
Gravity
Group 10

Daniel Walz

Jesper Ekhall

Lukas Kalinski

Fredrik Nordh

Alexander Nyberg



2.2

The system will consist of six modules. The Game module is the game core, this is where all game-
related operations, such as affecting the game world using an internal physics package as well as 
switching between the different game states, will be done. The View and Audio modules will be 
used by the game module to trigger visual and auditory feedback on what's happening in the game 
world. Further, these modules will use third party tools to realize their purposes, i.e., the View 
module will use the Simple DirectMedia Layer (SDL) library to initialize and control the visual 
experience, and the Audio module will use the FMOD API to play sound effects. The Controller 
module will be responsible for interpreting user input into game commands, by using matching 
functionality in the SDL library. The DataStore module will manage shared data, such as for 
example a player's position in the game world, as well as the game world itself. The DataPersistence 
module will be used by the DataStore module to write persistent data into files.



2.3

Module: Controller
This module will contain everything that is related to user input and its consequences for the system 
flow.

Class: Input Manager

With future support for networking in mind, this is a crucial class within this module. It is able read 
input from anywhere (such as local keyboard or network) as it relies on an interface (InputListener) 
instead of hard-coded one-purpose input listening.

Class Group: Game Controllers

The game controller classes are responsible for issuing commands on different areas within the 
game, such as for example on a player's ship or the main menu. An example of a command is to go 
up in a menu or activate thrust on a ship.



Module: Game
This module will contain game logic, which includes the different states (menu, game play, etc.) and 
their logic, for example, the game play state will use the Physics Engine.

Class: Game

The starting point of the system, forwards main loop responsibility to different game states.

Package: State

Contains representations of the states that the system may fall into. Each state is responsible for 
issuing a render of its own view. In addition, the game play state will also be responsible for issuing 
audio playback.



Package: Engine

Contains everything that is related to calculations within the game world and the menus. This for 
example includes the Physics Engine.

Module: Audio
This module will contain classes that are responsible for playing sounds.

Class: Distributor

The Distributor is the heart of the audio module. It is responsible for “delivering” the sound to 
wherever it is to be delivered, relying on the Supplier interface. This property makes sound 
playback easy to integrate with a possible future networking environment.

Interface: Supplier

Defines the interface of an audio supplier, which basically is a class that is responsible for making 
one or more sounds heard somewhere.



Module: View
This module will contain classes that are responsible for rendering and displaying graphics.

Class: Distributor

The Distributor is the heart of the view module. It is responsible for “delivering” a graphical view 
to wherever it is to be delivered, relying on the Supplier interface. This property makes view 
rendering easy to integrate with a possible future networking environment, for example by having a 
class for sending view data implement the Supplier Interface.

Module: Data Store
This module will contain shared data.



Package: Config

Will contain classes responsible for reading and writing configuration files.

Package: Menu

Will contain classes responsible for holding data about the game menus.

Package: Player

Will contain classes responsible for holding data about each player.

Package: GameWorld

Will contain classes responsible for holding data about the game world environment (such as 
planets, asteroids, etc).

Module: Data Persistence
This module will contain classes that are responsible for loading and saving persistent data.

Class: File

Class responsible for file management (read, write, etc).


	Module: Controller
	Class: Input Manager
	Class Group: Game Controllers
	Module: Game
	Class: Game
	Package: State
	Package: Engine

	Module: Audio
	Class: Distributor
	Interface: Supplier

	Module: View
	Class: Distributor

	Module: Data Store
	Package: Config
	Package: Menu
	Package: Player
	Package: GameWorld

	Module: Data Persistence
	Class: File



