

Project Ivanhoe
Group 16

Rebecca Everett
Tobias Hassellöf
Henrik Törnvall

Johan Renner
Martin Waara-Grape

 2

Table of Contents

TABLE OF CONTENTS ..2

1. PREFACE..3
1.1 Readership of document ..3
1.2 Document history...3

2. INTRODUCTION ...4
2.1 Need of the system...4
2.2 System functions..4
2.3 Other systems...4

3. GLOSSARY...5

4. USER REQUIREMENTS DEFINITION..6
4.1 Functional requirements ..6
4.2 Non-functional requirements ...8

5. SYSTEM ARCHITECTURE...9

6. SYSTEM REQUIREMENTS SPECIFICATION..10
6.1 Functional requirements ..10
6.2 Non-functional requirements ...13

7. SYSTEM EVOLUTION ..14
7.1 Overall assumptions...14
7.2 Java evolution ..14
7.3 Changing user needs ..14

8. APPENDICES..15
8.1 Use Case UC1 – Record expense...15
8.2 Use Case UC2 – Creating a profile..17
8.3 Use Case UC3 – Create budget..18
8.4 Use Case UC4 – Compare budget with cash flow ...19

9. INDEX..20

 3

1. Preface
1.1 Readership of document
The intended readers of this document are the group of people involved in designing,
developing, testing and managing the release of this program. These also include the
teachers and other students of this course (DD1363). This and all future appendices
will be written in English.

1.2 Document history
• 2007-11-29 – The first draft of this document.

 4

2. Introduction
2.1 Need of the system
In today’s environment, there are many different ways to spend money. You can order
via the Internet and receive an invoice, pay cash, debit your personal account or use a
credit card. This makes it hard for ordinary people to keep track of their expenses and
many struggle with debts that never get paid. In order to cope with unexpected outlays
as well as saving for planned activities such as the family’s vacation, it is essential to
have a good overview of one’s economy.

2.2 System functions
Project Ivanhoe is a software project for developing a Home Finance System (HFS)
that lets the users input their daily expenses and expenditures. This in turn lets the
users get a practical overview of his or her economical situation to make financial
decisions. The users of the system are people with a home computer and a need for
monitoring their personal finances. He/she is a person with income and expenses, who
wants to be able to manage the money spent and earned in a more effective way. The
system is designed for everyday use as well as special occasions. Some main
functions of the program are:

• To create budgets
• To monitor income and expenses.
• To provide a graphical overview of the personal or family economy.
• To compare expenses with the budget.
• To monitor expenses, such as bills, with a reminder function

2.3 Other systems
The HFS will store all information on the computer and there will be no interaction
with other services or systems. In order to use the system on a different computer, the
information will need to be copied or re-entered. The system cannot manage the same
profile on more than one computer since the program is not designed to synchronise
with other systems and the information is stored on the computer only.

 5

3. Glossary

Budget A series of economic items planned for future use.

Due date A date a bill is supposed to be paid.

Economic item An income or expense that a user wants to record or has

recorded.

HFS Home Financing System – A generic name for a type of

application that allows user’s to manage home finances.

Java A programming language developed by Sun Microsystems.

JRE Java Runtime Environment. A piece of software that allows

Java applications to run on a computer.

Minimal guarantees What the system delivers no matter what happens in a use

case.

PC Personal Computer.

Pre-condition A condition which must be fulfilled before the start of a use

case.

Primary Actor The actor carrying out the main operation in a use case.

Profile A container for user information.

Stakeholder A person with an interest in the outcome of a use case.

Success guarantee What the system delivers if the use case is executed

successfully.

Trigger An action that starts a use case.

Use Case A series of actions carried out by actors to reach a specific

goal in the system.
User The person who uses the system.

XML The Extensible Markup Language (XML) is a general-

purpose markup language. Its primary purpose is to facilitate
the sharing of structured data across different information
systems.

WindowsXP An operating system used on a PC.

 6

4. User requirements definition
4.1 Functional requirements

4.1.1. High priority requirements

4.1.1.1. Multiple users
The system shall provide support for several users. The system
shall separate data for different users from each other.

Rationale: If several users use the system, they would not want their
data mixed up with each other.

4.1.1.2. Create budget

The user shall be able to create budgets, where she can record
planned income and expenses. The budgets shall be able to be
constructed for an arbitrary time period.

Rationale: Budgeting is a corner-stone in managing finances. As
for the arbitrary time period, the user might want to create yearly,
monthly or even weekly budgets.

