
Comparison between JSON and YAML for data
serialization

MALIN ERIKSSON
VICTOR HALLBERG

Bachelor’s Thesis in Computer Science (15 ECTS credits)
at the School of Computer Science and Engineering

Royal Institute of Technology year 2011

Supervisor: Mads Dam
Examiner: Mads Dam

malier@kth.se
victorha@kth.se

Abstract

This report determines and discusses the primary differences between two
different serialization formats, namely YAML and JSON. A general introduc-
tion to the concepts of serialization and parsing is provided first, which also
explains how they can be used to transfer and store data. This is followed by
an analysis of the YAML and JSON formats, where functionality, primary use
cases, and syntax is described. In addition to this the percieved performance
of implementations for both formats will also be investigated by conducting a
number of tests. Using the combined background information and results from
the tests, conclusions regarding the main differences between the two are then
determined and discussed.

Referat

Denna rapport tar upp och diskuterar primära skillnader mellan två olika
serialiseringsformat; YAML och JSON. Först ges en övergripande introduktion
till begreppen serialisering och parsing, som även förklarar hur de kan använ-
das för att överföra och lagra data. Därefter följer en mer djupgående analys
av YAML och JSON, där funktionalitet, primära användningsområden samt
syntax beskrivs. Utöver detta undersöks även prestandan hos implementatio-
ner av de olika formaten med hjälp av ett antal tester. Slutligen används den
samlade bakgrundsinformationen och resultaten från de genomförde testerna
för att påvisa de största skillnaderna mellan dem.

Contents

Preface 1

1 Introduction 2
1.1 Problem Statement . 2

2 Background 3
2.1 Serialization . 3

2.1.1 Definition . 3
2.1.2 General Method . 3
2.1.3 Scope of use . 4

2.2 Parsing . 4
2.2.1 General . 4
2.2.2 Serialization and parsing . 5

2.3 JSON . 5
2.3.1 General . 5
2.3.2 Origin . 5
2.3.3 Functionality . 6
2.3.4 Syntax . 7
2.3.5 Scope of use . 7
2.3.6 Process . 7

2.4 YAML . 8
2.4.1 General . 8
2.4.2 Origin . 8
2.4.3 Functionality . 9
2.4.4 Syntax . 10
2.4.5 Scope of use . 11
2.4.6 Process . 11

3 Methods 13
3.1 Research procedure . 13

3.1.1 Research . 13
3.1.2 Conclusions . 13

3.2 Testing tools and environment . 13
3.2.1 Programming language . 13
3.2.2 JSON implementation . 14
3.2.3 YAML implementation . 14
3.2.4 Environment . 15

3.3 Testing procedure . 15
3.4 Test data . 15

3.4.1 Simple data set . 15
3.4.2 Complex data set . 15

3.5 Tests . 16
3.5.1 Serialization performance . 16
3.5.2 Deserialization performance 16
3.5.3 Serialization output size . 16

4 Results 17
4.1 General differences . 17

4.1.1 Data types . 17
4.1.2 Structures . 17
4.1.3 Implementation . 18
4.1.4 Readability . 18
4.1.5 Universality . 18
4.1.6 Syntax . 18
4.1.7 Scope of use . 18

4.2 Performance . 20
4.2.1 Serialization performance . 20
4.2.2 Deserialization performance 21
4.2.3 Serialization output size . 21

5 Conclusions 22
5.1 Theoretical Research . 22

5.1.1 Design goals . 22
5.1.2 Functionality . 22
5.1.3 Similarity and evolution . 23

5.2 Performance . 23
5.3 Format of choice . 24

5.3.1 Functionality . 24
5.3.2 Readability . 24
5.3.3 Performance . 24

References 25

Preface

The work of this study was divided into different stages. It started with a pre-
study, which was conducted by both group members. Some theoretical research on
the subject was then collected, which Malin was primarily responsible of. This was
done in parallel with preparations for the performance testing being done by Victor.
Throughout the whole process, both of us have been writing different parts of the
report. In general, most of the technical issues have been Victors responsibilities,
whereas Malin has been doing background research, and compiling found facts.
Most sections has finally been revised by both members.

1

Chapter 1

Introduction

This paper discusses and compares different serialization formats in computer sci-
ence. In addition to a background of the serialization technique and how it is
utilized as a method today, it also compares two important light-weight data inter-
change formats, namely JSON and YAML. Although they are quite similar when
it comes to usability, there are some distinctions between them, mostly regarding
design choices and syntax. These choices do however affect their scope of use. The
report aims to discuss the various differences between the languages, along with the
resulting consequences regarding performance and usability in different use cases
which they lead to.

1.1 Problem Statement
There has been an increase in discussions comparing the usability of YAML and
JSON as serialization formats in recent years. Even though there are multiple
thoughts and opinions on the net, there is a lack of actual general investigation on
the subject.

The primary aim for this project is to determine and compare the major differ-
ences between YAML and JSON from multiple perspectives. This will not only be
done through a performance test, the comparison is also based on collected facts
and research. From this, conclusions can be drawn regarding their usability and
different scope of use. This comparison will help define the gap between them
(if such exists), and will hopefully provide some guidelines to consider for future
development involving data serialization.

2

Chapter 2

Background

This chapter explains and defines background facts regarding the different parts of
this report. It includes information about the serialization and parsing process, but
focuses on the serialization languages to be compared - YAML and JSON.

2.1 Serialization

2.1.1 Definition

Serialization is a process for converting a data structure or object into a format that
can be transmitted through a wire, or stored somewhere for later use [7].

In terms of serialization there are a legion of different ways and formats that can
be used. Which method and format to choose depends on the requirements set up on
the object or data, and the use for the serialization (sending or storing). The choice
may also affect the size of the serialized data as well as serialization/deserialization
performance in terms of processing time and memory usage.

