

D.U.N.E.
Group 11
Klas Flodin
Kaj Sandberg

Anders Ljungqvist
Mikael Nilsson
Erik Nikkola

2

1. Preface

1.1. Expected readership of this document
This document is meant to be read by the stakeholders of this project,
where stakeholders are the project team members and any possible
investors.

1.2. Version history
2008-01-02 Version 1.0 The first version

2. Introduction

2.1. Target demographic
The gaming community is an aging one. According to Sveriges
branschförening för multimedia Dator- & TV-spel(MDTS) the average age is
about 29 years and rising. A lot of these players remember and still talk of
the old games that have made a big impact on their lives. This is evident in
the rising amount of remade games and forums about them. For example
the Retrogaming Roundtable forum has over a million posts and around
20000 users.

Dune 2 was one of the first modern Real Time Strategy (RTS) war games
when it came out in 1992 on the DOS platform. It was a huge success at
the time. However it featured only single player mode and the control
scheme only allowed the player to control one unit at a time.

We want to create a Dune 2 inspired game that features the more advanced
functions that has arisen in gaming technology since the original release of
the game, such as multiplayer gaming and control schemes. Our target
demographic is nostalgic players who have played Dune 2 and felt it wasn't
all it could have been. Today it would require an emulator such as DosBox
to play Dune 2, tools which functions aren’t always obvious to the average
user. We want to solve this by making a game that is compliant with
Windows XP and hope that these modernized components will make the
game a more pleasant experience. Of course we recognize that there might
be other possible users than our intended demographic but we will
intentionally target only the people who have experienced the original game
first hand.

2.2. The main uses of the system.
D.U.N.E is an attempt to create a game inspired by the old classic Real
Time Strategy game Dune 2 but with a touch of the more modern features
in the RTS genre. The project will try to keep the same simple graphical
concept but add another depth to the original game by adding features such
as more flexible tech tree, that is to say a tree with additional technologies
the players can research for additional advantages during the game, and a
limited possibility to create customized units1.

1 Customized units imply that the player has limited ability to affect the speed, weaponry and armor of these units during game play.

3

2.3. User scenario 1
Donny had run into his old buddy Malcolm which he hadn't met for several
years. They used to hang out back in the early nineties, a time when they
called themselves D.Burns and Mr.Madcow on carefully selected IRC-
channels. So now he invited Malcolm to a night of remembrance and
nostalgia. They started by opening a couple of beers and when they were
past the first moments of catching up they turned on two computers and to
play a multiplayer game.

They both agree that when they get joyful chills when they think of Dune 2
but they also agree that the magic is partly gone now that they are older.
But Donny kept smiling because he had some news for Malcolm. D.U.N.E -
the new Dune 2 inspired game that had been modified with more
functionality and a wider range of possibilities and with that extra spice it
made the magic better than ever.

They both start up the game on each computer, Donny hosts a network
game. He then chooses a map on which to play and then the speed of the
game. They are both a little rusty so he selects a slow game pace. Finally
he starts the game and the game goes into “wait for other players”-mode.
Malcolm then joins the multiplayer game.

They both begin by building the essential buildings that are needed to
produce units. Donny sends his units to patrol the perimeter of his base so
that he won’t be surprised by Malcolm’s attack. Malcolm concentrates on
building defensive buildings. Donny is so happy that he doesn’t realize the
amount of beer he drinks and after a while he really needs to go to the
bathroom. But the game cannot be paused while in multiplayer mode.
When he comes back Malcolm has produced an incredible amount of troops
and Donny’s demise is inevitable, Malcolm crushes his opponent in one swift
strike and wins the game. Mr.Madcow is back!

2.4. User scenario 2
Larry sits back down in front of his computer after a long lunch break. He
has a lot of work to do but he doesn't feel up to it at all really. He needs
something to get him back in good mood and it comes to him instantly. His
new favorite game, not the old game Dune 2 that he played fifteen years
ago or so, but a new refreshed clone.

One of the best things about it is that it is so easy to get up and running,
no need for DosBox or any other emulator, just start the game and play. He
starts up the game and it only takes a second even though his office
computer has been with him for quite a few years. He loads a game that he
had saved quickly earlier this morning when his boss had come running into
his office and instantly he is back in a world of his own, the world that
brought him back in time before life got too serious.

Resuming the game, he had forgot that he was in the middle of a battle and
it doesn't take many seconds before he dies so he reloads the saved game.
It might be called cheating, but what the heck. He realizes this time that he
can select multiple units by drawing a box around them and thereby more
quickly move his troops, this being a feature that Dune 2 never had.
Unfortunately he had not managed to collect enough resources this morning
to produce enough units to win. Both armies lose all units. But the battle
took place just outside Larry’s base and left a lot of dead unit debris. Larry

4

sends out one of his harvesters to recycle the debris and suddenly he has
enough resources to produce a vast army. After that he wins the battle in a
few strikes and he's jumping up and down and shouting in euphoria in his
office chair, when he remembers where he is and, now in a much better
mood, returns to this afternoons work.

2.5. The context/environment
In which context/environment is the system to be used?

This game can be used whenever the player has spare time and an
available computer. It can be played at home, at work as an after work
activity or on the bus if you have a laptop. However the game will require
some time and attention to play.

The game will be coded in Java and use the OpenGL graphics engine and
the OpenAL sound library, so both of these have to be installed in the
environment, however we plan to include these with the final game
package.

The game will run on Windows XP. It will require a graphics card with
support for OpenGL 2.0, a sound card, a CPU in excess of 600 MHz, a
minimum of 256MB of RAM and a network connection of at least 256 kb/s
for network access. Controls required will be keyboard and mouse. The
game supports only one player per computer.

We would like to expand the game so it will be playable on multiple
platforms such as Linux etc but such things will not be added in this
release.

5

2.6. The scope of the system.

2 The user can specify a custom folder from where the system will randomly play back any MP3, OGG or WAV
files.
3 MINA is a network framework developed and maintained by the Apache Software Foundation which extends
the built-in Java network capabilities.
4 OpenAL (Open Audio Library) is a free software cross platform audio API.
5 OpenGL (Open Graphics Library) is a standard specification for writing applications that produce 2D and 3D
computer graphics.
6 A special unit can be built that will gather resources from the wrecks of destroyed units and buildings.

Topic In Out

2D graphics X

3D graphics X

Artificial intelligence X

Cheat detection X

Cinematic movies X

Configurable keyboard X

Custom Soundtrack
Playback2

X

Customized units X

In-game help X

Keyboard input X

Keyboard shortcuts X

MINA3 X

Two button mouse X

Multiplayer X

Multiplayer chat X

OpenAL4 X

OpenGL5 X

Original Soundtrack X

Other input devices X

Pause multi player X

Pause single player X

Predefined maps X

Randomly generated X

Real time action X

Recycle dead units6 X

Save/Load X

6

2.7. Design factors
What are the main factors that need to be taken into account when
designing and building the system?

• The learning curve of the game. The game interface must be intuitive
and easy to use.

• The game must provide a continuing motivation to play.
• It must appear to be challenging but still winnable to the experienced

player as well as the beginner.
• The game needs to be balanced. Both in consideration to the enemy as

well as unit balance.
• The AI must be challenging but not too much so.
• Game pace. Players are smart but the computer is much faster at

performing simple tasks.
• Hardware performance must be considered. The game must run

smoothly on the system requirements stated in section 3.
• The markets needs and wants must be considered.
• If a player dies or disconnect in multiplayer and there are more than

one players left the game will continue.

Script based events X

Set game speed X

Space environment X

Story mode X

Technology tree X

Terrain elevation X

Unit experience X

Statistics after game X

7

2.8. Technologies and Risks
What technologies are to be used in the project and what are the risks of
using them?

• OpenGL
We will use OpenGL to present graphics.

Risk: OpenGL is a widely used and implemented specification and should
therefore present very little risk. Only one member in the project team has
extensive knowledge in OpenGL which might present a risk.

Solution: Since one of the project members is well versed in OpenGL he will
educate the other members where needed.

• OpenAL
OpenAL is a widely used and implemented specification maintained by
Creative

Risk: Because OpenAL is maintained by Creative there is very little risk of
any major bugs within the library. But since we have only little previous
experience with OpenAL there is a certain risk we might run into problems
during development.

Solution: We will appoint a project member to immediately read up on the
library and its use with Java, he will later educate the rest of the project
team as needed.

• Java
The main development language of the game. Most of the core functions will
be written in Java.

Risk: Java is a stable and mature language that is largely used and
supported by a large part of the computer developing community. All project
members are very experienced with Java which makes the risk to use Java
for development very small.

Solution: The risk is so small no special actions will be taken to minimize it.

• MINA
MINA is a network framework developed and maintained by the Apache
Software Foundation which extends the built-in Java network capabilities.

Risk: MINA is a part of the Apache Software Foundation supported
frameworks and is therefore relatively safe to use. The knowledge of and
experience with MINA in the project team is very limited.

Solution: Every group member is experienced in the Java network core that
MINA builds on and the Apache Software Foundation homepage has a great
deal of documentation and a number of tutorials to assist us.

8

• Eclipse
Eclipse is the main development CASE tool that we have chosen.

