
Java Method Browser

Gurvan Le Guernic
Lindstedtsvägen 3, level 4, office 1433

08 790 65 40

gurvan@kth.se

October 27, 2010

Abstract

The goal of the project is to develop a search engine for Java methods. The engine will
not be based on keywords, but on distances between method signatures. The computation
of distances between signatures relies on the inheritance hierarchy of Object Oriented pro-
gramming languages. The project team will develop an Eclipse plugin that allows developers
to query for a method signature. The plugin retrieves the “nearest” methods and displays
the results in a way that reflect the distances between the query and the results.

1 Context

Programming languages offer an important number of libraries in order to facilitate devel-
oper’s tasks. However, those libraries are huge. They contain an awfully big number of
classes and an even bigger number of methods. Therefore, it is sometimes difficult to find
the methods which fulfill the actions that we would like to carry out. Tools to help the de-
veloper find the right method exist. However, except for rare exceptions, these tools are only
based on keyword search and present their results in a list-like fashion. For instance, Eclipse
includes a search module based on keywords. Such solutions are only based on textual con-
tent of method descriptions and therefore lack a relation with the language semantics. For
example, ’integer’ is syntactically far from ’float’, but semantically close. Additionally, list
displays do not show the relevance of results or the similarities between them.

Previous research has proposed different ways to search for methods. One of them is
based on a notion of distance between method signatures. Using this notion of distance, a
method returning an ’integer’ is said to be near methods returning a ’float’ but far from
methods returning a ’socket’. To search for a method, the user provide a method signature
as close as possible to what he/she wants to do. For example, “String → InetAddress”
is a potential request for a method that returns the IP address object associated to a
machine name. The search engine will then return the methods whose signatures are the
nearest from the query. This approach is similar to what some developers do manually
when searching a method in the JavaDoc (the documentation of the the Java’s Application
Programming Interface (API) — library of functions designed to be used by developers in
their applications).

The search engine to be implemented in this project will rely on a provided notion of
distance for Java methods. It is expected to apply information visualization techniques to
present the distance between the results and the query as accurately as possible. This repre-
sentation will enable users to quickly perceive result relevance, as well as result similarities.

2 Prototype Requirements

The prototype should be available both as a standalone and as an Eclipse plugin adding,
at least, a button to the Eclipse GUI to launch the search engine. The main window of the

1

gurvan@kth.se
http://www.eclipse.org
http://download.oracle.com/javase/6/docs/api/


search engine should contain:

• one or more text fields to enter the query under the form of a method signature,

• an area displaying the results in a list format including all necessary information,

• a 2D or 3D area displaying the results in a way reflecting the distances between the
results and the query,

• an area allowing quick access to the Javadoc of a selected result.

As far as possible, the search engine should be able to handle a query in the java package by
starting to display 4 or 5 results in 2 to 3 seconds. Ideally, the search engine would handle
queries in the java and javax packages in 1 to 2 seconds.

3 Project Description

Project Team will be provided with a partial English translation of an article in French
presenting the notion of distance used.

The project will involve developing:

• a piece of software to automatically extract inheritance data and method signatures
of public classes from easily available sources,

• a piece of software, called data store from now on, to store the data collected and
answer to queries effectively,

• a GUI compatible with the Eclipse’s SWT library.

The main difficulty of the project will probably be the development of an efficient data
store that is able to answer quickly enough to the signature queries. Nearly every method
is an answer to a signature query, but only the nearest ones from the query signature
must be returned. The distance from a method to a query is different for every query
signature. Therefore this distance can not be completely precomputed when data is collected
for method and classes. The distance will have to be at least partially computed during the
query processing. The data store could be implemented using an ad hoc data structure or
a generic embedded database, such as Derby, Oracle/Berkley DB or SQLite.

As the search engine handles Java methods, it would seems natural to use the Java
language to implement it. However, other languages can be used. It is expected that the
resulting software would be available under an open source license, but this point also can
be discussed.

I am currently a postdoc researcher in the TCS group at KTH and will be able to
provide assistance to the team involved in the project. I have some experience with such
implementations and will be able to propose some potential solutions if the project team
gets stuck somewhere. I will be able to devote approximately 1 to 2 hours per week to the
team involved with the project.

2

http://hal.inria.fr/docs/00/11/32/31/PDF/Bonnel_MajecSTIC06_web.pdf
http://www.eclipse.org/swt/
http://db.apache.org/derby/
http://en.wikipedia.org/wiki/Berkeley_db
http://en.wikipedia.org/wiki/SQLite

	Context
	Prototype Requirements
	Project Description

