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Abstract

In this project we describe a few variations of the game backgammon. We explain different algorithms,

used to play backgammon and other similar games, and develop our own rule engine and a set of players.

By developing an evaluation function for playing board games, we aim to find out if it’s possible to

construct a simple computerized player that outperforms other players, and which properties such a

player should have. The player programs that we have developed are very primitive, but there are

distinct tendencies revealing which players dominate the others. The winning player’s only strategy is

to hit the opponent’s lone checkers, while protecting its own.



Sammanfattning

I denna uppsats beskriver vi några varianter av spelet backgammon. Vi går igenom olika algoritmer

som används för att spela backgammon och andra liknande spel, och utvecklar vår egen regelmotor och

en uppsättning spelare. Vi vill skapa en evalueringsfunktion för att spela brädspel så att vi ska kunna

ta reda på om det går att konstruera en enkel datorspelare som vinner över andra spelare, och vilka

egenskaper en sådan spelare ska ha. Spelarprogrammen som vi utvecklat är mycket primitiva, men det

är ändå tydligt vilka spelare som tenderar att dominiera andra. Den vinnande spelaren har som sin

enda strategi att slå ut motståndarens ensamma pjäser, medan den skyddar sina egna.
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1 Introduction 1.1 Statement of collaboration

1 Introduction

Artificial intelligence for computerized gameplay

has been studied for a long time, but not until re-

cently has the topic gained publicity. [6, p. xix]

While some of the algorithms have few appli-

cations outside the domain of human-imitating

gameplaying opponents, they still have quite a

few things to teach us. Firstly, in their algorith-

mic forms they can improve our understanding

of probability, tactics and consequences of pre-

vious decision-making. Secondly, they serve as

measurements of the development in the com-

puter industry, as they are one the easiest compre-

hensible ways of comparing human intelligence

with computational thoroughness (especially in

the well-known matches between computers and

human world champions). Thirdly, the bene-

fits of the development of efficient gaming oppo-

nents shouldn’t be underestimated, as they pro-

vide recreation as well as sharpening of our logical

and tactical abilities, which is often benefitial in

other situations in our lives.

The game of backgammon is particularly interest-

ing, and is one of the most studied problems. [7]

It’s a two-player zero-sum game with a chance ele-

ment. Since we might experience “bad luck” with

the dice throws, the chance element makes it im-

possible to develop a strategy that is guaranteed

to perform well in at least 50 % of the games in the

short run, as even a novice player can beat a skilled

one thanks to luck (but note that this won’t happen

in the long run, when “the luck runs out”). Devel-

opment of new software for playing backgammon

can improve the availability of games for different

platforms, as well as promote further research of

the topic. Backgammon is also theoretically inter-

esting; if we decide that the problem we want to

solve is to find the true probability of winning from

a given game state when both players are rational,

it turns out that we don’t know whether the prob-

lem is in P. [3] That makes it unlikely that we will

find a simple algorithm for solving it anytime soon,

and requires us to create methods for optimizing

our guesses.

In this project, we intend to present a few dif-

ferent games played on the the same backgam-

mon board and explain our reasons for choosing

a certain set of rules. Furthermore, we will in-

troduce algorithms, frequently used when imple-

menting backgammon artificial intelligence (AI)

players. Lastly, we’ll describe our own experi-

ments for constructing an evaluation function, the

conclusions we drew and discuss possibilities for

future research.

1.1 Statement of collaboration

This thesis has been written entirely by Anders

Sjöqvist and André Stenlund. It’s our firm belief

that every task must be assigned to exactly one in-

dividual, or else it might be overlooked. Accord-

ing to this principle, André was assigned the main

responsibility of coding the rule engine and game-

playing software, as well as running the tests. An-

ders, on the other hand, was responsible for finding

appropriate literature, deciding about algorithms

and writing the report. The division of responsibil-

ities also roughly represents how the work was di-

vided, although we made sure that we both agreed

on everything. In addition, some tasks were done

jointly, as exemplified by the separate rule engine

written by Anders and parts of the literature search

which was made by André.
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3.2 Rules of classic backgammon 3 Playing backgammon

2 Problem statement

We want to use Alpha-beta pruning and Expecti-

max to find an efficient backgammon AI evaluation

function, in order to increase our own understand-

ing, summarize some important algorithms and

draw conclusions about the behavior of a few sim-

ple tactics. Preferably, these conclusions should be

able to help game developers or enable future re-

search. Specifically, this is the question we want to

answer:

“Is it possible to construct an evaluation

function that, using simple and humanly

comprehensible rules, with statistical sig-

nificance can outperform other evalua-

tion functions in backgammon?”