Risk: Eclipse is a very widely used CASE tool and all team members have a
large experience with it, therefore the risk is negligible.

Solution: None needed.

• Soundtrack
We plan to support the OGG, MP3 and WAV audio formats for soundtrack
playback.

Risk: The three listed formats are mature technologies and the playback of
such files is part of OpenAL and Java support libraries, the risk is therefore
negligible.

Solution: None needed.

9

3. Glossary

Attack, unit
A basic unit-to-unit interaction or unit-to-structure interaction. The attacking
unit will attempt to cause damage to, and eliminate, it's target.

Bandwidth
A measure of a network connection's information throughput. Measured in bit/s
or kbit/s.

Bit
The smallest information package in a computer.

Byte
A small collection of bits in sequence, generally the smallest usable information
structure of a computer program.

Cheat
An exploit of a weakness of the system to gain an advantage inside the game
that was not intentionally designed.

Client-server architecture
A networking architecture where one computer system acts as the manager or
referee of the game.

CPU
Abbreviation for Central processing unit. The core mathematical unit of the
computer.

Database
An information repository used to store and retrieve data to be used by the
game.

Disconnection
A user can get disconnected from a network. Disconnection from a network
means that communication over the network is no longer possible.

Environment lock-up
If the computer freezes and can no longer accept commands, it is said to be
locked up.

Execution
Generally, starting a process such as the game or an action in the game.

Flag (marker)
A variable attached to an object in the code to signify a state the object is in.

Harvest
Gather a resource inside the game.

10

Host system, multiplayer
The computer which acts as the host in a client-server architecture during a
multiplayer game.

I/O device
A physical device attached to the computer used by the computer to display
information or to give the computer commands. For example a keyboard,
mouse or monitor.

I/O stream
A way of the computer to receive or transmit information to i/o devices or from
files on the computer.

Indestructible, unit
An indestructible unit cannot be removed from the unit database through direct
actions of a player, normal units can by large not affect it. However, normal
units can often be affected by the indestructible unit.

Initiation of
The start of an action in the game

Input
Either: (a) information from an i/o device to the computer or (b) key
information used by one of the game's process'

Interface
The collective name for the menus, map displays, and other representations
that the user will see on his or her screen.

Java
A programming language.

Java Runtime Environment
See Java Virtual Machine

Java Virtual Machine (JVM)
A platform which enables Java programs to be executed similarly on all
computers that has a JVM installed.

kbit/s
Kilobit per second. A measure of amount of information transferred over time
through a network connection.

Map file
A file on the computer which describes a game environment.

MINA
A network framework

Multiplayer
A game mode where several players compete with or against each other in the
same game.

11

Neutral unit
A unit that is not controlled by one of the competing players in the game.

OpenAL
Abbreviation for Open Audio Library. An open source sound solution used for
handling 3-dimensional sound.

OpenGL
Abbreviation for Open Graphics Library. A solution for 2- and 3-dimensional
graphics.

OS
Abbreviation for Operating System. The base program of a computer, eg.
Microsoft Windows XP

Packet
A package of bytes used in network communication to better ensure and control
that no information is lost during transfer.

Packet loss
A concept of where a packet is lost or altered in transfer over the network.

Player
Ambiguous: a competitor for victory inside the game. Generally: a human user
of the game.

Quit game
The action of terminating the game to operating system or terminating a game
session to the game's main menu.

RAM
Abbreviation for Random Access Memory. A work memory used by the
computer to store temporary data.

Research pool
The collection of research a player has done during a game session.

RTS
Abbreviation for Real Time Strategy. A game with strategic elements that does
not pause waiting for actions during normal game play.

Save game
The concept of saving a game session to later return to the same game session
regardless of whether the computer has been intermittently turned off.

Session, game
A unique game. Similar to how chess pieces are reset to their starting positions
between sessions, different computer game sessions are reset to their starting
values.

12

Singleplayer
A game type where the user competes against players not controlled by other
users.

Specification, unit
The specification of a unit determines how it performs in its interactions in the
game world.

Structure, game
A game structure is a representation of a unmovable object in the game world.

Synchronization
To ensure that the system during a multiplayer game is represented equally
with all participants.

System, ambiguous
The operating system.

System, game
A general reference to the game.

System state
A general reference to the data the game system currently uses.

TCP/IP
Transmission Control Protocol and Internet Protocol. One of the most broadly
used all-purpose protocols for networking over the internet.

Team, multiplayer
A group of players competing for mutual victory during a multiplayer game.

Technology, game
A concept of technology in the game with no physical game world
representation, functions like a key to unlock abilities or new units, structure or
technologies in the game.

Unit, game
A game world representation of a mobile entity used to interact with the game
world.

Unit ID
A concept for keeping track of individual units by the game system.

Variable
An information representation that is changeable by nature.

Weapon, unit
The concept of a unit's offensive capability in interaction with other units.

13

4. User requirements definition

4.1. Functional requirements

4.1.1. Game session Control

4.1.1.1. Starting a new game
The user shall be able to start a new game by either running a pre
made map or by using a built in function for creating a randomly
generated unique map.

Rationale: To increase game longevity, a random map generator
should be supplied so the user does not get bored of the game.

4.1.1.2. Resuming an old game
The user shall be able to resume a previous unfinished game if
this game state has been saved.

Rationale: Some maps or battles could take a long time to finish
so a load function to resume an old game shall be supplied

4.1.1.3. Saving a game
The user shall be able to save.

Rationale: Some maps or battles could take a long time to finish
so a function to save the game state shall be supplied

4.1.1.4. Pausing a game
The user shall be able to freeze the current game state.

Rationale: For whatever reason the user might feel the need to
leave the game. Therefore the user shall be able to freeze the
game

4.1.2. Production
The user shall be able to construct units, buildings and initiate
research.
In order for a user to improve in strength regarding army and base the
user is able to build new buildings and produce new units, predefined
and custom ones, as well as initiate research to gain new technology
for use in production.

Rationale: This is part in the strategy in the RTS (real time strategy)
genre, for any user to be able to build up his strength in units, buildings
and research. This is to aid in the goal of winning the game.

14

4.1.3. Economy
The system shall have one form of resource which is continuously
required to produce more units, buildings and commit research.
The resource shall be called credits. The amount of the resource
available to the user will vary depending on the user’s actions, this
includes using certain units and buildings to get increase his resource
amount.

Rationale: By forcing the user to amass a resource for any form of
progress we can control the pace of the game play by adjusting the
speed of the replenishing of the resource. The decision to keep it at
only one resource was for simplicity and to keep it in spirit with the
original game.

4.1.4. Improvements
Any user shall be able to research improved technology for his units
and buildings. To be able to improve units and buildings over time the
user can research new technology at the cost of in-game resources.

Rationale: To make the game more challenging this adds to difficulty
instead of having everything available from the beginning.

4.1.5. Factions
The system shall offer the user a selection of different unique factions.
The factions are different approaches to the game, each offering unique
traits and special units.

Rationale: This is a very common concept amongst all forms of similar
games. By creating different factions which encourage different styles
of play the game gets a further level of variety ensuring that the user
will not get bored and continue to use the system.

4.1.6. Unit Design
The user shall be able to modify certain base units to create custom
units.
Selected ground and air based vehicles are able to be modified by the
user, this allows for further enhancing their uses and strengths. The
customization can only be done through combining certain predefined
unit parts.

Rationale: By adding customized units to the game some more depth
can be achieved. This makes the user to adapt each starting faction's
play style more to his liking and will make his experience with the
system better. However, we limit it to certain types and a module
based system as to not make it too complex to scare the user away.

15

4.1.7. Unit/building handling
The system shall allow the user to correctly control all units and
buildings by using only a mouse and keyboard.
The mouse shall have two buttons at least. All forms of unit interaction
by the user will be handled like this.

Rationale: The most common way to control any similar game is by
using the mouse to select units and keyboard shortcuts to assist in the
various tasks. This is a very flexible way for the user to work his units
and ensures that the user does not feel strained trying to use the
system.

4.1.8. Combat
The system shall handle real time combat. (as opposite of turn based
combat with the opponent) and provide a computer controlled
opponent for single player games. To make the game playable in single
player mode there shall be an AI controlling the user’s opponent.
During multiplayer, to get a more real feeling to the combat it shall be
in real time that is not dependent on who made the last move.

Rationale: This is to make the game more interesting by today’s
standard and it makes strategic thinking and planning more important.

4.1.9. Network
The system shall provide multiplayer option for the users to be able to
play against each other over the network. One user shall be able to act
as a host and let other users connect. Once all users are connected
they shall be able to start a game.

Rationale: Multiplayer option is a requirement due to a design choise.
We focus on this because it helps increase the user base and helps
increase the longevity of the game.

4.1.10. Configuration
The system shall provide an interface for configuring the players
system.
The user shall be able to change the settings in game without having to
configure the game externally by editing a configuration file.

Rationale: Only allowing the user to select specific options helps
prevent errors that may have been caused by the user by the user
choosing using settings that aren't compatible.

4.1.11. Ending game
Any user participating in a game shall be able to quit the game at any
time and the system shall end the game when one or more users are
victorious. When the game ends, regardless if a user quit on his own
behalf or if someone won or lost the game, user will be returned to first
input screen.