4.1.1.3. Manage budget

A budget shall be able to be updated by the user at any time. It
shall be possible to add income/expense items and/or change the
name of the budget.

Rationale: The user may not want to add all their bills at the same
time; therefore it is important that the budget can be updated
continuously.

Dependencies: “Create budget”.

4.1.1.4. Record economic item

The user shall be able to record a single income/expense item at
any time. This item shall be separate from the budget, meaning that
it is an actual economic item/event (something that really happened)
and not a planned one.

Rationale: The user probably wants to record her spending in order
to see if it follows the budget.

4.1.1.5. Income/Expense categories

The user shall be able categorize income/expense items, either
within a budget or as a separate entity. The system shall be able
to provide a number of predefined categories as well as allow the
user to define new categories.

Rationale: Categorizing items as for example “Entertainment” or
“Car expenses” allows for an easier overview of one’s finances.

 7

The pre-defined categories will make the categorizing faster for the
novice.

Dependencies: “Manage budget”, “Record economic item”.

4.1.1.6. Comparing budget with actual expenses

The system shall provide a facility for comparing
income/expenses in a certain budget with actual
income/expenses recorded by the user for the same budget
period. This shall be an active comparison, meaning it shall always
be up to date.

Rationale: This is the central functionality of the system. This
function will allow the user to see if she is on-track with the budget.
Since it is central, making it an active comparison will reduce the
effort needed by the user to use the program.

Dependencies: “Manage budget”, “Record economic item”.

4.1.1.7. Flexible comparison

The system shall provide a facility for comparing
income/expenses for different time periods. This shall be a
passive comparison, meaning that it is the user’s responsibility to
activate the function and to define which time periods and which
income/expense items to compare. The income/expense items can
be either budgeted or an actual recording.

Rationale: This function will help the user better understand how
her expenses vary over time.

Dependencies: “Manage budget”, “Record economic item”.

4.1.1.7.1. The system shall provide a facility to present the

comparison graphically in a diagram.

4.1.1.7.2. The system shall provide a facility to present the

comparison in a tabular form.

4.1.2. Low priority requirements

4.1.2.1. Due-dates
The user should be able to assign a payment due-date to each
expense item in a budget.

Rationale: This is to allow the user to get an overview of when bills
need to be paid.

Dependencies: ”Record economic item”.

 8

4.1.2.2. Due-date reminder
The system should provide a reminder function for due-dates of
an expense item in a budget. This reminder shall be automatically
activated each time the user starts the program.

Rationale: If a user has forgotten to pay a bill, the system will alert
her of that.

Dependencies: ”Due-dates”.

4.1.2.3. To-do list

The user shall upon request be provided with a list of activities
that need to be performed in the near future. This list shall
contain activities that has a due-date within the specified budget
period.

Rationale: People are forgetful and need to externalize data in
order to not forget it. An example of a list item could be “Pay rent
to XXX at the latest 2007-12-31”.

Dependencies: ”Record economic item”, “Manage budget”.

4.2 Non-functional requirements
4.2.1. Learning curve

The user shall be able to operate the system after 20 minutes of
training.

4.2.2. Calculations

The user shall be able to trust the calculations of the program.

4.2.3. System start-up
The user shall be able to start the system within 10 seconds.

4.2.4. Simultaneous users

The user shall only be able to support one user at a time.

4.2.5. Environment
The user shall be able to run the application on Windows XP using
Java Runtime Environment JRE 1.5.

4.2.6. Help

The system should provide a help file that the user can reference at
any time. This help file should contain simple instructions for all the
tasks a user can perform within the system.

 9

5. System architecture
The system is based on the repository model, wherein all shared data is held in a
central database that can be accessed by all appropriate sub-systems.

Graph generator XML Database Budget editor

Financial data
item editor

Table generator

Explanations:

1. XML database: All data is held in this project repository as XML data.
2. Budget editor: This is the function that will manage budget data stored in the

project repository.
3. Table generator: This is the function that will generate tables from the

financial data in the repository.
4. Graph generator: This is the function that will generate graphs from the

financial data in the repository.
5. Financial data item editor: This is the function that will manage the financial

data items stored in the repository.

 10

6. System requirements specification
6.1 Functional requirements

6.1.1. High priority requirements

6.1.1.1. Multiple users
Different user’s data shall be separated from each other and
grouped in one place that is unique to a specific user.