2.1.2 General Method

Common for all serialization methods is the procedure of reading data as a series,
once started the whole object will usually be serialized/deserialized. This enables
the use of simple I/O interfaces to hold and pass on the state of an object, although
difficulties arise in applications which require higher performance by having a non-
linear storage organization, or when the object contains large amounts of data.
These cases requires more effort to deal with, and will not be covered in this paper.
The most commonly used data structures when encoding data like this are scalars,
maps and sequences (lists or arrays).

Serialization is supported by many of the popular object-oriented programming
languages like PHP, Ruby, Java, Smalltalk and Python along with the .NET Frame-
work. All of these languages provide serialization methods either as implementable
interface or as syntactic sugar. For example .NET provides a serializable attribute [9],
and Java uses an interface named Serializable for classes to implement [8]. In Ruby,
the term used for serialization is marshaling, and the language provides a module
called Marshal for this [15]. This module can often be used without any changes to
the definitions of the objects to be serialized. A serialization strategy can be defined
in cases when you want to restrict the serialization process (all instance variables
are serialized by default) or handle data in specific ways.

Most of the standard serialization implementations converts the data into a
binary string, which means that the data will not easily be inspected by a human

3

CHAPTER 2. BACKGROUND 2.2. PARSING

in its serialized form. Rubys Marshal module returns a plain text string, which
however is not completely readable as it contains special byte sequences and is not
formatted in a way to be easily read by a human.

Example

A concrete example where serialization is needed is when storing information from
an address book, in this case written in Java. Every instance contains a person with
details about their address and phone number. One wants to store all instances on
a server in exactly the way they are created and there are a few possible solutions;

1. By using Java serialization, which is part of the language. This can easily be
done, but problems arise if the data would have to be accessible to applications
written in C++, Python or another language as the data is serialized in a way
unique to Java.

2. By using an improvised way of encoding the data into single strings, such as
encoding four integers into for example 12:3:-23:67. This solution requires
some custom parsing code to be written, and is most efficiently used when
converting very simple data.

3. By serializing the data into XML. It is an attractive method due to the fact
that XML is human readable and have bindings (API libraries) for many
languages, although it is space intensive and can cause performance penalties
on applications.

Due to the ineffectiveness regarding these approaches mentioned above, other
solutions are often desirable.

2.1.3 Scope of use

Serialization is preferable to use when transmitting data, as has been mentioned
above. Some example of such cases are when storing user preferences in an object
or for maintaining security information across pages and applications. In general,
when transferring objects in applications, domains, or through firewalls, serialization
can be very helpful.

2.2 Parsing

2.2.1 General

The term parsing in computer science means in general to analyze written text,
determining its grammatical structure from a known formal grammar. In linguistic
terms, parse means analyzing and describe the grammar of a sentence. The parser
splits up an expression into tokens which are then inserted into some kind of data

4

CHAPTER 2. BACKGROUND 2.3. JSON

structure. This data is the evaluated to interpret the meaning of each expression
by the rules from given grammar, followed by execution of the appropriate action.

2.2.2 Serialization and parsing

Serialization is mainly a method to maintain easy ways of storing, in the sense of
converting data and then restore it into a semantically equivalent clone. Unless the
serialization method used serializes the data in a coherent order (never changing)
and expects the data to be read in the same order when deserializing, parsing will
have to be done when the data is to be deserialized. When deserializing, pars-
ing is done to identify the data identifiers (attribute names or the like) and their
corresponding values (while at the same time often having to discern the type of
data).

The following sections aims to introduce JSON and YAML and makes no state-
ments about differences between them. This will be discussed later on in the results
and conclusions chapters.

2.3 JSON

2.3.1 General

JSON is a subset of the open ECMAScript standard [2] (which the JavaScript pro-
gramming language is an implementation of). This has been the case since 1999,
when it was created to be used as a way to parse human-readable (in plain text for-
mat) representations of data into valid ECMAScript objects [6]. It is completely lan-
guage independent and uses notations similar to common programming languages
such as C, C++, Java, etc.

The format has grown to be very popular in cases where serialization and inter-
change of structured data over networks [12] and is often associated with the modern
web due to the fact that it is frequently used when communication between a web
server and client side web application is requested.

2.3.2 Origin

JSON was originally specified and introduced by Douglas Crockford in 2001 [3], who
used it within his company State Software. Crockford was not the first person to
invent the object notation, but he was the first one to give it a complete specification,
based on parts of the JavaScript standard. Following that he launched the JSON.org
website in 2002, which still exists and currently provides a listing of JSON libraries
for different programming languages [2]. It quickly grew in popularity partly thanks
to its simplicity, which made it much more light weight (resulting in faster load
times over the Internet) compared to XML, a format frequently used on the web.
The other reason for the growth in usage is the increased use of JavaScript on the
web.

5

CHAPTER 2. BACKGROUND 2.3. JSON

JSON documents can be parsed in JavaScript by calling the built-in eval func-
tion with the JSON string provided as an argument. The JavaScript interpreter
will then execute the parameter as JavaScript code, constructing an object with
the properties defined by the JSON string. This will work due to the fact that
JavaScript is a superset of JSON. Using the eval function is theoretically the most
efficient way to parse JSON, but is a somehow inelegant method since the JavaScript
interpreter do not prevent any JavaScript code from being executed. In most cases
a dedicated JSON parser should be used to avoid security issues and be more strict
on the input. Most of the modern browsers have had fast native JSON parsers since
2009, which are preferred to using eval [12].

2.3.3 Functionality

JSON is human-readable language, foremost designed for its simplicity and uni-
versality. Uses the lowest common denominator information model, which ensures
that any programming environment could easily access it [5]. The fact that it also
is easy to read and parse contributes to its usefulness in programming. JSON also
is language-independent, meaning that the specification is not tied to any specific
programming language (it was originally based on the JavaScript object notation
however). The design incorporates data types common across most modern lan-
guages.

