type ID

, String qual_type // qualification type
, String status // qualification type status (e.g. current)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException

23(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getQualType returns the information in a qualification type entry from the tables qualification_type and comment.
 * If the given qualification type is null, records for all qualification types are returned.
 * Returns null if the given qualification type is not present.
 * Post-condition: qualification type information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getQualType (String qual_type) // qualification type

/*
 * removeQualType removes a given qualification type from the table qualification_type if the qualification type ID is not referenced by other tables.
 * Checks if the qualification type has links to other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: qualification type entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeQualType (int qual_type_id // qualification type ID

) throws ForeignReferencesException

Req. 2.18

24(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeSubQualType stores the given sub-qualification type information in the table subqual_type. If subqual_type ID is not null,
 * the corresponding sub-qualification type is updated. Otherwise a new sub-qualification type is saved.
 * Returns the sub-qualification type ID.
 * Checks that sub-qualification type is unique in database when saving new series, otherwise throws error.
 * Post-condition: given sub-qualification type has been stored or updated in table subqual_type,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 *
 */
int storeSubQualType (int subqual_type_id // sub-qualification type ID

, String sub_qual_type // sub-qualification type
, String status // sub-qualification type status (e.g. current)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException

/*
 * getSubQualType returns the information in a sub-qualification type entry from the tables subqual_type and comment.
 * If the given sub-qualification type name is null, records for all sub-qualification type are returned.
 * Returns null if the given sub-qualification type is not present.
 * Post-condition: sub-qualification type information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getSubQualType (String subqual_type) // sub-qualification type

25(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeSubQualType removes a given sub-qualification type from the table subqual_type if the sub-qualification type ID
 * is not referenced by other tables.
 * Checks if the sub-qualification type has links to other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: sub-qualification type entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 */
void removeSubQualType (int subqual_type_id // sub-qualification type ID

) throws ForeignReferencesException

Req. 2.18

/*
 * storePartQualType stores the given partial qualification type information in the table partial_qual_type.
 * If partial qualification type ID is not null, the information is updated. Otherwise a new partial qualification type is saved.
 * Returns the partial qualification type ID.
 * Checks that partial qualification type is unique in database when saving new partial qualification type, otherwise throws error.
 * Post-condition: given partial qualification type has been stored or updated in table series,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 *
 */
int storePartQualType (int part_qual_type_id // partial qualification type ID

, String part_qual_type // partial qualification type
, String status // partial qualification type status (e.g. current)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException

26(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getPartQualType returns the information in a partial qualification type entry from the tables partial_qual_type and comment.
 * If the given partial qualification type is null, records for all partial qualification types are returned.
 * Returns null if the given partial qualification type is not found.
 * Post-condition: partial qualification type information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getPartQualType (String part_qual_type) // partial qualification type

/*
 * removePartQualType removes a given partial qualification type from the table partial_qual_type if
 * the partial qualification type ID is not referenced by other tables.
 * Checks if the partial qualification type has links to other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: partial qualification type entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removePartQualType (int part_qual_type_id // partial qualification type ID

) throws ForeignReferencesException

Req. 2.18

27(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeQualification stores the given qualification information in the table qualification. If qualification ID is not null
 * the qualification information is updated. Returns the qualification ID.
 * Checks if the given series, qualification type, sub-qualification type, and partial qualification type
 * exist in the database and throws exception if not.
 * Checks that qualification number to be stored is unique and throws exception if not.
 * Post-condition: given qualification information has been stored in table qualification
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 */
int storeQualification (int qualification _id // qualification ID

, String qual_title // qualification title
, int series_id // series ID
, int qual_type_id // qualification type ID
, int subqual_type_id // sub-qualification type ID
, int part_qual_type_id // partial qualification type ID
, String leader // qualification leader
, String project // project number
, Date approval_date // date of approval of qualification
, String qual_condition // qualification condition (e.g. online, approved)
, String status // qualification status
, String comment // additional information
, String username // user performing operation
) throws RoomNotFound, DepartmentNotFound, EquipTypeNotFound, NotUniqueException

Req. 2.1, 2.3, 2.4, 2.6, 2.7, 2.9, 2.10, 2.15, 2.16, 2.19
 2.18 – absence of remove method

28(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getQualification returns a collection of qualification information for the given qualification from the tables qualification and comment.
 * Returns null if no entries are found.
 * Post-condition: collection of qualification and comment has been returned if found
 * Called by business layer database connection object
 *
 */
Collection getQualification (String qualification_number) // qualification number

/*
 * searchQualification returns a collection of qualifications for the given search parameters. Returns null if no entries are found.
 * Post-condition: collection of qualifications has been returned if found
 * Called by business layer database connection object
 *
 */
Collection searchQualification (String qualification_number // qualification number