Rationale: The end game function is needed so that the game can be
restarted, reconfigure or exited at any time.

16

4.2. Non­functional requirements

Product requirements

4.2.1. Performance requirements ­ Minimum Specification
The system shall deliver required or above performance only on a
specified level of minimum hardware and software. System
performance will not be guaranteed on hardware and/or software not
meeting this requirement.

Rationale: As it is impossible to deliver the same performance on all
type of computers a minimum level of performance has to be specified
on a minimum level of hardware and software requirements that have
been set by the developer. If the environment the system is to run in is
below this level the system performance might be affected.

4.2.2. Space requirements ­ Required available memory
The system shall require a specified amount of available permanent
memory for installation and temporary memory for execution. The
system shall not install or execute if less than required memory is
available.

Rationale: Since the system will contain a large amount of graphical
elements and system files it will need to install on the user's
environment and a certain amount of hard disk drive space needs to be
available for such an installation to be possible. Furthermore, during
execution some of these files will be loaded into the temporary memory
for use by the system and a certain amount of RAM memory thus needs
to be available.

4.2.3. Efficiency requirements ­ Time constraints
The system shall take no longer than a specified amount of time to
perform the initialization, save, load, random map generation and
pause functions. The time is measured from the moment the user
interacts to start the function until the next user interaction is available.

Rationale: If the user has to wait a longer time for any major system
function the user will lose patient and consider the system inefficient.
This might limit further uses of the system by the user which is not
desirable, therefore acceptable limits for the most important functions
have been set.

17

4.2.4. Reliability requirements ­ Mean time between critical failures
The system shall at most have one critical failure per 20 executions.
When such a failure occurs the game will have no saved information of
its current game except for any previous saves the user has done. The
system must have at least have the minimum required amount of
available memory or this requirement might not be upheld.

Rationale: If the game continuously crashes the user would see it as
unreliable and not worth wasting the user's time on. However, aiming
for a bug free game that never crashes is very unrealistic, so a limit of
20 launches between each failure is seen as acceptable.

4.2.5. Learnability requirements ­ Time to learn to play
The system shall be quick to learn for a player that has played other
games in the same genre. Games in the same genre are generally
called real-time strategy (RTS) games and largely share the same
concept. They usually consist of battles between opposing forces
occurring in real time where the users control their own units via
mouse and keyboard. Some famous games in this genre are Command
& Conquer, Red Alert and Warcraft – furthermore Dune 2 is often seen
as the original definer of the genre. Learning the game is seen as being
able to play it will enough that the user can win a game.

Rationale: A user that previously has played any RTS game should find
the game play similar enough that he within a few hours can learn all of
the features of the system, and therefore win a game.

4.2.6. Usability requirements ­ Limit of required interactions
Every command and action in the game shall be designed so they can
be performed with a few interactions by the user. An interaction is
defined as a mouse button click or a keyboard key press by the user.

Rationale: If the user had to use a longer sequence of interactions to
perform an action the user might soon get annoyed or strained.
However, if too few interactions are needed the game will become too
simple and the user will not see it as challenging enough to play again.
To ensure that the game is kept easy to use yet challenging to play the
goal is to set a reasonable amount of interactions per user action.

4.2.7. Scalability requirements – Multiplayer
The system multiplayer function shall be scalable enough to allow
several players without requiring a fully dedicated system to controlling
the game.

Rationale: A common concept in the genre is to not have a central
server arrange the multiplayer games, instead one of the users act as
host and the other users connect to the host user over the network.
This solution to multiplayer games is not as scalable but much cheaper
as there is no costs for a dedicated server to always be on.

18

Organizational requirements

4.2.8. Implementation requirements ­ Development language
The system shall only be developed in one development language.

Rationale: To make development easier all of the system will be
developed in the same language. This not only ensures that it’s an
easier development process, it also removes the problem of
interoperability between languages.

External requirements

4.2.9. Safety Requirements – Multiplayer security
The system shall ensure that no harmful data can affect the user's
environment through the game during a multiplayer session. The
system will use a network for communicating with other users during
multiplayer sessions.

Rationale: Security is always an issue when a network is involved as
this leaves the user's environment open for foreign attacks of various
kinds. All that the system can do is try to limit malicious intents by
ensuring all data it reads over the network is valid.

4.3. Use cases
For use cases see section 8 - appendices

5. Sys

Gam
All d
othe

Disp
Ren

Inte
Han

Net
Han

Gam
Han

stem ar

me data
data and in
er parts of

play
ders all dat

erface
ndles all inp

twork
ndles all net

me Logic
ndles all log

chitectu

nformation
the system

ta it receive

put from the

twork comm

gic for the g

ure

is loaded a
m without ha

es.

e user and

munication

game.

and stored
aving to du

 sends out

 to other cl

in a databa
uplicate dat

events to t

ients.

ase so that
ta.

the game lo

t it can be

ogic.

19

used by

20

6. System requirements specification

6.1. Functional System requirements

6.1.1. Game session control

6.1.1.1. Starting a pre­made map
Function Starting a pre-made map

Description Starts a game session using predefined defaults from a file.

Inputs Map file

Source Game system menu

Outputs Map Geometry - the terrain details of the map
Starting Position - each player's starting position
Neutral Units - position of each neutral unit on the map
Resource Fill - the location, spread, and quantity of the map's
resources.

Action Load map geometry from the file. Loads starting position values,
neutral units and resource values.

Requires User sequence initiation. Existing valid map file.

Pre-condition The game is currently in the game system state.

Post-condition The game state is changed to a game session.

Side effects Any changes that have not been saved in the game system menu
are discarded.

6.1.1.2. Starting a randomly generated map
Function Starting a randomly generated map

Description Starts a game session with randomly generated map values.

Inputs Values for: impassable terrain, clear terrain, and resource
density

Source Game system menu

Outputs Map Geometry - the terrain details of the map
Starting Position - each player's starting position, on a clear
terrain tile
Neutral Units - position of neutral units on the map
Resource Fill - the location, spread and quantity of each of the
map's resources

Action Takes the inputs from each of the three variable values and
computes a random map with these as seeds.

Requires User initiation

Pre-condition The game is currently in the game system state.

Post-condition The game state is changed to a game session

Side effects Any changes that have not been saved in the game system
menu are discarded.

21

6.1.1.3. Load
Function Load.

Description Load a previously saved game state from the hard drive

Inputs A saved game file \saves* on the hard drive where * is a
user specified file

Source Game system menu

Outputs Map Geometry - the map terrain
Unit Position - each player's unit and structure position
Neutral Units - each neutral unit's position
Resource Fill - the position of resources on the map

Action Loads the file's geometry and units into the main game
control.

Requires The specified saved game file exist and is of valid format

Pre-condition The game is not in a multiplayer state.

Post-condition The main game control state is returned under the control
of the user

Side effects Changes in the current game state or game system menu
are all discarded.

6.1.1.4. Save game state
Function Save game state

Description Saves the current game state to a file on the hard disk.

Inputs An on-going game session. Current map geometry, resource
spread, position and type of each player's units and
structures.

Source Game system menu

Outputs A file on the hard disk in the \saves\ directory

Action Writes the game geometry to the file i/o-stream, then the
unit identity, ownership, and position.

Requires A running game session.

Pre-
condition

The hard disk is accessible

Post-
condition

None.

Side effects The different unit's current orders are not saved.

6.1.1.5. Pause
Function Pause

Description Holds the current game session in a frozen mode where no
orders can be given to units or structures, and no units
may take any stored action.

Inputs None.

Source Main game session

Outputs None.

Action Holds any and all orders given to the units and structures.
The game state is, effectively, temporarily saved.

22

Requires An on-going main game session.

Pre-condition The current game session is no in a multiplayer state.

Post-condition The game session is not paused.

Side effects The game menus and map views are not touched and may
be freely navigated.

6.1.2. Production

6.1.2.1. Building construction
Function Building construction

Description Constructing a building

Inputs A building construction site is placed on the map by the a
user

Source Game session UI.

Outputs A construction site representation for the building type until
the construction is completed when it shall be replaced with
a representation of the finished structure.

Action When a construction site is placed on a specified clear
terrain area, start a timer on the construction site that
depends on the number of construction structures and
construction sites currently active. This timer shall be
updated if the conditions change.

Requires The, for the building type being constructed, appropriate
construction building, available technologies, sufficient
resources to pay for the construction, and sufficient clear
terrain to for the site to be placed on.

Pre-condition A running game session

Post-condition The game session's unit list is updated with the structure.

Side effects The terrain the structure is placed on is made impassable.

6.1.2.2. Unit construction
Function Unit construction.

Description Creates a unit at the main production facility.

Inputs The unit production queue.

Source Game session UI.

Outputs The session's unit list

Action When a unit construction is engaged, add this unit to the
unit construction queue for the unit's type. Once the timer
on the unit is finished, place a new unit of that type and
configuration near the building specified by the Primary
production facilities requirement.

Requires The, for the unit specified, appropriate construction
building, available technologies, and sufficient resources to
pay for the unit.

Pre-condition A running game session.