The JSON standard does not support object references, which affects the ability
to store cyclic structures for example. This functionality can be provided by an
extension like dojox.json.ref from the Dojo Toolkit [18], enabling JSON objects to
be marked with specific ids which can later be referenced to.

Complex structures can also be built as associative arrays, objects within objects.
JSON objects can contain any valid data type, enabling deep data hierarchies in
JSON documents.

The JSON format specification does not include support for validations of values
or structure, but a external specification called JSON Schema exists as a draft [19].
JSON Schema can be used to define the structure of a JSON document much like
a XML Schema, for example which data types values should have and if they are
optional or required to be present. The defined schema can then be used to validate
JSON documents or as a way to document application APIs.

Valid data types are [1]:

• Numbers (floating-point numbers in scientific notation, infinity is not permit-
ted)

• Strings (with Unicode support)

• Boolean (true/false)

• Objects (associative arrays / objects with key-value pairs)

6

CHAPTER 2. BACKGROUND 2.3. JSON

• Arrays (ordered lists)

• Null

2.3.4 Syntax

As is described above, JSON consists of objects, arrays and scalars. General syntax
will be described in this section, which is intended to give an overview over the
language and its usability regarding semantics. An example of a arbitrary JSON
document can be found in table 2.1 (with code converted from the YAML exam-
ple [5]).

• Comments are not allowed in the current standard (they were removed by the
author in a later revision of the specification [3]).

• Objects (unordered collection of name/value pairs) are denoted with braces
({}).

• Identifiers must be enclosed in quotes (as a string) and are followed by a colon
and value.

• Objects (associative arrays / objects with key-value pairs)

• Multiple key-value pairs are separated with a comma.

• Arrays (ordered set of values) are placed within brackets ([]) and separated
by commas.

• The root node of a JSON document must be an object or an array.

2.3.5 Scope of use

JSON, considered to be a more user-friendly alternative to XML, is often used as
a substitute to it. When XML has been said to contribute with a lot of unneces-
sary baggage, JSON documents can contain the same information while also being
much more light weight and easy to read [4]. JSON is most commonly used when
exchanging or storing structured data. It is especially common in Ajax web ap-
plications, where it provides a standardized data exchange format for JavaScript
implementations [10].

2.3.6 Process

JSON is parsed (deserialized) in a simple character by character reading, construct-
ing structures and object in one single pass. JavaScript implementations allows a
parameter for an external function (called a reviver) to be provided, allowing more
specific transformation of data. Serialization is also done in one single iteration

7

CHAPTER 2. BACKGROUND 2.4. YAML

Table 2.1: Log file for an arbitrary application in JSON format
[{

"User": "ed",
"Time": "2001-11-23 15:01:42 -5",
"Warning": "This is an error message for the log file"

}, {
"User": "ed",
"Time": "2001-11-23 15:02:31 -5",
"Warning": "A slightly different error message."

}, {
"User": "ed",
"Date": "2001-11-23 15:03:17 -5",
"Fatal": "Unknown variable \"bar\"",
"Stack": [

{
"code": "x = MoreObject(\"345\\n\")\n",
"line": 23,
"file": "TopClass.py"

}, {
"code": "foo = bar",
"line": 58,
"file": "MoreClass.py"

}
]

}]

A JSON document with an array containing multiple log entries.

through the data structure, where most implementations call a to_json (or simi-
larly named) method, either earlier defined by the implementation or by the user,
and then appends the result of this method call to the JSON output.

2.4 YAML

2.4.1 General

YAML is a recursive acronym for YAML Ain’t Markup Language, emphasizing on
it’s design as a data storage format. It is a light-weight human readable serializing
language primarily designed to be easy to read and edit. By adding a simple typing
system and aliasing mechanism upon the three most common data structures used
when serializing (hashes, arrays and strings) it forms a language which is comparably
very easy to use, while still including more complex features [5].

2.4.2 Origin

YAML was first proposed by Clark Evans in 2001, who then designed it together
with Ingy döt Net and Oren Ben Kiki [5]. The format was developed from experience
and discussions among sml-dev members on the Internet, and is still updated based

8

CHAPTER 2. BACKGROUND 2.4. YAML

on user input from the YAML-core mailing list. This answers the concern for it to
be easy to understand and use, which is one of the primary goals for the format [5].

2.4.3 Functionality

Due to the fact that YAML needs to be easily extensible and readable by humans
it is mainly integrated and built upon concepts described by C, Java, Perl, Python
and Ruby. The main design goals are to mimic native data structures of agile
languages as much as possible, support parsing and have a consistent model to
support generic tools. This can lead to some complications when generating and
parsing YAML documents [5].

YAML can be considered to be a superset of JSON, providing syntax for im-
proved human readability along with a more complete information model (support
for additional types) [5]. JSON files are often valid YAML files because of the fact
that JSON’s semantic structure is equivalent to YAML’s in line writing style (which
was added in the new v1.2 specification of YAML). This means that YAML parsers
adhering to the new specification also should be able to parse most JSON files.

In addition to the basic data types available in JSON, YAML also supports
relational trees. Relational trees are a language construct with which references
to other nodes in the YAML document can be made [5]. A node in the YAML
document tree can be defined as an anchor, and later references to that anchor will
then include the data of the anchored node into the node. Smart use of this feature
can lead to increased readability, compactness and clarity along with less chance of
data entry errors.

The YAML specification also allows user-defined data types to be declared, as
well as explicit data typing. This is especially useful for serialization purposes,
allowing a parser to automatically construct an object of the correct class when
deserializing, instead of an generic collection.