6.1.1.2. Create budget

The budget shall be a collection of data items, clustered together
under a heading. The heading shall be a unique name chosen by
the user.

6.1.1.2.1. The system shall allow the user to record data items in

the budget in a structured manner. The data items should be
separate entities that represent income and expenses.

6.1.1.2.1.1. Each data item shall consist of a tagged line of

information. The line of information shall consist of a
unique (within that budget) identifier (ITEM_ID), a text
field (“category”), a real number (“amount”) and a free-
text field (“notes”).

Rationale: The tag will categorize an information line as
either an income or an expense, making it easy for the
user and the system to separate the two. The “category”
field refers to the user requirement “Income/expense
categories”. The “notes” field will allow the user to
write any additional information associated with the data
item.

6.1.1.2.1.2. The system shall tag the data items recorded by the

user as either “income” or “expense” items. It is the
user’s responsibility to classify the data as either income
or expense.

6.1.1.2.1.3. The system shall control the validity of the

“amount” field. It is the system’s responsibility to assign
and validate the sign of the numbers in this field. Income-
tagged lines must have a positive real number in the
“amount” field and expense-tagged lines items must have
negative real numbers.

6.1.1.3. Manage budget

It shall be possible to delete data items in a budget, as well as
add data items and change the budget name. The adding of data

 11

items shall function in the same way as described in the “Create
budget” points.

6.1.1.3.1. The deletion of items and changing of the budget name

shall be “one-click” operations by the user. The deleted
items shall be identifiable by their ITEM_ID and erasable
from under the correct “budget”.

Dependencies: ”Create budget”.

6.1.1.4. Record economic item

Each single economic item shall be identifiable by a unique
identifier (ITEM_ID). The item shall be constructed in the same
way as the items described under the “Create budget” points.

6.1.1.4.1. The item shall be marked with a date. The user shall be

responsible for setting the date.

Rationale: In order to satisfy the “Comparing budget with
actual expenses” and “Flexible comparison” requirements,
the program must know which items belong to which time-
periods.

6.1.1.5. Income/expense categories

The system shall provide a number of pre-defined categories for
data items, as well as allow new categories to be defined by the
user. The categories shall be a text-field in the information line
described under the “Create budget” points.

Dependencies: “Create budget”.

6.1.1.6. Comparing budget with actual expenses

The system shall update the comparison (difference) each time
the user records another data item. The comparison data shall not
be stored, but automatically recalculated each time the user starts
the program or records another data item.

Dependencies: “Create budget”, “Record economic item”.

6.1.1.6.1. The comparison should be visible to the user in the main

view of the program.

6.1.1.6.2. The comparison shall be made for the defined time-

period of an active budget and actual recorded items that
have dates coinciding with the budget time-period.

6.1.1.6.2.1. Comparisons should be possible to make for whole

categories of items as well as individual items. The
system should make the comparison based on the
“category” information in the information line for a data

 12

item. It should also identify if two items have the same
ITEM_ID and compare those two items.

Rationale: If the user has entered for example an item
like entertainment expenses in a budget, and later
recorded the actual expenditure for the entertainment, he
has probably entered the same ITEM_ID for those two
different items. This makes for an easy comparison
between the two.

6.1.1.7. Flexible comparison

The system shall be able to compare items based on criteria
specified by the user. This shall be done upon request from the
user.

Dependencies: ”Record economic item”.

6.1.1.7.1. The system shall use the date-marks of the items to

identify the correct items to compare for the correct time-
period. The user shall be responsible for specifying which
time period she wants to use for the comparison.

6.1.1.7.2. The system shall identify different data items and

different categories of items and make a comparison
between them. The data items shall be identified by their
ITEM_IDs and the categories shall be identified by their
“category” tag.

6.1.1.7.3. The system shall be able to generate graphs and

diagrams based on the comparison criteria specified by the
user. The data to be presented in the graph shall be obtained as
per the previous points.

6.1.1.7.4. The system shall be able to generate a table based on the

comparison criteria specified by the user. The data to be
presented in the table shall be obtained as per the previous
points.

6.1.2. Low priority requirements.

6.1.2.1. Due-dates
The due-date should be a field in the before mentioned
information line of a data item. Setting a due-date should be the
user’s responsibility.

Dependencies: ”Record economic item”.

6.1.2.2. Due-date reminder

The system should automatically be able to produce a reminder.

 13

Dependencies: “Due-dates”.

6.1.2.2.1. The system should automatically upon start-up of the

program go through the active user’s data items and find
any due-dates that are active. The system should then
produce reminder that will be automatically visible to the user.