Post-condition The game's unit list is updated with the unit.

Side effects The unit may be unable to place on the map when it is

23

ready, the unit will wait to be placed until such a time as
there is place for it.

6.1.2.3. Primary production facilities
Function Primary production facilities.

Description Primary production facilities specify the preferred exit point
for newly constructed units.

Inputs None.

Source Game session UI.

Outputs XxxPrefFacility variable where Xxx is the unit type.

Action None.

Requires An available production facility for the unit type.

Pre-condition None.

Post-condition None.

Side effects If the production facility is destroyed, units will be placed
near an unspecified production structure for that type that
the user controls. If the specified preferred facility is
blocked, units will be placed near an unspecified production
structure that the user controls.

6.1.2.4. Unit types
Function Unit types.

Description Unit types specify basic behavior and production facility for
a specific unit.

Inputs None.

Source Unit database.

Outputs None.

Action None.

Requires Each unit is associated with a unit type. The unit type in
turn is associated with a production facility and a certain
production queue.

Pre-condition The structure type exists.

Post-condition None.

Side effects None.

6.1.2.5. Production shortcuts
Function Production shortcuts.

Description Shortcuts from the i/o devices to make production
selection go faster.

Inputs Key press from a i/o device

Source Keybindings.ini a file which i/o input is bound to what
action.

Outputs None.

Action Adds a unit to the construction queue or activates a
building's construction sequence as defined by the
keybindings.ini

24

Requires i/o device

Pre-condition The production facility for the shortcut is available to the
user.

Post-condition None.

Side effects Some keys may be bound to multiple actions, priority shall
be given to the selected unit or building.

6.1.3. Economy

6.1.3.1. Currency
Function Currency

Description The game uses one currency which is used as universal
payment for buildings, units and research.

Inputs None.

Source Player Balance variable.

Outputs Display the current currency balance in the UI.

Action Whenever a resource is gathered the currency balance is
increased. Whenever a production is initiated, the balance
is reduced by the amount required for the production.

Requires The balance is always either 0 or positive

Pre-condition None.

Post-condition None.

Side effects A production project may require more currency than
the user currently has, this project will then not be initiated
for the user and no currency will be deducted.

6.1.3.2. Harvestable resources
Function Harvestable resources

Description Harvestable resources may be found across the map. Users
will be able to gather these and convert into currency.

Inputs Resource worth.

Source The game map information.

Outputs Game map information.

Action When a unit gathers the resources, the map shall be
updated and remove the representation of the resource.
The resource amount harvested is added to the user’s
economical balance variable.

Requires A unit type that can gather the resources.

Pre-condition None.

Post-condition None.

Side effects None.

25

6.1.3.3. Other resources
Function Other resources.

Description The game provides other means of gaining resources than
harvesting them from the map's resources.

Inputs Resource worth.

Source None.

Outputs None.

Action These resources are added to the user's economical
balance variable.

Requires Access to the resource which depend on the resource in
question.

Pre-condition None.

Post-condition None.

Side effects Access to this resource may be lost, or it may be temporary
in nature.

6.1.3.4. Salvaging resources
Function Salvaging resources

Description The process of salvaging can be done on wrecks and ruins on
the map by any user who fulfill the game criteria for this.

Inputs The salvaged target's worth.

Source Unit and structure database

Outputs Currency gained from the salvage procedure.

Action The output value depends on the salvaged target's worth
linearly, the resulting worth is added to the user's economical
balance variable.

Requires A unit with the ability to salvage near a wreck or ruin.

Pre-condition None.

Post-condition The targeted wreck or ruin is removed from the map.

Side effects None.

Dependencies Unit destruction; Building destruction.

6.1.3.5. Salvaging own units and structures
Function Salvaging own units and structures.

Description Salvaging is possible to discard unwanted units or
structures without having to wait for someone to destroy
them first.

Inputs The unit or structure's worth

Source Unit and structure database

Outputs Currency gained from the procedure

Action When a unit is salvaged, a great portion of its initial worth
is added to the user's economical balance variable and the
unit is removed from the table.

Requires A unit capable of salvaging near the building or unit about

26

to be salvaged.

Pre-condition None.

Post-condition The targeted unit or building is removed from the map.

Side effects Removing some buildings has impact on research or
production.

Dependencies Salvaging resources

6.1.4. Research

6.1.4.1. Research
Function Research

Description The user shall be able to research improved technology for
units and buildings. By researching, the user may
also unlock previously unavailable structures, units, and
upgrade options.

Inputs Non researched technology

Source Research pool

Outputs Researched technology

Action When activated, the technology is put into a research
queue. A timer starts on the research menu indicating how
far the research has proceeded. Speed of research
depends on number of research buildings the player has.
The timer shall be updated if the conditions change.

Requires Research capable building and correct amount of resources

Pre-condition There is unresearched technology available

Post-condition Researched technology is made available for
construction

Side effects None

27

6.1.4.2. Unlocking research
Function Unlocking research

Description There are two different kinds of research, unlocking and
upgrading. Unlocking research provides new units or new
buildings.

Inputs Non researched technology

Source Research pool

Outputs Researched technology

Action When activated, the technology is put into a research queue. A
timer starts on the research menu indicating how far the
research has proceeded. Speed of research depends on number
of research buildings the player has. The timer shall be updated
if the conditions change.

Requires Research capable building and correct amount of resources

Pre-condition There is unresearched technology available

Post-condition Researched technology is made available for construction

Side effects None

6.1.4.3. Upgrading research
Function Upgrading research
Description There are two different kinds of research, unlocking and

upgrading. Unlike unlocking research, upgrading research
doesn’t provide new units or buildings but improves upon
already existing technology.

Inputs Non researched technology
Source Research pool
Outputs Upgraded technology
Action When activated, the technology is put into a research queue. A

timer starts on the research menu indicating how far the
research has proceeded. Speed of research depends on number
of research buildings the player has. The timer shall be updated
if the conditions change.

Requires A previously researched upgradable technology and special
buildings associated with the particular research

Pre-condition The technology in question is upgradable and not at its
maximum level.

Post-condition All units or buildings using the technology question are
automatically and immediately upgraded to conform to the new
specifications the upgraded technology brings.

Side effects None

28

6.1.5. Factions

6.1.5.1. Faction selection
Function Faction selection

Description At the start of each game, the user shall be given the choice which
faction the user will play as.

Inputs The user selects faction when starting a new game on a pre-made
or randomly seeded map.

Source The user interface.

Outputs The faction number

Action The selected player faction is added as a variable for the user.

Requires The initiation of a new game.

Pre-condition None.

Post-condition None.

Side effects None.

Dependencies Starting a pre-made map; Starting a randomly generated map

6.1.5.2. Faction differences
Function Faction differences

Description Each faction gives the user certain advantages that the other
factions do not have access to.

Inputs Player Faction variable.

Source Research database.

Outputs Research pool.

Action At game start, add the faction's basic technologies to the
research pool.

Requires None.

Pre-condition None.

Post-condition None.

Side effects None.

Dependencies Starting a pre-made map; Starting a randomly generated map;
Load; Research; Unlocking research.

6.1.6. Customization

6.1.6.1. Design dialogue access
Function Design dialogue access.

Description The design dialogue will allow a user to customize his own unit to
maximize the user’s strategy effectiveness.

Inputs UI interaction.

Source Game system menu.

Outputs Unit database.

Action The unit shall be saved to the database with a flag notifying the
system that the unit is a custom unit and a list of research
dependencies.

29

Requires None.

Pre-condition None.

Post-
condition

None.

Side effects The unit database might become large and heavy with too many
custom design units.

6.1.6.2. Designing units
Function Designing units

Description Parameters for vehicle design.

Inputs Engine, weapon, armor, and special item.

Source Design dialogue.

Outputs Unit database object.

Action Store the unit into the unit database with the design marker flag.

Requires None.

Pre-condition None.

Post-condition The unit is available for use as soon as the user fulfills the research
dependencies for the unit.

Side effects The unit cost and dependencies are calculated when the database
load the unit.

6.1.6.3. Design budget
Function Design budget.

Description The limitation of what may be put on a unit.

Inputs Unit parts and foundation.

Source Research database.

Outputs Budget cost of the unit.

Action Compute the current cost of the unit and compare it to the unit's
foundation (or chassis) to see if it is legal.

Requires None.

Pre-condition None.

Post-condition The total budget may not be transcended.

Side effects None.

6.1.6.4. Multiplayer designs
Function Multiplayer designs.

Description How to handle custom designs in multiplayer.

Inputs Customized units from the unit database.

Source Each client's unit database.

Outputs An updated temporary database for each participating player.

Action None.

Requires A multiplayer game session.

Pre-condition None.

Post-condition None.

Side effects None.

30

6.1.7. Unit handling

6.1.7.1. Selecting a single unit or building
Function Selecting a single unit or building

Description The game shall let the user select a single unit to control its
behavior

Inputs Unit ID.

Source I/O device

Outputs Unit ID.

Action When a unit or building is selected the object shall be flagged and a
visual confirmation shall be presented to the user.

Requires Mouse click

Pre-condition There must be a unit or building under the cursor

Post-condition The system shall provide the user with visual feedback of the
selected unit.