YAML structures includes nodes and tags. A node represents a single native
data structure, which can be a scalar, sequence or mapping. Each node can be
marked with a tag, which restricts the set of possible values upon that node. A
tag works as a identifier for data structures. YAML implements globally unique
(means that the tag is unique through the whole process) local and URI tags. Lo-
cal tags always starts with an exclamation mark and are specific for the current
application. They are primary used to associate meta data to each node, but can
also be used to specify additional information, such as allowed content or resolution.

The basic data types are [5]:

• Numbers (hexadecimal/octal, integers, floating-point numbers)

• Strings (with Unicode support)

• Boolean (true/false)

9

CHAPTER 2. BACKGROUND 2.4. YAML

• Dates and timestamps

• Maps (associative arrays / objects with key-value pairs)

• Sequences (arrays, ordered lists)

• Null

2.4.4 Syntax

Describes YAML language and syntax, and gives an overview over the language.
An example of a arbitrary YAML document can be found in table 2.2 [5].

General:

• Comments begin with a hash/number sign (#) and continues to the end of the
current line.

• Document data hierarchy is determined by indentation using double space
characters (tab characters are not allowed as indentation).

Mappings (associative arrays):

• One mapping per line, marked with an identifier followed by a colon and space
(key: value).

• An inline format which mimics the JSON object notation is also available.
Associative arrays are in this case enclosed in braces with items being comma
separated).

Sequences (arrays):

• One item per line, marked with a dash and space.

• An alternative inline syntax exists, where the list is enclosed in brackets and
items are separated by a comma followed by space.

Structures:

• Three repeated dashes denote the start of a document, and is also used to
separate multiple documents in a single transmission.

• The root node of a document can be any valid data type.

• Ending a transmission along with the current document is done with three
repeated dots.

• Repeating nodes are defined with an ampersand and later referenced with an
asterisk, where character is followed by an identifier.

10

CHAPTER 2. BACKGROUND 2.4. YAML

• A question mark and space in the beginning of a line denotes sets which are
unordered.

• Values of user-defined data types can be denoted by prefixing them with a
exclamation mark followed by the data type name, a space and finally the
value.

• Explicit data type casting is done by prefixing the value in the same way as
with user defined types but with an additional exclamation mark.

Strings:

• Quoting is often not required but can be, using either single or double quotes.

• The single quoted style is useful when no escaping is needed, while the dou-
ble quoted style allows for escape sequences. It can span multiple lines and
newlines are folded and included by a newline escape character (\\n)

• Strings can be written using either the standard inline style (with or without
quotes) or with block notation where a initial symbol determines how newlines
in the document should be handled.

• Strings can be written using either the standard inline style (with or without
quotes) or with block notation where a initial symbol determines how newlines
in the document should be handled.

• Strings in block notation denominated with a pipe (|) will have their newlines
preserved, while the greater than sign (>) will tell the YAML parser to convert
newlines to spaces.

2.4.5 Scope of use

Examples of common use cases for YAML are configuration files and log files (as
seen above). It can also be used for inter-process messaging or cross language data
sharing in applications. Debugging complex data structures can be simplified by
using YAML to format the data, which is taken advantage of in the Ruby on Rails
web framework.

2.4.6 Process

The YAML specification outlines four stages of data when loading and dumping
to and from the format [5]. Native data (in the program environment) is seen as
the first stage. The serialized YAML document (string) is the last stage of data.
The two stages in between can be seen as working stages, where the data has been
transformed into a node graph or event tree to be further processed.

Serialization, or dumping as it is referred to, is done in three distinct stages which
converts the data from a native data structure into series of bytes (strings). First, a

11

CHAPTER 2. BACKGROUND 2.4. YAML

Table 2.2: Log file for an arbitrary application in YAML format

Time: 2001-11-23 15:01:42 -5
User: ed
Warning:
This is an error message for the log file.

Time: 2001-11-23 15:02:31 -5
User: ed
Warning:
A slightly different error message.

Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
Unknown variable "bar".

Stack:
- file: TopClass.py

line: 23
code: |

x = MoreObject("345\n")
- file: MoreClass.py

line: 58
code: |-

foo = bar

A YAML transmission with multiple log entries, each sent as a individual document.

directed graph is generated containing the structure - with nodes, sequences, map-
pings and scalars. The graph is then serialized, where sequential access mediums
must be represented as ordered trees. In YAML they are created by ordered map-
pings, also called serialization trees. General mapping keys are unordered. Finally,
the serialized tree is converted into a Unicode string.

The load (deserialization) process is also compromised of three stages, which
together does the opposite. The input (a string) is parsed to create a serialization
tree in which the node hierarchy, keys, values and ordering is defined. This tree
is then traversed node-to-node, where the data types of values are determined and
converted to, as well as constructing relations and sequences. The final step converts
the representation graph in to native data structures.

12

Chapter 3

Methods

Describes methods used regarding research and testing. This paper consist of one
theoretical study, which builds conclusions from earlier research. From those con-
clusions a test environment is constructed for testing and performance comparison.
Initial research showed lack of information regarding speed and space requirements.
Therefore, this report includes specific testing on those qualities, which can be seen
below.

3.1 Research procedure

Initially, some background research has been done. This section explains the method
and sources used for that, and how conclusions are drawn from this information.

3.1.1 Research

Language specifications are available for both YAML and JSON on the net. Earlier
reports and studies have also been made, comparing the two. From search on
Internet and some earlier experience about serialization processes facts in this report
has been clarified. For more information, see references.

3.1.2 Conclusions

Conclusions will be made from statements and earlier question making. There has
been some studies on this subject before, upon which the conclusions will be based
on apart from our own research.