, String subqual_type // sub-qualification type
, String title // qualification title
, String leader // qualification leader
, String product // qualified product
, String process_step // qualified process step
, String equipment // qualified equipment
, String material_code // qualified material code
, String method // qualified method
, String room // room concerned
, String qual_condition // qualification condition
, String status) // qualification status

Req. 2.33, 2.34

29(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/* storeQualCC stores the change control number for the given qualification in the table qual_change_control.
 * If the information is already stored, no action is taken.
 * Checks if qualification ID is present in database and throws error if not
 * Post-condition: given change control information has been stored in table qual_change_control
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
void storeQualCC (int qualification_id // qualification ID

, String change_ctrl // change control number
, String comment // additional information
, String username // user performing operation

) throws QualNotFoundException
Req. 2.29

/* storeRemActivity stores the given activity information in the table remaining activities. If activity ID is null,
 * a new activity is created. If the activity is already present, the information is updated. Returns the activity ID.
 * Checks if the given qualification ID exists in the database, throws exception if not.
 * Post-condition: given activity information has been stored in table remaining_activities
 * Called by business layer database connection object
 */
int storeRemActivity (int activity_id // activity ID

, int qualification_id // qualification ID
, String activity // remaining qualification activity
, String responsible // person responsible for activity
, String status // activity status
, Date completed // date completed
, String username // user performing operation
) throws QualNotFoundException

Req 2.21

30(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getRemActivity returns the information in a remaining activity entry from the table remaining_activity.
 * If the given activity or qualification number is null, records for all activities or qualification numbers are returned.
 * Returns null if the given activity for the given qualification is not found.
 * Post-condition: remaining activity information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getRemActivity (String activity // remaining activity

, String qual_number) // qualification number

/*
 * storeQualProcess stores the process step for the given qualification in the table qual_process_step.
 * If the information is already stored, no action is taken.
 * Checks if qualification ID and process step ID are present in database and throws exceptions if not
 * Post-condition: given process step information has been stored in table qual_process_step,
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
void storeQualProcess (int qualification_id // qualification ID

, int process_step_id // process step ID
, String comment // additional information
, String username // user performing operation
) throws QualNotFoundException, ProcessNotFoundException

Req. 2.28

31(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getQualProcess returns a collection of process steps for the given qualification from the table qual_process_step.
 * Returns null if no entries are found.
 * Post-condition: collection of process steps and comments have been returned if found
 * Called by business layer database connection object
 *
 */
Collection getQualProcess (int qualification_id) // qualification ID

/*
 * removeQualProcess removes the given process step for the given qualification in the table qual_process_step.
 * Post-condition: given process step for the given qualification is no longer stored in the table qual_process_step
 * any corresponding comment has been deleted from the table comment
 * Called by business layer database connection object
 *
 */
void removeQualProcess (int qualification_id // qualification ID

, int process_step_id // process step ID
, String username // user performing operation
)

32(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeQualMtrl stores the material code version for the given qualification in the table qual_material_code.
 * If the information is already stored, no action is taken.
 * Checks if qualification ID and material code ID and version are present in database and throws exceptions if not
 * Post-condition: given material code information has been stored in table qual_material_code,
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
void storeQualMtrl (int qualification_id // qualification ID

, int mtrl_code_id // material code ID
, int mtrl_code_version // material code version
, String comment // additional information
, String username // user performing operation
) throws QualNotFoundException, MtrlNotFoundException

Req. 2.28

/*
 * getQualMtrl returns a collection of material codes for the given qualification from the table qual_material_code.
 * Returns null if no entries are found.
 * Post-condition: collection of material codes and comments have been returned if found
 * Called by business layer database connection object
 *
 */
Collection getQualMtrl (int qualification_id) // qualification ID

33(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeQualMtrl removes the given material code version for the given qualification in the table qual_material_code.
 * Post-condition: given material code version for the given qualification is no longer stored in the table qual_material_code,
 * any corresponding comment has been deleted from the table comment
 * Called by business layer database connection object
 *
 */
void removeQualMtrl (int qualification_id // qualification ID

, int mtrl_code_id // process steo ID
, int mtrl_code_version // material code version
, String username // user performing operation
)

/*
 * storeQualEquip stores the given equipment version for the given qualification in the table qual_equipment.
 * If the information is already stored, no action is taken.
 * Checks if qualification ID and equipment ID are present in database and throws exceptions if not
 * Post-condition: given equipment information has been stored in table qual_equipment,
 * comment has been saved in table comment and linked
 * Called by business layer database connection object
 */
void storeQualEquip (int qualification_id // qualification ID

, int equipment_id // process step ID
, int equipment_version // equipment version
, String comment // additional information
, String username // user performing operation
) throws QualNotFoundException, EquipNotFoundException