Side effects Control of previously selected units is relinquished.

6.1.7.2. Selecting a group of units
Function Selecting a group of units

Description The game shall provide a selection system that lets the user
multiple units or a single building. Multiple units shall be selected
with a selection box while buildings can only be selected by
specifically selecting it.

Inputs Unit ID.

Source I/O device

Outputs List of unit IDs

Action By using the selection box to envelop the desired units the player
selects multiple units. The units are flagged and a visual
confirmation is presented to the user.

Requires Mouse

Pre-condition Player owned units must exist within the boundaries of the
selection box

Post-condition The system will provide the user with a visual feedback of the
selection area

Side effects Control of previously selected units is relinquished.

31

6.1.7.3. Controlling units with mouse
Function Controlling units with mouse

Description The game shall provide a system that let the user control the
behavior of a single or multiple units.

Inputs Hardware command action and target area information

Source Mouse

Outputs Unit command

Action The system shall determine the most appropriate command based
on whether the selected destination contains an enemy, friend, or
empty terrain and carry it out. The system shall also provide the
user with visual and audio confirmation of the action taken.

Requires Mouse

Pre-condition One or more units are selected

Post-condition The unit has its command list updated with the command
information.

Side effects Previous commands are all over-written.

6.1.7.4. Controlling units with keyboard
Function Controlling units by keyboard

Description The system shall provide shortcuts to let the user access certain
functions directly via predefined keyboard commands. Keyboard
shortcuts are meant to increase command efficiency for
experienced players by allowing them to control the behavior of
the selected units with multiple input units.

Inputs Keyboard device feed and unit ID.

Source Keybindings.ini a file which i/o input is bound to what action.

Outputs Unit command.

Action When one or more units are selected the player shall be able to
use the keyboard to temporarily change the behavior of the
mouse clicks or active certain unit specific abilities.

Requires Keyboard

Pre-condition One or more units selected

Post-condition Unit carries out command.

Side effects Previous commands are all over-written.

32

6.1.8. Combat

6.1.8.1. Controlling units in combat
Function Controlling units in combat

Description The total unit count can easily overcome what is manageable for
the player. Controlling each unit individually will easily become an
impossible task. Therefore the system shall be able to manage
combat. Still, the player shall be able to alter the behavior of a unit
or withdraw the unit from combat if necessary.

Inputs Unit ID and target unit ID.

Source The game's main system

Outputs Unit ID, target unit ID, and attack action.

Action If an enemy unit is within range of a player controlled unit, the
player controlled unit shall attack the enemy without the players
express command. The player shall be able to counteract his unit’s
behavior via keyboard or mouse.

Requires The attacking unit has a weapon to attack with.

Pre-
condition

Enemy unit in range of player controlled unit

Post-
condition

No current unit commands must be altered.

Side effects None.

6.1.8.2. Defensive buildings entering combat
Function Defensive buildings entering combat

Description The game shall provide a combat system for defensive buildings.
Defensive buildings should automatically attack enemy units of
their intended type. The behavior can be altered by the user by
selecting the building and modifying it.

Inputs Structure ID and target unit ID.

Source The game's main system.

Outputs Structure ID, target unit ID, and attack action

Action The defensive building shall automatically attack any enemy units
that enter its range.

Requires The building is capable of attacking the unit entering its range. Unit
is not on player’s team.

Pre-
condition

Enemy unit is in range.

Post-
condition

None.

Side effects The buildings behavior can be changed by the player.
The building is not be able to attack the unit type in question and
therefore ignores the unit.

33

6.1.8.3. Computer controlled opponent
Function Computer controlled opponent

Description If no other human players are available or no network connection
is available the player may engage in a single player game. A
single player game is a mode where there is one human player and
his opponent is controlled by the computer.

Inputs Computer generated unit and building commands.

Source Game's main system

Outputs Command lists and queues for entities controlled by the computer
player.

Action The computer handles all actions of the opposing player. The
computers behavior changes during the game based on the
opponent’s action and the environment. The changes are based on
the preselected difficulty level

Requires None.

Pre-
condition

Only one human player is running the game

Post-
condition

None.

Side effects None.

6.1.8.4. Indestructible computer controlled neutral units
Function Indestructible computer controlled neutral units

Description Indestructible units are objects that do not belong to a faction.
These are added to reflect that it’s not always possible to solve
every hazard with violence. Storms or tornados for instance are not
possible to shoot down and should therefore be indestructible.

Inputs Unit ID and behavior list.

Source The game's main system.

Outputs Unit ID and action for that unit.

Action The indestructible units shall have a predefined list of behavior that
is randomly selected and may be altered during the course of the
game.

Requires None.

Pre-
condition

None.

Post-
condition

None.

Side effects The players cannot influence the indestructible units but the
indestructible units can affect the players units or buildings

34

6.1.9. Network

6.1.9.1. Starting a Multiplayer game
Function Starting a Multiplayer game

Description The system shall provide means of hosting a multiplayer game and
let other users connect over the internet or Local Area Network.

Inputs Connection requests.

Source Network.

Outputs Game information

Action Host accepts connections until such time that player decide to start
game. When game commences no more connections are accepted

Requires Network/internet connection

Pre-
condition

Player starts hosting a game, i.e. accepting connections

Post-
condition

Multiplayer game initiates.

Side effects Certain parts of the game are modified versus the single-player
version.

6.1.9.2. Request Multiplayer team
Function Request Multiplayer team

Description The system shall provide means of letting the users select teams in
multiplayer mode prior to multiplayer game initialization.

Inputs Team number

Source Client

Outputs Team number

Action Client enters a request for a certain team number to the host. Host
replies acceptance or non acceptance.

Requires More than two players

Pre-
condition

Team is empty

Post-
condition

Client is awarded team number.

Side effects Team is full. Client is not awarded a team number.

6.1.9.3. Multiplayer chat
Function Multiplayer chat

Description The game shall provide means of communication in the form of an
instant message chat during multiplayer game.

Inputs Text message.
Variable to track whether message is public or intended for team
members eyes only.

Source Keyboard

Outputs Text message.
Variable to track whether message is public or intended for team
members eyes only.

Action Player enters text, chooses destination and sends message.

35

Message is received by affected clients and displayed.

Requires Keyboard, initiated multiplayer game.

Pre-
condition

Multiplayer game is started

Post-
condition

Message is displayed to the correct clients

Side effects Message is sent to the wrong clients. Strategy revealed. Game
over man.

6.1.9.4. Multiplayer cheat control
Function Multiplayer cheat control

Description The system shall only let the users create valid units in a
multiplayer game.

Inputs Custom unit list.

Source Client

Outputs Validation variable for the unit configuration.

Action Client sends unit specifications to host for validation. Host validates
specification.

Requires Initiated multiplayer game. A unit that conforms to standards set
in terms of what kind of technology this unit can wear/use.

Pre-condition Player creates unit

Post-
condition

Player is allowed to remain in game.

Side effects Player has created an invalid unit. Host disconnects player.

6.1.10. Configuration

6.1.10.1. Setting video options
Function Setting video options

Description The user shall be able to set video options in order to match users
display capabilities.
Modern monitors support a number of different resolutions, but most
of them have an optimal resolution where the monitor performs the
best.

Inputs Video settings

Source Configuration file

Outputs Configuration file

Action Player enters desired video setting.

Requires Monitor compatible with desired video settings. Settings are tested.
Settings are saved.

Pre-condition User enters video settings

Post-condition Video settings are saved and implemented.

Side effects If no resolution has been set a default resolution shall be used

36

6.1.10.2. Setting audio volume
Function Setting audio volume

Description The user shall be able to set audio volume.
As most computers have different models of speakers/headphones
their base volume will vary. This as well as the fact that the user
will want to vary the game volume depending on his current desires
means the in game audio effects and the music soundtrack volume
should be able to be set after the users wishes.

Inputs Desired music volume
Desired audio effect volume

Source I/O device

Outputs Confirmation message and modification to the configuration file.

Action Player enters desired audio settings. Settings are tested. Settings
are saved.

Requires Soundcard

Pre-
condition

User enters audio settings

Post-
condition

Audio settings are saved and implemented.

Side
effects

If no volume settings are defined a default value shall be used.

6.1.10.3. Custom soundtrack folder
Function Custom soundtrack folder

Description The user shall be able to specify a folder on his computer that
has custom audio files in it, these shall be played in random
order by the system as the in-game soundtrack.

Inputs Folder address

Source I/O device

Outputs Configuration file

Action Player enters folder address containing custom audio files.
Game selects random file and plays it.

Requires Music files are in correct format

Pre-
condition

A correct folder address has been entered.

Post-
condition

Game plays random music file from folder

Side
effects

If no directory has been picked the default original soundtrack
shall be played in game.

6.1.10.4. In­game name
Function In-game name

Description The user shall be able to choose an in-game name that shall be
displayed on every players screen to represent him in chat and
other relevant situations.

Inputs Name string

Source I/O device

Outputs Character string variable to the host.

37

Action Player enters desired name. Name is checked with server.

Requires None.

Pre-
condition

A unique name is selected

Post-
condition

Name is associated with client

Side
effects

Another client already has said name associated. The system
adds a numeric identifier to the end of the name to make it
unique.