3.2 Testing tools and environment

3.2.1 Programming language

The tests will be conducted with programs written in the Ruby programming lan-
guage. Ruby is an object-oriented language which focuses on simplicity and produc-
tivity, designed to be used for scripting as well as bigger projects [14]. It has gained
popularity as a powerful scripting language, but is sometimes said to not be a high-
performance language [14]. There are numerous libraries and other tools written in
the language, and many are available as gems - packages which can be installed and
made available to the Ruby environment using a tool called RubyGems.

13

CHAPTER 3. METHODS 3.2. TESTING TOOLS AND ENVIRONMENT

3.2.2 JSON implementation

JSON serialization and deserialization will be tested using an implementation of
the specification, provided by the ruby gem called json [16]. This implementation
is partly written in C and uses a custom parser and Unicode conversion functions.
There is also an alternative implementation called json-pure written in pure Ruby,
and therefore not having any external dependencies. Json-pure is slightly slower,
and we chose to use the previously mentioned implementation since it is the recom-
mended version [16].

The json gem defines a JSON class and adds two methods to all basic types
(Object.to_json and Object.json_create) when included into the Ruby environ-
ment. The JSON class provides methods for deserialization of JSON documents
into Ruby data structures (JSON.parse), and serialization of Ruby data structures
into JSON documents (JSON.generate) [16]. JSON.generate returns a compact JSON
string without indendation. An alternative, JSON.pretty_generate, which will re-
turn a string with indendation where appropriate is also available. Both of these
methods will be included in the tests.

The to_json method must be manually defined for custom classes to be able
to serialize them, and the implementation does not support deserialization directly
into the original class (due to the lack of tag/type declaration in the JSON format).
Basic data types such as scalars, arrays and hashes are handled well however.

3.2.3 YAML implementation

Support for (de)serialization to and from YAML is included in the Ruby standard
library (In the YAML module). This implementation follows the 1.0 version of
the specification [17] but does include support for the alternative JSON syntax for
sequences and mappings.

The YAML module adds two main methods for transformations. YAML.load
can be used to parse a string or file stream containing a YAML document, while
YAML.dump is used to serialize an object. The implementation can by default serialize
most objects without having to define a custom to_yaml method, and outputs the
class name of the object in the tag part of the YAML output. The result of this
is that the YAML module can recreate a semantically identical copy of the original
object when later loading the serialized data. This can be a big advantage when
the data to serialize contains custom objects compared to the json gem, does not
support custom classes out of the box.

14

CHAPTER 3. METHODS 3.3. TESTING PROCEDURE

3.2.4 Environment

The tests where conducted in the following computer environment.
OS Windows 7 x64
Processor Core 2 Duo P7350
Memory 4GB DDR3 RAM
Ruby v1.8.7 (2010-12-23 patchlevel 330) (i386-mingw32)
JSON json gem (ext) v1.5.1 (x86-mingw32)
YAML version bundled with Ruby

3.3 Testing procedure

The perceived performance of JSON and YAML will be determined from a custom
benchmarking script written in the Ruby programming language [13]. The script
generates two different data sets (described below), which are then serialized using
different Ruby implementations for both formats, followed by a deserialization run
on the serialized data back into the Ruby environment. Both (de)serialization pro-
cesses are done while the time taken is measured. The benchmark also logs the final
file size of the serialized output.

3.4 Test data

Performance testing will be conducted with two separate sets of generated data.
The first data set mimics large amounts of simple data (a single array of objects).
A complex data set will also be used to test performance of the implementations
for documents with deeper hierarchies.

3.4.1 Simple data set

The first data set consists of a large array (ten thousand indexes) with one-dimensional
associative arrays (objects), having predefined keys and randomly generated values
(an integer, a short string and a date object). This type of data set could in practice
be a dictionary or the access log of a system.

3.4.2 Complex data set

The complex data set includes nested objects and additional key-value-pairs for each
object. The data is generated by a custom script which constructs an hierarchy of
hashes. Each hash has an integer, a short and longer string, two date objects and
a child array with zero or more children of the same structure (each child possibly
having a similar child array of their own). A real world example of a data set
designed like this could be a page hierarchy for a website.

15

CHAPTER 3. METHODS 3.5. TESTS

3.5 Tests

3.5.1 Serialization performance

The performance of the serialization process will be measured as the time taken
for each serialization implementation to serialize a previously generated set of data
present in the script environment into their respective formats. The execution
times for each implementation, measured in seconds, will be used to determine the
perceived performance.

3.5.2 Deserialization performance

Each serialization implementation will have its performance tested by using the
resulting output string of the serialization process as input for the deserialization
method. The measured execution time (in seconds) of the process will also be used
here to determine performance.

3.5.3 Serialization output size

The final attribute to investigate is the size of the serialized data. This will be deter-
mined by investigating the size (length) of the output string from the serialization
method, and will be measured in kilobytes.

16

Chapter 4

Results

This chapter presents the results, taken from either testing or conclusions based on
the background information shown in the Background chapter.

4.1 General differences

4.1.1 Data types

See table 4.1 for a comparison of available basic data types in JSON and YAML.
JSON and YAML both incorporates the most basic data types. YAML does however
include better support for numbers along with a native timestamp type. It also
provides functionality to explicitly tag values as specific data types (user-defined or
native), which enables the parser to create a object of the correct type automatically.
This feature does not exist in the JSON specification.

Table 4.1: Basic data types

Type JSON YAML
Integers Yes Yes
Floats Scientific notation Scientific notation
Number specifics Not infinity Also octal/Hexadecimal
Strings Yes (Unicode) Yes (Unicode)
Booleans Yes Yes
Arrays Yes (sequences) Yes
Associative arrays Yes (objects) Yes (mappings)
Null Yes Yes
Timestamps As strings Yes

Avaibility of basic data types in both formats (naming in parentheses).