6.1.2.2.2. An expense item should be able to be marked if

handled. This should be the user’s responsibility to perform.

Rationale: This will help the system determine which due-
dates need to be reminded of.

6.1.2.3. To-do list

The system should go through the user’s data and find any due-
dates that are active. This shall be done upon request from the
user.

Dependencies: ”Record economic item”, “Manage budget”.

6.1.2.3.1. The system should then produce a list containing all

items found in the search. This list shall be automatically
visible to the user.

6.2 Non-functional requirements

6.2.1. Learning curve
The system shall be easy to learn and provide a help document to
make it possible to operate the system after 20 minutes of training

6.2.2. Calculations

6.2.2.1. The system shall calculate correctly.

6.2.2.2. The system shall detect irregularities such as negative

amounts or budgets deficits.

6.2.3. System start-up
The system shall give interface control to the user within 10 seconds
of the program being started.

6.2.4. Simultaneous users

The system shall only be able to run with one active user.

6.2.5. Environment
The system programming language shall be Java.

 14

7. System evolution
7.1 Overall assumptions
The system is dependent on a PC platform running windows XP. The system does not
communicate with any external components, and so the only change we have to fear
is that the PC platform will become obsolete, which is not probable.

7.2 Java evolution
The software is written in java. Java is a portable format and minor changes can be
made to fit other platforms if required. Java is also upwards compatible with newer
versions, and so the code will not have to be changed to fit newer versions of the JRE.

7.3 Changing user needs
The reason this program is being made is that people have a hard time managing their
money. This problem is not likely to go away with time, but rather escalate as the way
of spending and acquiring money will probably increase. The user might then need
more monitoring functions, which can be added to the program either in a new
version or as external plug-ins.

The user might want to use an automation tool for paying bills online, an also
synchronise their spending plans with their bank statement. The program should in
time be able to do this, but more extensive knowledge from the project members is
required to implement functions like these.

 15

8. Appendices
8.1 Use Case UC1 – Record expense

Primary Actor:
Student
Stakeholders and Interests:
- Student: Wants to be able to record an expense in his/her profile. The process should
be intuitive and there should be a possibility to cancel it. The student wants to be able
to add a note to the expense and categorise it as a certain expense category.
Preconditions:
The system has been started. The student has a profile.
Minimal Guarantee:
Only the information saved by the user will be saved to the profile. There should be
no ambiguities concerning what has been saved or not.
Success Guarantee:
The expense is registered on the profile with a note and has been categorised.
Trigger:
The student sits down at his/her computer with an expense that he/she wants to record
in his/her profile.
Main Success Scenario:

1. Student chooses his/her profile.
2. Student chooses to record the expense.
3. Student inputs the amount of the expense.
4. Student chooses a category for the expense.
5. Student inputs a short note explaining the expense.
6. Student inputs the date of the expense.
The student repeats 4-7 until all the expenses has been inputted.
7. Student chooses that he/she is done.
8. The expenses are saved by the System to the current profile.

Extensions:
*a. At any time, System fails:
If the system fails and the program shuts down then only the saved data will be
available. If the student hasn’t chosen that he/she is done, then the information is lost.
3a. Student inputs a negative amount of the expense.

1. System rejects the amount and registers the absolute value.
4a. The category that the Student wants to use does not exist.

1. Student adds another category.
2. Student chooses the new category for the expense.

4b. Student doesn’t know what category to use.
1. Student chooses miscellaneous, which is a predefined category.
2. Student decides to change the category at a later time.

5a. Student chooses not to enter a note for the expense.
7a. Student decides to cancel the input.

1. The recorded data is discarded by the System.
8a. Student hasn’t inputted an amount and /or chosen a category for one or more
expenses.

1. System informs the student that there is information missing.
a. Student chooses cancel.

 16

i. The information is discarded by the
system.

b. Student inputs the missing information.
i. The student chooses that he/she is

done.
ii. The expenses are automatically saved

by the System to the current profile.

 17

8.2 Use Case UC2 – Creating a profile

Primary actor:
Parent in the family
Stakeholders and Interests:
Parent – wants to create a profile for the family in the system so that he/she is able to
analyse the family’s economy. If the profile already exists, he/she wants to be made
aware of this with a possibility to cancel or overwrite the profile.
Members of the family – wants the parent to be able to analyse the family’s economy.
Preconditions:
The system has been started.
Minimal Guarantees:
Only a profile saved by the parent will be available in the system. There should be no
ambiguities concerning what has been saved or not.
Success Guarantees:
A user profile has been created and saved.
Trigger:
Parent sits down at the computer and wants to cerate a profile in the system.
Main Success Scenario:

1. Parent chooses to create a new profile.
2. Parent inputs the name of the new profile.
3. A new profile is created and saved by the System.