6.1.11. Ending game

6.1.11.1. Quit the game
Function Quit the game

Description The user shall be able to at any given time choose to quit the
current game in progress and end the system.

Inputs Quit request

Source I/O device

Outputs Connection reset command
Game quit command
Visual confirmation

Action User is immediately disconnected from any games in progress
and the full system shall quit to the original state of the
computer as it was before the game started.

Pre-
condition

Game is running

Post-
condition

Game is not running

Side
effects

None

6.1.11.2. Victorious game by disconnection
Function Victorious game by disconnection.

Description If all clients are disconnected from the host the system
ends the game and declares the host victorious.

Inputs List of client connection status.

Source The game's main system.

Outputs Victory message

Action System displays victory message and ends current game

Requires None.

Pre-condition No multiplayer connections exist

Post-condition Game ends

Side effects None.

6.1.11.3. Victorious game by mass conquer

38

Function Victorious game by mass conquer

Description If only one user team has any buildings or units alive
said team has won the game.

Inputs List of victory variables.

Source The game's main system.

Outputs Victory message

Action If the client determines that the list of variables is
complete enough for a victory, display the victory
message and end the game for the player. Broadcast
to host.

Requires None.

Pre-condition Only one teams units and buildings remain

Post-condition Victory is awarded to the only remaining player team.

Side effects The players are returned to the main menu.

6.1.11.4. Lost game by disconnection
Function Lost game by disconnection

Description If a user is disconnected from the game host in a network
multiplayer game due to network failure he loses.

Inputs Connection status to host.

Source The game's main system.

Outputs Error message

Action Client loses connection to Host.

Requires None.

Pre-condition Player is disconnected for whatever reason

Post-condition Any remaining units of the player shall be removed from the
game.
Any remaining participants in the game shall be presented with
a status message showing the disconnection of the user.
Player shall be returned to the main menu.

Side effects None.

39

6.1.11.5. Lost game by annihilation
Function Lost game by annihilation

Description If all of a users buildings are destroyed he loses the
game.

Inputs Structure list.

Source Structure list.

Outputs Loss message

Action When the user no longer has any buildings left, the client
broadcasts this to the host.

Requires

Pre-condition Player has no remaining buildings

Post-condition Any remaining units of the user shall be removed from
the game.

Any remaining users in the game shall be presented with
a status message showing the loss of the player.

Side effects The players system is returned to the main menu.

40

6.2. Non­functional System requirements

6.2.1. Performance requirements

6.2.1.1. Minimum Hardware Specification
The system shall run with the required performance in a hardware
configuration matching the minimum hardware specification. The
minimum hardware required is set assuming that no other non-
essential background processes are running or interfering with the
system. System performance will not be guaranteed if all minimum
hardware is not achieved.

Rationale: To ensure that the system runs with required performance a
minimum level of hardware has to be set. By choosing this level
slightly above the level recommended by Sun for the Java Virtual
Machine we further ensure our performance will be adequate to meet
the required performance.

Requirement: The system shall meet the required performance tests
on a hardware configuration that matches the minimum hardware
specification.

Dependency:
Minimum Hardware Specification:
600MHz CPU or better
392MB RAM or more
OpenGL 2.0-compatible graphics card
OpenAL compatible sound card
Network Interface Card with TCP/IP-support
256kbit/s network connection
Two button mouse or better
Keyboard

6.2.1.2. Required Software Specification
The system shall run with the required performance in a software
environment meeting the required software list. Successful execution
of the system will not be guaranteed if all software requirements are
not installed.

Rationale: The system will need certain software installed to ensure
that it can execute and operate properly.

Requirement: The system shall execute in a software environment
where all required software is installed correctly.

Dependency:
Required Software:
OS: Windows XP (SP2 or better) or Windows 2003 or Windows Vista
Java: J2SE 5.0 or later
OpenGL: 2.0 or later
TCP/IP protocol installed

41

6.2.1.3. Space requirements
Required hard disk space

The system shall be small enough to fit on older computers and not be
of inconvenience to the user.

Rationale: The system requires a number of files containing graphics
and other system related information to be installed. Space is not
unlimited and therefore a limit is set to ensure that the system will not
inconvenience the user with unreasonable space requirements.

Requirement: The system shall be designed to occupy no more than
100MB of hard drive space excluding the Java Runtime Environment,
soundtracks and saved content.

6.2.1.4. Required available RAM
The game shall require available RAM during execution to store system
state and other essential information. The amount of used RAM will
not always be as high as required available. System performance will
not be guaranteed if required amount of available RAM is not met.

Rationale: The system needs to store a lot of information in the
internal RAM memory. To ensure that performance will not be affected
by excessive swapping to page file the system will be designed to have
a set amount of RAM always available and this amount made a
requirement.

Requirement: The system shall at most use 128MB of RAM beyond the
usage of the Java Virtual Machine and its support libraries.

6.2.2. Efficiency Requirements

6.2.2.1. Start­up time
Starting the game shall take an acceptable amount of time on the
minimum level of hardware. The time is measured from when the user
has requested initial execution of the system until the next possible
user interaction.

Rationale: If the user is required to wait more than one minute from
starting the system until his first interaction the user will likely be
annoyed or assume the system has stalled. To ensure that the user
will keep using the system such annoyances needs to be minimal.

Requirement: The system shall take at most one minute on the
minimum level of hardware to correctly initialize.

42

6.2.2.2. Time to generate map
Generating a random map shall take an acceptable amount of time on
the minimum level of hardware. The time is measured from when the
user has requested generation of the map until the next possible user
interaction.

Rationale: If the user is required to wait a longer time on map
generation he will likely get impatient and consider quitting the system
or never use the random map feature again. To ensure that the user
will continue using the system a limit has to be set, and two minutes is
the longest acceptable value.

Requirement: The system shall take at most two minutes on the
minimum level of hardware to correctly generate a random map.

6.2.2.3. Time to load game
Loading a previously saved game shall take an acceptable amount of
time. A previously saved game contains all the information to restore
the system state and resume the game at a later time. The time is
measured from when the user has requested the function until the
next possible user interaction.

Rationale: If the user is required to wait a longer time for the previous
game to be restored the user will lose patience and not use the save
and load features often. To ensure that the use will continue using the
system the acceptable limit has been set to one minute.

Requirement: The system shall take at most one minute on the
minimum level of hardware to correctly restore a previous system
state and initialize it as a new game.

6.2.2.4. Time to save game
Saving a currently played game shall take an acceptable amount of
time. Saving a game means storing the current system state in such a
way that it can be restored at a later time and the game resumed. The
time is measured from when the user has requested the function until
the next possible user interaction.

Rationale: If the user is required to wait a longer time for the game to
save the user will not save the game often which might result in the
user not returning to the game due to lost games due to crashes or
other problems where no saves were done. Ten seconds is seen as an
acceptable limit and shall be used.

Requirement: The system shall take at most ten seconds on the
minimum level of hardware to correctly store the current system state.

43

6.2.2.5. Time to pause game
The pause command shall freeze the current game in an acceptable
amount of time. To issue the pause command makes the current game
stop its game play, putting it in a dormant state until the user decides
to remove the pause. The time is measured from when the user has
requested the function until the next possible user interaction.

Rationale: If pausing the game took longer than one second some
event might occur in the game that requires the user interaction and
the user might be annoyed that such things happen as the user is
waiting for a pause to occur.

Requirement: The system shall take at most one second on the
minimum level of hardware to correctly pause the currently ongoing
game.

6.2.3. Reliability requirements

6.2.3.1. Failure to launch
The system shall not fail to launch more than an acceptable amount. A
failure to launch is defined as the system never reaching the state of
the first user interaction after being initialized by the user. A return to
the state before initialization and a freezing of the system on
initialization is both considered a failure to launch.

Rationale: Whenever the system doesn't launch as expected this
causes a big inconvenience for the user as the use cannot be required
to understand what went wrong and might not be able to handle the
situation that occurs without performing a complete environment
shutdown. Therefore a very limiting number is set as maximum of
failed launches.

Requirement: The system shall at most one time out of 200 fail to
enter a correctly running state after initialization.

6.2.3.2. Unexpected failure
The system shall not unexpectedly quit or crash due to critical system
failures more than acceptable. All forms of unexpected returns to
desktop, complete system freezes or environment lock-ups count as
an unexpected failure. Upon occurrence of such a failure no
information of the current game will be saved.

Rationale: If the system suddenly throws an error and freezes or quits
the user will be most inconvenienced as there will be no saved data
from the system state right before the error occurred. If the errors
were persistent and crashes occurred repeatedly the user would stop
using the system due to its unreliability.

Requirement: The system shall at most terminate the current state
incorrectly one time out of 20 executions of the system.

44

6.2.4. Learnability requirements

6.2.4.1. Ease of learning
The system shall follow the established standards of other systems in
the same genre to ensure that the user is able to learn to use the
system quickly. The proper use of the system is defined as being able
to end a game successfully in the users favor.

Rationale: By using key bindings, controls and other similarities that
resemble many of the other games in the same genre the system can
ensure that the user feels familiar straight away if he has previous
experience in the genre.