4.1.2 Structures

Both formats supports lists and associative arrays. YAML includes functionality
like object references and relational trees natively, whereas JSON doesn’t. Object
references can be added to JSON through third-party extensions however. Gener-
ating JSON from data which includes cyclic structures should be avoided as the
format doesn’t support references and thus will end up in an infinite loop unless
special care is taken to prevent this.

17

CHAPTER 4. RESULTS 4.1. GENERAL DIFFERENCES

4.1.3 Implementation

The simplicity of the specification makes parsing and generation of JSON trivial.
The YAML specification explicitly outlines three stages for the parsing process.
Along with the added features compared to JSON, this greatly increases the com-
plexity of the parser and serializer.

4.1.4 Readability

JSON has a simple and very easy to learn syntax, which is somewhat lacking in
human readability. YAML is designed to produce easily read output which is no-
ticeable when compared to JSON documents. It has a much higher readability,
while also being more compact (unless the JSON is generated without indenda-
tion). Comment syntax is available for YAML, along with multiple ways to write
strings. JSON previously allowed a JavaScript-like comment syntax, but it was
removed from the specification in a rather early stage.

Strings in YAML does not need to be quoted most of the time, neither for keys
nor values, which greatly improves readability. This is a big difference from JSON,
where all strings and identifiers (keys) must be quoted.

4.1.5 Universality

JSON is widely spread, being a common standard for many applications on the
web. This has lead to most browsers, and many web frameworks, adding built in
support for the format. YAML on the other hand is currently not a common format
for data exchange on the web. The relatively high complexity of YAML results in
higher requirements for implementations.

4.1.6 Syntax

Table 4.2 showcases the differences found from the syntax comparison between
YAML and JSON, using earlier research which can be found in the background
section. The 1.2 version of the YAML specification brought increased compatibil-
ity with JSON. They are not completely compatible however, as YAML requires
whitespace between mappings and key-value pairs, which can be seen in table 4.3.
This example shows that JSON can be written to be valid YAML, but it does not
work the other way round [20]. Correctly formatted JSON (with whitespace) can be
read by a YAML parser adhering to the v1.2 standard due to the fact that YAML
also incorporates the alternative inline syntax.

4.1.7 Scope of use

JSON is designed to be a light-weight data exchange format, and is especially com-
mon in web based applications. YAML, on the contrary, with its design goal of
high readability along with support for additional complex features, is foremost

18

CHAPTER 4. RESULTS 4.1. GENERAL DIFFERENCES

Table 4.2: Syntax comparison

Type JSON YAML
Comments Not allowed in the current spec-

ification, previously possible.
Denoted with a hash/number
sign, continues for the rest of
the line.

Hierarchy Objects and arrays can be
nested, and are denoted by
braces and brackets, respec-
tively.

Mappings and sequences can be
nested. Hierarchy is determined
by indentation level.

Arrays ["first", "second", 3] - first
- second
- 3
Alt. [first, second, 3]

Objects {"object": {
"a": one,
"b": 2

}}

mapping:
a: one
b: 2

Alt. {a: one, b: 2}
Documents Root node must be an array or

object. Does not support mul-
tiple documents within a trans-
mission.

Root note can be any valid data
type. New documents in a
transmission is denoted by three
dashes. Repeated nodes are de-
fined with ampersand, then ref-
erenced to with an asterisk.

Strings Must be double quoted. Allows
character (tabs, newlines, etc.)
escaping with backslash as the
escape character.

Does not require quoting but
supports both single and dou-
ble quotes (same functionality
as JSON). Also provides two
different block notations.

Numbers Floating point numbers in sci-
entific notation. Infinity is not
permitted.

Built-in support for integers,
floating-point, octal and hex-
adecimal numbers.

Table 4.3: JSON and YAML compatibility
Valid JSON and YAML.
{"name": "Malin", "school": "KTH", year: 2008}

Valid JSON but invalid YAML due to missing whitespace
{"name":"Malin", "school": "KTH",year: 2008}

Valid YAML, invalid JSON due to lack of quotes around strings
{name: Malin, school: "KTH", year: 2008}

19

CHAPTER 4. RESULTS 4.2. PERFORMANCE

used for files meant to be manipulated by humans, such as configuration files. It of-
fers extended possibilities of describing complex structures, which can be considered
redundant in just plain data exchange.

One could consider YAML to be a good substitute for JSON in many tasks, but
the required whitespace and indentation doesn’t do much good when the data is
only meant to be parsed by another computer. It only results in longer processing
times, for no apparent reason. In terms of serialization, there is often no reason
to implement more advanced functionalities. The only required task would be to
transmit some data set, a mission which JSON performs perfectly fine in most cases,
and many times more efficient (in terms of processing times) than YAML. This is
mostly due to the fact that YAML is more complex in its structure, which affects
parsing speed negatively, compared to JSON where parsing is done quite fast and
efficient. This seems to be an important factor to programmers today, making JSON
more commonly used and widespread.

4.2 Performance
This section aims to present the test results from the performance tests described in
the Methods chapter. Testing was conducted on two different data sets, as described
in 3.3. The results are grouped by attribute tested, and results are presented in
tables showcasing the performance of each method for simple and complex data
sets, respectively.

As the JSON standard does not explicitly require indentation (or even spacing
between identifiers and values), there are two options when generating JSON. The
first one is to simply output only what’s necessary, which means smaller data size
(as no whitespace has to be written). This does however minimize readability, which
is not the case for the second option - to have the serializer include indendation and
whitespace (where approriate) to maximize readability. Both cases are included in
the tests, as the JSON implementation used provides methods for both compact
(JSON.generate) and formatted (JSON.pretty_generate) generation.

4.2.1 Serialization performance

Table 4.4: Serialization (dump) performance

Method Simple Complex
JSON.generate 0.1550s 0.5830s
JSON.pretty_generate 0.1470s 0.6060s
YAML.dump 2.4531s 3.4732s

Execution times in seconds for each method on both data sets.

