

Account This!
Group 9

Kristoffer Renholm

Johannes Edelstam

Joakim Ekberg

Jesper Skoglund

2.2 Overall Architecture Description
The overall system architecture is divided into three major components, the database, the

application and the web server. Each component has its own responsibility and is communicating

with other components through standardized protocols and communication channels.

Mongrel Instances

Application Code

Application Code

Application Code

Apache

Static Content

(Images, Style Sheets, etc.)

Proxy/Load Balancer

MySQL

InnoDB

Storage Engine

User with a

standard browser

Database Server Application Server Web Server

HTTPSQL

HTTP

The web server serves as the front-end towards the user. It is responsible for serving the user’s

request for static content like pictures and style sheets, and forwarding of requests to the

Application Server, that will generate a dynamic response or allow user input.

The application server is responsible for running the Account This! codebase. Due to lack of threading

in most Ruby applications there is no natural way of processing and responding to concurrent

requests from users. Therefore multiple instances of the special hosting server software for Ruby on

Rails applications called Mongrel will be run concurrently on different TCP/IP ports. The web server is

responsible for distributing the load over these instances even.

The database server is responsible for persisting data between user sessions. The database server

uses a transactional storage engine with support for relations between tables. This reduces the risk

for corrupt data.

2.3 Detailed Architecture

2.3.1 Model View Controller

Model View Controller (MVC) is a well known software design pattern. Its purpose is like many other

design patterns to organize the code in a maintainable way.

The MVC principle divides the application into three separate subsystems called layers. Model, View

and the Controller layer described as follow:

 Model - The representation of the domain specific entries that builds up foundation of
the application. This could be anything from users, shopping charts, accounts and so on.

 View - The views purpose is to, as the name hints, present the data in different ways.

 Controller - The controller represents the glue in the application. The controller layer
directs traffic inside the application, all from querying the models for information as
rendering views to the end user.

When building according to the MVC pattern, program code is separated in different layers. The code

never floats around, ie, the design pattern makes every line of code to live in one of the three layers.

2.3.2 MVC implementation in Ruby on Rails

This section of the document is to describe how Ruby On Rails (Rails) implements the Model View

Controller (MVC) design pattern.

When writing code in the MVC design pattern each line of code fits into one of the three layers of the

application, model, view or controller.

In accordance with its MVC foundations, Rails is made up of three different subsystems. Separate in

each sense that they could be used individually. These are:

MVC Phase Rails subsystem Purpose

Model ActiveRecord The model provides the bridge between the database
and the Ruby code that builds up the models.
ActiveRecord provides several functions to read,
manipulate, find, etc. to data. One important quality of
ActiveRecord that it generates Ruby-methods from each
field in a database column. Therefore it’s very easy to
translate the database to a set of model objects.

View ActionView The views of a Rails project usually contains of several
XHTML documents with embedded ruby to display the
dynamic content for the specific view.

Controller ActionController The ActionController represents the final glue needed to
connect the view with the model. It handles forms and
determine which view to render according to the data
that the user inputs.

What is Rails then? We now know that it’s built up from three components that have different

purpose according to the MVC pattern.

Rails is the only necessary infrastructure that is needed to connect these three different subsystems

together to create a great web framework.

Ruby
Rails framework

ActiveRecord

Support libraries

(e.g. ActiveSupport,

ActiveMailer)

ActiveController ActiveView

ERbCGI Library

Relational Database

Web Server

2.3.3 The file structure of a Ruby on Rails project

The file structure consists of more or less important directories. They are predefined by Ruby on

Rails. This section describes them and ho the files inside them are named.

app/ Holds most of the source code. All the project specific code is placed here.

app/controllers/ Here all controllers are placed. They are named like vouchers_controller.rb
so that the paths will be recognized automatically by Rails.