Requirements: The system shall be able to be learned to use in two
hours if the user has previous experience with similar systems.

6.2.5. Usability requirements

6.2.5.1. Command efficiency
The user shall be able to correctly perform any action available during
normal system state with only a few interactions. Any form of usage of
mouse and keyboard counts as one interaction, a movement of the
mouse pointer from current point to a new point counts as only one
interaction.

Rationale: To ensure that the game is easy enough to play that the
user doesn't find it annoying a limit will be set to any form of
interaction during normal gameplay. However, the game should not be
too easy to play either as the user will get bored fast if the game is too
simple without challenges.

Requirements: The system shall with no more than five correct
sequential user interactions support all available user actions during
normal system usage.

6.2.6. Scalability requirements

6.2.6.1. Hosting limit
Multiplayer games will be organized based on a modified Client-Server
(CS) architecture with a limited number of clients. The modification
means that one of the users can act as a server with his own system;
this means that any user can at any time start a multiplayer game as
a host.

Rationale: In CS, players exchange periodic updates through a central
server, the game host that is also responsible for resolving any state
inconsistencies. The CS architecture is not very scalable with the
number of players due to a large bandwidth requirement at the server

45

and therefore the limit of possible multiplayer users will be set to 8 as
to not have unreasonable bandwidth requirements.

Requirements: The system shall limit multiplayer to seven other
connected systems to one host user.

6.2.6.2. Hosting bandwidth
The system shall only require a certain amount of bandwidth for
multiplayer games. During multiplayer sessions a lot of control
packages and several game states being sent over the network. When
bandwidth is limited below the minimum level game performance will
deteriorate fast as all users will have to wait on control packages and
game states to be fully transferred to all clients from the server.

Rationale: For the multiplayer function to work at all the host system
needs to be able to transmit partial and full game states as well as
control packets constantly to all players. This traffic increases very fast
as the amount of remote users rise, thus the host user will have a
higher bandwidth requirement. Since any users can be host at any
time this requires that all users have a faster bandwidth.

Requirements: The system shall be able to host seven remote users
without any loss of game performance within the minimum hardware
requirements.

6.2.6.3. Multiplayer synchronization
There shall be a limit to how often resynchronization events occur. The
event occurs whenever a client goes out of synchronization with the
server; this means that the client's local copy of the system state is
inconsistent with the server's which results in problems with the
normal usage. To solve this problem the server transmits a new full or
partial system state to the client to try and correct its synchronization
error.

Rationale: When a client goes out of synchronization with the host a
certain amount of data needs to be retransmitted containing the full or
partial system state to get the client back in synchronization. If several
users go out of synchronization at once due to network congestion or
similar issues the amount of new system states the server needs to
send out must be limited or it would end up resulting in a denial-of-
service situation.

Requirements: The system shall at most try to resynchronize the full
game state every 30 seconds with a client during multiplayer sessions
should desynchronization occur.

46

6.2.6.4. Multiplayer error handling
The system shall drop any multiplayer clients that are not reachable
over the network over a certain amount of time. The host has to
constantly send control packages over the network to communicate
with all the clients during a multiplayer session. During network failure
these packages will get lost resulting in packet loss and
desynchronization, the client system is deemed unreachable.

Rationale: To prevent game time loss and wait time for bad
connections the system should drop desynchronized clients after a
certain amount of time without being able to successfully
resynchronize them.

Requirements: The system shall disconnect any multiplayer client
when more than 15 consecutive seconds of 75% or more packet loss
has occurred.

Operational requirements

6.2.7. Implementation requirements

6.2.7.1. Development language
The game shall be developed in a certain language.

Rationale: In an effort to increase interoperability we have decided to
develop this game in Java and OpenGL. This will ensure that future
expansion to more supported platforms will be possible.

Requirements: The game shall be written in Java using OpenGL and
OpenAL as supportive libraries.

External requirements

6.2.8. Safety requirements

6.2.8.1. Multiplayer security
The system shall not interpret any packages over the network that are
not part of the current multiplayer session. Since the multiplayer
sessions use a network for communication non system related
packages could be sent with malicious intents to the ports the system
listens to.

Rationale: Any user would be very upset if the system could
compromise the user's environments security so the system must at
all times ensure safety. The system should not handle any unknown
packages because the packages could be malicious. However, no
encryption will be done as this would require too much extra work.

Requirements: The system shall verify that all packets received over
the network are proper system packets or simply ignore them.

47

6.3. Use Cases
For Use cases see section 8 - Appendices

7. System evolution

7.1. Fundamental assumptions
All hardware platforms meeting the minimum hardware requirements will
be able to run the required software.

The Java engine will be updated by its developers and patches made readily
available for system users, the patches will be backwards compatible with
the parts used by the system.

The Windows Operating System will be updated by its developers and
patches made readily available for the system users, the patches will be
backwards compatible with the parts used by the system.

The required ports for networking through TCP/IP are unrestricted, any
firewall, router or other systems that have the ability to block ports will
have been properly set up by the user to allow traffic of the system.

7.2. Anticipated changes
As the required software gets developed to newer versions the backwards
compatibility should still be there, if it is lacking in some area the system
uses and it is deemed feasible a minor patch will have to be released to
address the issue. However, the support of the system will not cover an
unlimited amount of time, at any time further updates of the system can be
discontinued without prior notice.

Hardware development will not affect the system negatively in any way in
the foreseeable future as the system uses the Java Virtual Environment.
This runtime environment keeps the system from direct low-level
interaction with the hardware and the Java engine will be updated by its
developers to handle changes in the hardware architecture while still
maintaining the same environment for the system to run in.

As any system users gets more apt at using the system and use the system
for very long times he might feel the system is not balanced in a way to his
liking and might want further forms of the system not supported in the
original version. To prolong the use of the core system the developers can
issue future patches to enhance the system and add more content. The
system will also be developed in such a way any user with the required
knowledge and intent will be able to modify it to create a custom version of
the system with altered forms of usage to further prolong the use.

48

8. Appendices

8.1. Summary

8.1.1. List of technologies that will be used
• OpenAL
• OpenGL
• Java
• Apache MINA
• Eclipse

8.1.2. Short summary of Non­functional requirements
• Performance - System performance will not be guaranteed on a

system that does not meet the System Requirements
• Space - The program shall not require more than 100mb HDD space of

itself.
• Efficiency - The system shall take at most two minutes to perform any

start up or loading action and at most 10 seconds to perform other
system menu related action.

• Reliability - The system shall not have more than one critical failure
per twenty executions

• Learnability - The system shall be recognizable by players with past
experience of games in the same genre

• Usability - The system shall require at most five sequential actions to
perform an action during normal game play.

• Scalability - The system shall be able to handle up to eight players in a
multiplayer game

• Implementation - All systems shall be written in the same
programming language.

• Safety - No harmful data shall be transmitted between systems during
multiplayer.

8.2. Minimal system requirements
• Windows XP (SP2 or better) or Windows 2003
• Java: J2SE 5.0 or later
• OpenGL: 2.0 or later
• TCP/IP protocol installed
• 600MHz CPU or better
• 392MB RAM or more
• OpenGL 2.0-compatible graphics card
• OpenAL compatible sound card
• Network Interface Card with TCP/IP-support
• 256kbit/s network connection
• Two button mouse or better
• Keyboard

49

8.3. Use Cases

8.3.1. UC1: Game player starts the game
Primary Actor:

Game player
Stakeholders and Interests:

Game player: Wants to get the game up and running.
Preconditions:

Game player uses a PC with minimum requirements7.
Game player runs Microsoft Windows XP as Operating System.
Java 2 Platform Standard Edition 5.0 or later is installed.
Game player has successfully downloaded the game from the Internet or has by
some other means ended up with the game installation file on his computer.
Game player has installed the game on his computer.

Success Guarantee:
Main game program starts flawlessly.
Game player chooses configuration and successfully starts the chosen type of
game.

Minimum guarantee:
Game player’s computer returns to its previous state in case the success
guarantee could not be granted.

Main Success Scenario:
1. Game player starts the main game program and comes to first input state.
2. Game player chooses configuration for graphics, a screen name and desired

faction8.
3. Game player chooses one of the integrated soundtracks in the configuration.
4. System logs options from configuration.
5. Game player chooses a map to play on.
6. Game player chooses single-player mode.
7. Game player starts the game-play.

Extensions:
2-3a. Game player changes his mind and exits the game.
5-7a. Game player changes his mind and exits the game.
5-7b. Game player loads and resumes a previously saves game.
3b. Game player changes from integrated soundtrack to custom soundtrack.

1. Game player chooses a custom soundtrack folder from a list over his local hard
drives.

6c. Game player chooses to host a game in multiplayer mode.
1. System waits for a certain amount of time for connections from other game

players.
2. When everyone is connected or time runs out, the game-play starts.

6d. Game player chooses to join a game in multiplayer mode.
1. Game player enters IP-address of the game host.

1a. Game is on hold until every player is connected and then game-play
starts..

1b. Game-play starts
Special Requirements:

At most 100 sound files will be loaded from the custom soundtrack folder.