Extensions:
*a. At any time, System fails:
If the system fails and the program shuts down, only the saved data will be available.
If the parent hasn’t saved the profile, then the information is lost and a new profile has
not been created.
2a. The name of the profile already exists.

1. Parent chooses not to overwrite the profile.
a. Parent inputs a new name for the profile.

2. Parent chooses to overwrite the profile.
a. The information saved on the previous profile is discarded by

the System.
3. Parent chooses to cancel the process.

 18

8.3 Use Case UC3 – Create budget

Primary actor:
Parent in the family
Stakeholder and Interests:
Parent - Wants to create a budget for his/her family in the family’s profile.
Members of the family – wants the parent to be able to monitor the economy with a
budget.
Preconditions:
The system has been started. There are one or more known incomes and expenses.
The family’s profile has been selected.
Minimal Guarantee:
Only a budget saved by the parent will be available in the system. There should be no
ambiguities concerning what has been saved or not.
Success Guarantee:
A budget has been created and saved to the family’s profile.
Main Success Scenario:

9. Parent chooses to create a new budget.
10. Parent inputs a name for the budget.
11. Parent chooses a time period for the budget.
12. Parent inputs expected income or expense.
13. Parent chooses a category for the economic event.

Parent repeats step 4-5 until satisfied.
14. Parent chooses that he/she is done.
15. The budget is saved by the System to the family’s profile.

Extensions:
*a. At any time, System fails:
If the system fails and the program shuts down, only the saved data will be available.
If the parent hasn’t saved the budget, then the information is lost and a new budget
has not been created.
2a. The name of the budget already exists.

4. Parent chooses not to overwrite the budget.
a. Parent inputs a new name for the budget.

5. Parent chooses to overwrite the budget.
a. The information saved on the previous budget is discarded

by the System.
6. Parent chooses to cancel the process

4a. Parent inputs a negative amount of the economic event.
1 System rejects the amount and registers the absolute value.

7a. The category that the parent wants to use does not exist.
1 Parent adds another category.
2 Parent chooses this category for the economic event.

6a. The sum of the incomes doesn’t cover the budgeted expenses.
1 System alerts the user of the incorrect budget

a. Parent chooses not to change the budget.
b. Parent chooses to alter the budget.

i. Parent changes the economic events.
ii. Parent chooses that he/she is done.

 19

8.4 Use Case UC4 – Compare budget with cash flow

Primary actor:
Student
Stakeholder and Interests:
Student - wants to compare a budget with the month’s cash flow.
Preconditions:
The system has been started. A budget has already been created and the expenses and
incomes of the month are inputted. All data exists in the student’s profile.
Minimal guarantee:
The previously saved information should not be lost. There should be no ambiguities
concerning what has been saved or not.
Success Guarantee:
Student has been able to compare the cash flow from the previous month with the
budgeted amounts.
Trigger:
Student sits down at his/her computer and wants to compare his/her budget with the
month’s cash flow.
Main Success Scenario:

1. Student chooses his profile.
2. Student chooses to analyse the cash flow.
3. Student chooses a budget.
4. Student chooses the time period to analyse.
5. Student chooses how the information should be presented by the System.
6. System presents the information.
7. Student compares the budget with the cash flow and analyses his/her budget.

Extensions:
*a. At any time, System fails:
If the system fails and the program shuts down, the previously saved data will not be
lost.
*b At any time, Parent chooses to cancel the process:
System ends the process.
4a. The father doesn’t choose a time period.

1. The system uses the default value that is the previous month.

 20

9. Index

Architecture, 10
Budget, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 20, 21
Budgets. See budget
Categories, 6, 11, 12, 13
Category. See categories
Due date, 5
Evolution, 2, 16
Help, 8
HFS, 4, 5
Home finance system. See HFS
Java, 5, 8, 15, 16
JRE, 5, 8, 16
System requirements, 2, 11

Functional requirements, 11
Non-functional requirements, 14

To-do list, 8, 14
User requirements, 2, 6

Functional requirements, 6
Non-functional requirements, 8

XML, 5, 10