app/models/ Here all models are placed. They will be named as voucher.rb

app/views/ Holds all of the template files that will be rendered from the controllers, or
by another template. They are named like vouchers/show.html.erb. Where
‘html’ could be any format and show is the name of the corresponding action
for show in the vouchers controller. A template could also be named
_voucher.html.erb. Then it is a so called partial, which often are used to e.g.
render a row in a table describing a voucher. A file could also be named as
vouchers/index.xml.builder, that means that it is a template which generates
XML that corresponds to the vouchers controller index action.

app/views/layouts/ Here all layouts are stored. A layout is a template which is used in most cases
for the whole application. Then it will be named application.html.erb. It will
contain html that will be rendered for each request (e.g. menus and such).
Somewhere in the layout a yield will be made to render the actual template
inside the layout.

app/helpers/ Holds all helpers for the project. A helper could be named as vouchers.rb. It
will contain methods that the voucher template uses. There will also be a
helper named application.rb which will contain methods available to all
templates.

config/ This directory is very much described by it’s name. It holds all configuration
files, such as routes.rb which contains information about how rails should
create pathes. It also contains databases.yml which describes all databases
that the project is using. Also all configuration files for the environments are
kept here.

components/ This directory was used in previous versions of Rails, but not any more.

db/ Contains the auto generated file schema.rb which describes how the
database tables where created.

db/migrate/ This directory holds all migration files. They describe how all the tables
should be created. They are named as 009_create_vouchers.rb.

doc/ Auto generated documentation for the project will end up here.

lib/ Any extensions or classes that isn’t models or controllers ends up here. It
could i.e. be a parser or similar.

public/ This directory holds all files that should be directly available from a web
browser. Like images, javascripts and CSS style sheets.

script/ Everything in this directory is auto generated when the project is created. It
is different scripts to e.g. generate new controllers and models, or to destroy
them and all the files that belongs to them.

test/ Testing is important to every large software project. The test/ directory
contains all functional and unit tests along with fixtures. Fixtures are files to
load test data in the databases.

vendor/ Holds libraries that the project rely on. It also contains the plugins directory
which holds all plugins used by the project.

2.3.4 RESTful development

Account This! will be written with the quite new technique called RESTful Rails. REST is short for

Representational State Transfer. The concept is to take advantage from that the HTTP protocol

standard uses more than just POST, and GET. It also uses the methods PUT and DELETE. Every URL

should map to a resource on which you can perform any of these methods instead of URLs that maps

to certain actions. E.g. the URL /vouchers/ can typically be called with the GET method that would

correspond to get all vouchers. A POST to the very same URL would instead correspond to creating a

new voucher. The new voucher would be accessed e.g. at the URL /vouchers/4. A call with the

method PUT to that URL would result in an update of that specific voucher. A call with the method

DELETE would result in destroying that voucher. RESTful also handles different formats in a very

clever way. Since every URL is an URL to a resource every URL would theoretically be called for any

format. Like /vouchers.xml and /vouchers/4.xml. That would then result in getting the output from

the voucher controller as XML.

HTTP Verb REST-URL Action URL without REST

GET /vouchers/4 show /vouchers/show/4

DELETE /vouchers/4 destroy /vouchers/destroy/4

PUT /vouchers/4 update /vouchers/update/4

POST /vouchers/ create /vouchers/create

Why RESTful?

 Clean URLs. Every URL becomes very easy to understand.

 Format handling. Every resource can easily be requested with different formats.

 Clear code structure. When you open up a controller it is very easy to understand
what happens on every request, thanks to the use of the HTTP methods.

Why not RESTful?

 Complications while using AJAX. Sometimes you would like to use the same method
for several different outputs. That can however be solved by using formats that is
defined by the developer, such as /vouchers.compact to get a compact list of
vouchers, however the MIME type is still HTML.

 Sometimes these methods just isn’t enough, you would like to create more actions.
You can however do so, but it isn’t totally by the book.

	Overall Architecture Description
	Detailed Architecture
	Model View Controller
	MVC implementation in Ruby on Rails
	The file structure of a Ruby on Rails project
	RESTful development