Technology and Data Variations List:

2b. Only alpha numeric characters in screen name in configuration.
3b1a. Only wav, mp3 and ogg sound formats accepted from the custom soundtrack

folder.

7 CPU faster than 600MHz

RAM > 392MB
Free HDD space > 100MB
OpenGL 2.0-compatible graphics card
OpenAL compatible sound card
Network Interface Card with TCP/IP-support
At least 256kbit/s network connection
Two button mouse or better
Keyboard

8 By choosing a certain faction the player starts with certain basic technology and certain traits.

50

5b. Map can be either one of the predefined maps or a unique randomly generated
map.

Frequency of Occurrence: Whenever the game player is in the mood for game-play.

8.3.2. UC2: Game player builds base and army.
Primary Actor:

Game player
Stakeholders and Interests:

Game player: Wants to build a strong base and army.
Preconditions:

Game is started, either in single player mode or multiplayer mode. UC1 was
successful.

Success Guarantee:
Game player manages to build a strong base.
Game player successfully produce an army.

Minimum guarantee:
Game player can at any time exit the game if he finds it hard to understand, boring
or don’t feel up to it.

Main Success Scenario:
1. Game player produces a construction yard.
2. Game player produces a desired building and places it on a valid tile on the

map.
3. Game player produces a desired vehicle and it appears by the relevant

building in which it was produced.
4. Game player produces a desired unit and it appears by the relevant building in

which it was produced.
5. Game player sends units to search for resources and harvesters to harvest

resources.
6. Game player chooses new technology to research from a list of possible

researchable objects.
7. System provides game player with researched technology.

Extensions:
* At any time game player decides to quit the game.
2-6a At any time resources are low and game player needs to harvest more to be

able to produce a building or infantry unit or to research new technology.
3b. Desired vehicle cannot be built because the relevant building is not built yet.

1. Game player produces relevant building and places it on a valid tile on the
map.

2. Game player produces a desired vehicle and it appears by the relevant
building in which it was produced.

4b. Desired infantry unit cannot be built because the relevant building is not built
yet.

1. Game player produces relevant building and places it on a valid tile on the
map.

2. Game player produces a desired infantry unit and it appears by the
relevant building in which it was produced.

4c. Game player designs a custom unit to produce.
1. System verifies that the custom unit is ok.

1a. System does not verify the custom unit as ok.
1b. Game player redesigns custom unit.

2. Custom unit appears by the relevant building in which it was produced.
5b. Game player has no units available to search for resources.

1. Game player produces a desired infantry unit and it appears by the
relevant building in which it was produced.

2. Game player sends units to search for resources and harvesters to harvest
resources.

5c. Game player has not yet produced any harvester.
1. Game player produces a desired vehicle and it appears by the relevant

building in which it was produced.
2. Game player sends units to search for resources and harvesters to harvest

resources.
Frequency of Occurrence: Could be continuous during game-play.

51

8.3.3. UC3: Game player destroys an opponent’s unit/building
Primary Actor:

Game player
Stakeholders and Interests:

Game player: Wants to destroy opponent’s unit or building.
Opponent: Wants to destroy game player’s unit and not have his own unit/building
destroyed.

Preconditions:
Game has successfully been started.
Player has at least one opponent.
Enemy units are within game player’s visibility range.

Success Guarantee:
Opponent’s unit/building is destroyed.

Main Success Scenario:
1. Game player moves units into attack range of opponent’s unit/building.
2. Game player successfully attacks opponent.
3. Game player defeats opponent’s unit/building and it is destroyed.

Extensions:
* At any time game player decides to quit the game.
1a. Opponent moves outside player’s visibility.
1b. Opponent attacks player.
2a. Game player’s attack fails.
2b. Opponent attacks player.
3a. Game players unit/building is destroyed.

Variations List:
* Opponent is either some other game player or AI (if in multiplayer or single

player mode)
Frequency of Occurrence: Could be continuous during game-play.

8.3.4. UC4: Player defeats an opponent
Primary Actor:

Game player
Stakeholders and Interests:

Game player: wants to defeat the opponent.
Opponent: Wants not to be defeated.

Preconditions:
Game has successfully been started.
Player has one opponent.
Opponent has one unit left.
Enemy units are within game player’s visibility range.

Success Guarantee:
One player is removed from the game.

Main Success Scenario:
1. Game player moves units into attack range.
2. Game player successfully attacks opponent.
3. Game player defeats opponent’s last unit and the opponent is destroyed and

removed from the game.
Extensions:

* At any time game player decides to quit the game.
1-2a. Opponent moves outside player’s visibility.
1b. Opponent attacks player.
2b. Game player’s attack fails.
2c. Opponent attacks player.
3a. Game players unit is destroyed.

Variations List:
* Opponent is either some other game player or AI (if in multiplayer or single

player mode)
Frequency of Occurrence: Could be continuous during game-play.

52

8.3.5. UC5: Game player wins
Primary Actor:

Game player
Stakeholders and Interests:

Game player: Wants to win the game.
Opponent: Wants to win the game.

Preconditions:
Game has successfully been started.
Player has one opponent.
Player has one unit left.
Opponent has one unit left.
Enemy units are within game player’s visibility range.

Success Guarantee:
Game ends.

Main Success Scenario:
1. Game player moves units into attack range.
2. Game player successfully attacks opponent.
3. Game player defeats opponent’s unit and wins the game.

Extensions:
* At any time game player decides to quit the game.
1-2a. Opponent moves outside player’s visibility.
1b. Opponent attacks player.
2b. Game player’s attack fails.
2c. Opponent attacks player.
3a. Game players unit/building is destroyed and he loses the game.

Variations List:
* Opponent is either some other game player or AI (if in multiplayer or single

player mode)
Frequency of Occurrence: Once at the end of the game.

8.3.6. UC6 – Player saves game
Primary Actor:

Game player
Stakeholders and Interests:

Game player: Wants to save the game.
Preconditions:

Game has successfully been started.
Game is currently in single player mode.

Success Guarantee:
Game is saved.

Minimum guarantee:
Game continues.

Main Success Scenario:
1. Game player saves the game.
2. Game player resumes the game.

Extensions:
1a. Saving the game fails.

1. Player is returned to the game.
Frequency of Occurrence: At any time during game-play.

53

9. Index

1. Preface ... 2

1.1. Expected readership of this document ... 2
1.2. Version history ... 2

2. Introduction ... 2
2.1. Target demographic .. 2
2.2. The main uses of the system. ... 2
2.3. User scenario 1 .. 3
2.4. User scenario 2 .. 3
2.5. The context/environment ... 4
2.6. The scope of the system. ... 5
2.7. Design factors .. 6
2.8. Technologies and Risks .. 7

3. Glossary .. 9
4. User requirements definition .. 13

4.1. Functional requirements .. 13
4.1.1. Game session Control .. 13
4.1.2. Production ... 13
4.1.3. Economy ... 14
4.1.4. Improvements .. 14
4.1.5. Factions ... 14
4.1.6. Unit Design .. 14
4.1.7. Unit/building handling .. 15
4.1.8. Combat ... 15
4.1.9. Network .. 15
4.1.10. Configuration ... 15
4.1.11. Ending game .. 15

4.2. Non-functional requirements .. 16
4.2.1. Performance requirements - Minimum Specification 16
4.2.2. Space requirements - Required available memory .. 16
4.2.3. Efficiency requirements - Time constraints .. 16
4.2.4. Reliability requirements - Mean time between critical failures 17
4.2.5. Learnability requirements - Time to learn to play ... 17
4.2.6. Usability requirements - Limit of required interactions 17
4.2.7. Scalability requirements – Multiplayer .. 17
4.2.8. Implementation requirements - Development language 18
4.2.9. Safety Requirements – Multiplayer security... 18

4.3. Use cases .. 18
5. System architecture .. 19
6. System requirements specification .. 20

6.1. Functional System requirements ... 20
6.1.1. Game session control .. 20
6.1.2. Production ... 22
6.1.3. Economy ... 24
6.1.4. Research ... 26
6.1.5. Factions ... 28
6.1.6. Customization .. 28
6.1.7. Unit handling .. 30
6.1.8. Combat ... 32
6.1.9. Network .. 34
6.1.10. Configuration ... 35
6.1.11. Ending game .. 37

6.2. Non-functional System requirements ... 40
6.2.1. Performance requirements ... 40
6.2.2. Efficiency Requirements ... 41

54

6.2.3. Reliability requirements ... 43
6.2.4. Learnability requirements ... 44
6.2.5. Usability requirements ... 44
6.2.6. Scalability requirements ... 44
6.2.7. Implementation requirements ... 46
6.2.8. Safety requirements .. 46

6.3. Use Cases ... 47
7. System evolution .. 47

7.1. Fundamental assumptions .. 47
7.2. Anticipated changes .. 47

8. Appendices .. 48
8.1. Use Cases .. 49

8.1.1. UC1: Game player starts the game .. 49
8.1.2. UC2: Game player builds base and army. ... 50
8.1.3. UC3: Game player destroys an opponent’s unit/building 51
8.1.4. UC4: Player defeats an opponent .. 51
8.1.5. UC5: Game player wins ... 52
8.1.6. UC6 – Player saves game ... 52

9. Index .. 53