The difference in serialization process performance of both implementations is
very noticeable, as shown in table 4.4. Both JSON generators are relatively equiv-

20

CHAPTER 4. RESULTS 4.2. PERFORMANCE

alent, while the YAML generation is much slower for both sets of data (about 16
times slower for the simple set, and 6 times for the complex).

Something worth noting here is that the YAML implementation handles complex
data relatively better, as the time taken to dump it is only about 1.5 times the simple
data set run - compared to JSON which took 4 times longer on the complex data.

4.2.2 Deserialization performance

Table 4.5: Deserialization (load) performance

Method Simple Complex
JSON.parse 0.0440s 0.0790s
YAML.load 0.2750s 0.3360s

Execution times in seconds for each method on both data sets.

The execution times measured for the deserialization (load) process shows results
similar to the serialization process, which can be seen in table 4.5. Both implemen-
tations are much faster at generating data structures from a serialized string than
doing the opposite. YAML is also slower here, but only 6 (simple data set) and 4
(complex) times in this case.

4.2.3 Serialization output size

Table 4.6: Serialized data size
Method Simple Complex
JSON.generate 841.71kB 6266.31kB
JSON.pretty_generate 1124.92kB 6743.35kB
YAML.dump 831.95kB 6908.54kB

Size (in kilobytes) of the output generated by each method on both data sets.

As can be seen in table 4.6, YAML produces the most compact output for
the simple data set - even smaller than the compact JSON output. The prettily
formatted JSON is considerably larger than the YAML (and the compact JSON,
obviously) output. The smaller size of the YAML output is due to the fact that
quotes in the JSON output stands for a noticeable percent (roughly 11%) of the
output.

A change can be seen for the complex data set, where the YAML output is
larger than both variants of JSON. As the document hierarchy gets more complex,
with deeper nesting being added,the amount of whitespace needed for YAML to
correctly indent everything grows noticeably.

21

Chapter 5

Conclusions

5.1 Theoretical Research

5.1.1 Design goals

The primary design goals for JSON, to be a simple and effective data exchange
format, but also being easy to generate and parse seems to accord with the research
conducted in this study. It is widely used on the net, and is used natively available
in the most common modern web browsers. The fact that it is easy to implement,
and has been just that in numerous libraries in different programming languages
strengthen it’s usefulness. JSON meets its design goals as a simple exchange format
very well, but can require extra work to function well on data sets which contain
anything other than the built in types it supports.

On the contrary, there is YAML, whose design goals focuses on human readabil-
ity and extendability. As has been concluded, it is clearly very easy to read thanks
to the required usage of whitespace and the ability to skip surrounding quotes for
strings. YAML also has the advantage of allowing comments in the document.
Users can easily read and manipulate the output, which is one of the reasons as to
why its often used for configuration files and the like.

5.1.2 Functionality

JSON only supports a simple hierarchy, built through associative arrays and lists.
Extensions exist which enables simulated object references, but this requires some
work and will not be discussed in this comparison. YAML natively supports object
references and relational trees. This enables it to present cyclic data structures and
deep hierarchies easily. Extended data typing, for both custom types and general
data such as date types, is also implemented, which facilitates its aims to produce
human readable files from complicated structures. JSON lacks support for more
complex data types and does not support object references at all. Most advanced
data types can be expressed as a combination of the basic types available in JSON
however. An example would be how dates are incorporated as strings.

Simplicity factors can be considered to be affected when working with more
complicated structures where human readability will be deteriorated, though it
makes no great impact on effectiveness and parsing as it seems. YAML is not as
widely used likely due to the fact that most data being stored or transmitted from
servers to clients over the net doesn’t explicitly need the extended functionality.

22

CHAPTER 5. CONCLUSIONS 5.2. PERFORMANCE

5.1.3 Similarity and evolution

An interesting point is that developers from both YAML and JSON somehow aims
to make the languages quite similar. YAML developers included the alternative
inline syntax in version 1.2, and Douglas Crockford (the founder of JSON) removed
commenting and the ability to use single quotes for strings from the former JSON
specification to be inline with the YAML specification.

The YAML specification is still being revised based on continous user input from
the YAML mailing list. This can affect universality and usability in future versions
of the specification in an positive way, possibly making it a more common format on
the net. The JSON standard is a one version standard, but it has been revised. The
founder never intended it to be a evolving standard however, which is the reason
for why a version number is not included [3].

5.2 Performance

The tests shows that the performance of the JSON and YAML implementations
being tested greatly differ. JSON generation and parsing is faster for all sets of data
tested. A simple reason for this (not necessarily exclusive to the implementations
being used) could be the fact that YAML as a format is much more complex due
to the additional features available, and therefore requires more processing when
loading and dumping data. This can be seen by investigating the serialization
process, for which the YAML specification describes four different stages - whereas
JSON only requires a single pass of the data.

One general explanation behind the YAML implementation’s seemingly bad per-
formance is that it does a more thorough work in the general serialization process.
This includes inspecting objects, inserting tags for custom data types and taking
advantage of the alternative string block notations in YAML. The JSON implemen-
tation used only supports serialization to and from the basic data types, and will
fail for custom objects unless a to_json method has been defined. The deserializa-
tion process does not handle custom types at all, which means that the JSON.parse
method is limited to only returning an array or hash with the deserialized values.

Comparing the execution times between simple and complex data yields some
interesting information. YAML seems to handle a growing data set with deeper
hierarchies relatively better than JSON. It is possible that an even bigger data set
could favour YAML even more, possibly ending up as the faster implementation for
data that big.

Looking at the test results and reflecting on the theoretical research, it is clear
that JSON is the favorable serialization format when speed is the most important
factor. As such, JSON is the format to recommend unless the data is very complex
or requires features not available to JSON, such as object references/relations or
the ability to deserialize custom objects into their original form (not generic objects
or arrays). In these cases YAML is a good alternative.