Req. 2.28

34(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getQualEquip returns a collection of equipments for the given qualification from the table qual_equipment.
 * Returns null if no entries are found.
 *
 * Post-condition: collection of equipments and comments have been returned if found
 *
 * Called by business layer database connection object
 *
 */
Collection getQualEquip (int qualification_id) // qualification ID

/*
 * removeQualEquip removes the given equipment version for the given qualification in the table qual_equipment.
 *
 * Post-condition: given equipment for the given qualification is no longer stored in the table qual_equipment,
 * any corresponding comment has been deleted from the table comment
 *
 * Called by business layer database connection object
 *
 */
void removeQualEquip (int qualification_id // qualification ID

, int equipment_id // equipment ID
, int equipment_version // equipment version
, String username // user performing operation
)

35(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeQualMethod stores the method for the given qualification in the table qual_method.
 * If the information is already stored, no action is taken.
 * Checks if qualification ID and method ID are present in database and throws exceptions if not
 *
 * Post-condition: given method information has been stored in table qual_method,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 */
void storeQualProcess (int qualification_id // qualification ID

, int method _id // method ID
, String comment // additional information
, String username // user performing operation
) throws QualNotFoundException, MethodNotFoundException

Req. 2.28

/*
 * getQualMethod returns a collection of methods for the given qualification from the table qual_method.
 * Returns null if no entries are found.
 *
 * Post-condition: collection of methods and comments have been returned if found
 *
 * Called by business layer database connection object
 *
 */
Collection getQualMethod (int qualification_id) // qualification ID

36(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * removeQualMethod removes the given method for the given qualification in the table qual_method.
 * Post-condition: given method for the given qualification is no longer stored in the table qual_method,
 * any corresponding comment has been deleted from the table comment
 * Called by business layer database connection object
 *
 */
void removeQualMethod (int qualification_id // qualification ID

, int method _id // method ID
, String username // user performing operation
)

/*
 * storeDocType stores the given document type information in the table document_type. If document type ID is not null,
 * the corresponding document type is updated. Otherwise a new document type is saved.
 * Returns the document type ID.
 * Checks that document type is unique in database when saving new document type, otherwise throws error.
 * Post-condition: given document type has been stored or updated in table document_type,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 *
 */
int storeSubQualType (int doc_type_id // document type ID

, String document_type // document type
, String status // document type status (e.g. current)
, String comment // additional information
, String username // user performing operation
) throws NotUniqueException

37(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getDocType returns the information in a document type entry from the tables document_type and comment.
 * If the given document type name is null, records for all document types are returned.
 * Returns null if the given document type is not present.
 * Post-condition: document type information has been returned in a collection if data found
 * Called by business layer database connection object
 *
 */
Collection getDocType (String document_type) // document type

/*
 * removeDocType removes a given document type from the table document_type if the document type ID is not referenced by other tables.
 * Checks if the document type has links to other database tables, if so, does not remove the entry and throws an exception.
 * Post-condition: document type entry has been removed if not referenced by other database columns
 * Called by business layer database connection object
 *
 */
void removeQualType (int doc_type_id // document type ID

) throws ForeignReferencesException

Req. 2.18

38(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * storeDocument stores the given document information in the table document. If document ID is not null
 * the document information is updated. Returns the document ID.
 * Checks if the given qualification ID and document type ID exist in the database and throws exception if not.
 *
 * Post-condition: given document information has been stored in table document,
 * comment has been saved in table comment and linked
 *
 * Called by business layer database connection object
 */
int storeDocument (int document _id // document ID

, int document_version // document version
, String new_version // true if new version is to be created
, String doc_title // document title
, int qualification_id // qualification ID
, int doc_type_id // document type ID
, String author // document author
, Date approval_date // date of approval of document
, String archive_location // archive location
, String archive_id // archive ID
, String store_path // electronic storage path
, String status // document status
, String comment // additional information
, String username // user performing operation
) throws QualNotFound, DocTypeNotFound

Req. 2.11, 2.12, 2.13, 2.17, 2.19
 2.18 – absence of remove method

39(39)
Database Stored Procedures

Design Document appendix 1

2007-03-19, 09:27

/*
 * getDocument returns a collection of document information for the given document from the tables document and comment.
 * Returns null if no entries are found.
 * Post-condition: collection of document and comment information has been returned if found
 * Called by business layer database connection object
 *
 */
Collection getDocument (int document_id // document ID

, int document_version) // document version

/*
 * searchDocument returns a collection of documents for the given search parameters. Returns null if no entries are found.
 *
 * Post-condition: collection of documents has been returned if found
 *
 * Called by business layer database connection object
 *
 */
Collection searchDocument (String doc_type // document type

, String title // document title
, String author // document leader
, String archive_loc // archive location
, String status // document status
)

