
Efficiency of
Software Transactional Memory

Erik Helin & Henry Rodrick

Supervisor: Mads Dam

KTH, 26th of January 2010

1 Background

The question of how to handle concurrency in
computer programs have lately become more rel-
evant than ever because of the advent of multi-
core processors. However, the de facto mecha-
nism for concurrency control on shared memory
data structures is still mutual exclusion locks.

Although such locking mechanisms appear
conceptually simple, programs using them are
known to be notoriously hard to get right. Dead
locks, the event of two or more threads waiting
for each other to finish, and priority inversion,
the scenario where a low priority thread blocks
a higher prioritized one, are two classical exam-
ples of the issues that one can run into. [6]

One approach to concurrency control that
has received a lot of attention lately is Software
Transactional Memory (STM). This method
borrows heavily from the transaction based
methods commonly used in database systems to
handle simultaneous queries.

The basic idea of such transactions is that a
query is processed as if its the only thing access-
ing the database. After the query is processed,
the result is committed back to the database.
Given there are no conflicts with other concur-
rent transactions, the commit succeeds and the
result is written back to the database. If the
commit fails, the transaction is rolled back and
run again.

The idea of using similar transactions for
concurrency control has been around since at
least 1977, but a practical implementation of
transactional memory first appeared in 1993
when Herlihy and Moss proposed a hardware-
supported solution. [1] Lately, software based
transactional memory systems have been devel-
oped. A notable contribution is the STM system
in Concurrent Haskell, described in 2005 by Tim
Harris, Simon Peyton Jones et al. [3]

Although it might seem like STM, just
as its database counterpart, would be an ele-

gant solution to many shared-memory concur-
rency issues, critics have highlighted several
possible problems such as false conflicts and
over-instrumentation (unnecessary generation of
read/write barriers due to lack of application
knowledge). It’s believed that such problems
would appear in real-world applications based
on transactional memory and constitute serious
performance bottlenecks. [5]

2 Problem statement

The objective of the paper is to evaluate the
effiency of STM. Effiency is a very subjective
term, and in this paper it will be defined by a
series of tests and evaluations. The effiency of
STM will then be determined by the results of
these tests and evaluations.

3 Project plan

The paper will first provide the reader with a
thorough introduction to STM, which explains
the key concepts of STM as well as relates it to
other concurrency methods and models. This
part of the paper will also discuss the theoreti-
cal strenghts and weaknesses of STM.

To determine if STM is an efficient solu-
tion for developing concurrent applications we
will develop small programs which solves clas-
sical concurrency problems found in [2]. For
each problem, we will develop the solutions by
two different methods, the first one by using
semaphors and the second one by using STM.

The programming language which will be
used when developing the solutions is Haskell.
The reason for choosing Haskell is because it
provides us with an opportunity to use both
semphors and STM without installing any third-
part libraries [3] [4]. The only other major pro-
gramming language which features this is Clo-
jure [7], which none of us have used.

1



All the solutions will then be measured by
several tests and we will compare the results.
The tests will consist of:

• Number of operations - we will com-
pare the number of operations which the
Glasgow Haskell Compiler (GHC)[9] gen-
erates for the different solutions

• Execution time - we will compare the
execution of time of the different solutions
by using the GHC profiler and also DTrace
[10]. Simpler tools such as the UNIX time
program will probably also be used

• Scalability - we will compare how well
the different solutions scales on a CPU
with 1,2 and 4 cores by executing the pro-
grams on different machines

• Memory usage - we will compare the
memory used by the two different solutions
with the help of the GHC heap profiler and
Valgrind [8].

• Number of lines - we will compare the
number of lines of code used for each solu-
tion to examine if the usage of STM gen-
erates shorter programs

The last test is more subjective than the oth-
ers, but to provide an answer if STM is efficient
or not, we also want to consider how effective it
is to use it.

4 Time plan

• 14/2 The part of paper which explains
STM and other concurrency models shall
be finished

• 7/3 At this time, all the solutions shall be
solved, although the quality of the code
can be of prototypal nature

• 4/4 All the tests and measurements shall
now be done, and all the data we need for
analysis should have been collected

• 25/4 The paper shall be finished, and the
remaning 3 days will be used for proof-
reading and correcting smaller errors.

References

[1] J Larus and R Rajware, Transactional Mem-
ory, Morgan & Claycool Publishers, First
Edition, 2007

[2] A B Downey, The little book of semaphors.
Green Tea Press, Version 2.1.5, 2008

[3] T Harris et al, Composable Memory Trans-
actions, PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallell programming,
2005

[4] SL Peyton Jones, A Gordon and S Finne,
Concurrent Haskell, 23rd ACM Symposium
on Principles of Programming Languages,
1996

[5] R M Yoo et al, Kicking the Tires of Software
Transactional Memory: Why the Going Gets
Tough, SPAA ’08: Proceedings of the twen-
tieth annual symposium on Parallellism in
algorithm and architectures, 2008

[6] K Fraser and T Harris, Concurrent Program-
ming Without Locks, ACM Transactions on
Computer Systems, 2007

[7] http://clojure.org/concurrent_
programming, January, 2010

[8] http://valgrind.org/, January, 2010

[9] http://www.haskell.org/ghc/, January,
2010

[10] http://en.wikipedia.org/wiki/DTrace,
January, 2010

[11] http://en.wikipedia.org/wiki/
Software_transactional_memory, Ja-
nurary, 2010

2