23

CHAPTER 5. CONCLUSIONS 5.3. FORMAT OF CHOICE

5.3 Format of choice
Theoretical comparison has shown both languages to be very useful, but in different
ways. They seem to meet their formerly stated design goals rather well. One could
consider to use them for the same task, and it would likely work well. Both formats
excels in different aspects though, and the choice of format to use in a project greatly
depends how the three factors below are prioritized.

5.3.1 Functionality

YAML features some functionality missing in JSON. If the data to be serialized in-
cludes object references and these are to be preserved one will have to use YAML, or
JSON together with an extension providing support for this (such as dojox.json.ref [18]).
YAML also includes the ability to tag values as specific data types, either to map
data to user defined types or to explicitly cast values other basic types. This allows
YAML implementations to directly transform data structures in the serialized docu-
ment into native objects in the programming environment. JSON lacks this ability,
and such solution will have to be developed separately if complete serialization is
desired.

5.3.2 Readability

YAML is the recommended choice if high human readability is desired as even the
“pretty” output of the JSON generator gets increasingly harder to read for a human
as the data set grows. This factor is of least importantance when the serialized data
is only meant to be transferred and parsed by another computer.

5.3.3 Performance

The performance testing proved the JSON implementation to be many times faster
than YAML for both serialization (dumping) and deserialization (loading). The
complexity of the YAML processing was most likely the biggest reason behind this.
The relevancy of this depends on how critical processing speed is in the project, as
both implemenations processed the data in respectable times.

24

References

[1] Ecma International, 2009. ECMAScript Language Specification. 5th edition.
<http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf>

[2] Crockford D. Introducing JSON. (Accessed 2011-02-07).
<http://www.json.org/index.html>

[3] Crockford D. The JSON-saga. (Accessed 2011-02-21).
<http://developer.yahoo.com/yui/theater/video.php?v=crockford-json>

[4] JSON.org. JSON: The Fat-Free Alternative to XML. (Accessed 2011-03-28).
<http://www.json.org/xml.html>

[5] Ben Kiki O. YAML Ain’t Markup Language (YAML) Version 1.2.
(Accessed 2011-02-21).
<http://www.yaml.org/spec/1.2/spec.html>

[6] Sureau D. JSON - JavaScript Object Notation. (Accessed 2011-02-07).
<http://www.xul.fr/ajax-javascript-json.html>

[7] Cline M. Serialization and Unserialization. (Accessed 2011-02-07).
<http://www.parashift.com/c++-faq-lite/serialization.html#faq-36.3>

[8] Oracle. Java Object Serialization Specification: 1 - System Architecture.
(Accessed 2011-02-22).
<http://download.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html>

[9] MSDN (Microsoft). Object Serialization in .NET. (Accessed 2011-02-22).
<http://msdn.microsoft.com/en-us/library/ms973893.aspx>

[10] MSDN (Microsoft), 2007. An Introduction to JavaScript Object Notation (JSON) in
JavaScript and .NET. (Accessed 2011-03-28).
<http://msdn.microsoft.com/en-us/library/bb299886.aspx>

[11] Google. Using JSON in the Google Data Protocol. (Accessed 2011-02-21).
<http://code.google.com/intl/sv-SE/apis/gdata/docs/json.html>

[12] Wikipedia. JSON. (Accessed 2011-02-09).
<http://en.wikipedia.org/wiki/JSON>

[13] Ruby Programming Language. (Accessed 2011-03-24).
<http://www.ruby-lang.org/>

[14] Morin M, 2010-08-26. What is Ruby? (Accessed 2011-03-24).
<http://ruby.about.com/od/beginningruby/a/WhatIsRuby.htm>

[15] Ruby-doc. Module: Marshal. (Accessed 2011-02-22).
<http://www.ruby-doc.org/core/classes/Marshal.html>

25

REFERENCES REFERENCES

[16] Frank F. JSON implementation for Ruby. (Accessed 2011-02-21).
<http://flori.github.com/json/>

[17] Ruby-doc (Ruby on Rails). Module: YAML. (Accessed 2011-04-12).
<http://corelib.rubyonrails.org/classes/YAML.html>

[18] Zyp K. Documentation - dojox.json.ref. (Accessed 2011-04-12).
<http://dojotoolkit.org/reference-guide/dojox/json/ref.html>

[19] Zyp K. JSON Schema Media Type. (Accessed 2011-04-12).
<http://tools.ietf.org/html/draft-zyp-json-schema-03>

[20] Almaer D, 2005-11-21. JSON == YAML? It’s getting closer to truth.
(Accessed 2011-04-13).
<http://ajaxian.com/archives/json-yaml-its-getting-closer-to-truth>

26

	Table of Contents
	Preface
	Introduction
	Problem Statement

	Background
	Serialization
	Definition
	General Method
	Scope of use

	Parsing
	General
	Serialization and parsing

	JSON
	General
	Origin
	Functionality
	Syntax
	Scope of use
	Process

	YAML
	General
	Origin
	Functionality
	Syntax
	Scope of use
	Process

	Methods
	Research procedure
	Research
	Conclusions

	Testing tools and environment
	Programming language
	JSON implementation
	YAML implementation
	Environment

	Testing procedure
	Test data
	Simple data set
	Complex data set

	Tests
	Serialization performance
	Deserialization performance
	Serialization output size

	Results
	General differences
	Data types
	Structures
	Implementation
	Readability
	Universality
	Syntax
	Scope of use

	Performance
	Serialization performance
	Deserialization performance
	Serialization output size

	Conclusions
	Theoretical Research
	Design goals
	Functionality
	Similarity and evolution

	Performance
	Format of choice
	Functionality
	Readability
	Performance

	References