3 Playing backgammon

The information in this section is available

from various sources, but we recommend using

Backgammon Galore for reference. [1] They also

have some information about how backgammon

programs work.

We will hereby explain the rules of a few games.

The rules are provided for completeness, to ensure

that a reader who has already played backgammon

understands the rules in the same way that we do.

It’s out of the scope of this thesis to try to teach a

beginner how to play, and although the rules that

we have implemented are also described here, they

might be explained more intuitively elsewhere.

3.1 Terminology and basic rules

Backgammon is a two-player game, and the game

pieces (often divided into black and white) are

called checkers. A player initiates his turn by throw-

ing the two dice, which must be thrown together

and display an unambiguous result (i.e. if at least

one die lands on the floor or stops in a tilted posi-

tion, both dice must be thrown again). The check-

ers are then, if possible, moved around the board

and placed on some of the 24 points. The points are

located on both sides of the board, with 12 on each

side, and divided into groups of six by the verti-

cal bar. If a point is occupied by a single checker,

it’s called a blot. Depending on the variant of the

game, the blot might be hit by the opponent and

placed on the bar. The six final points along the

path of movement for one of the players is called

that player’s home board. If a player has a checker

on the bar, he must enter it into the opposing home

board before he can make any other move. If there

are no possibilities to enter the checker, given the

numbers on the dice, the player must wait a turn.

Once all the checkers are gathered in the own home

board, the player may start bearing off the checkers.

3.2 Rules of classic backgammon

Figure 1 depicts the initial board setup in classic

backgammon. The game is played with two dice,

indicating the movement of the checkers. A dice

throw of {3, 5} means that two checkers may be

moved 3 and 5 points, respectively, or that one

checker may be moved twice, a total of 8 points

(but only in case a temporary stop on the 3rd or

5th point is legal, which is the case when at most

one of the opponent’s checkers is placed there). If

both dice show the same number, the player should

instead make four moves, if possible. As long as

there’s at least one possible move, the player is

forced to move. If there are different possibilities,

any is permitted.

In the setup in Figure 1, Black moves counter-

clockwise along increasing numbers from the
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3 Playing backgammon 3.3 Rules of Greek backgammon
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Figure 1: Setup of classic backgammon

lower left corner to the upper left. The movement

of White is mirrored – from the upper left to the

lower left. The objective of the game is to move

all the checkers to the home board, so that they

can be borne off. The first player to bear off all the

checkers wins the game.

The strategy of the game is to build so-called

doors, a point with at least two checkers. Blots are

to be avoided if possible, as they can be hit by the

opponent and placed on the bar. In other words,

the doors both protect the checkers and prevent

the opponent from landing on that point. A player

may continue to move after a hit if there are any

moves left, in accordance with the numbers on the

dice. If there are checkers on the bar, they must

be entered into the game before any other moves

are allowed for that player. They are entered by

landing on a free point (or a point with a blot)

in the opponent’s home board, according to the

numbers on the dice.

Classic backgammon involes a doubling die, al-

lowing a player, about to roll, to propose that they

double the stakes. This forces the opponent to

choose between continuing with raised stakes or

ending the game and thereby losing the number of

points that the doubling die is currently display-

ing.

3.3 Rules of Greek backgammon

There are, of course, other variants of backgammon

than the classic one. We were also considering

the three Greek games of Portes (Πόρτες), Plakoto

(Πλακωτό) and Fevga (Φεύγα).

One difference from Western backgammon that

made us consider the Greek games, was that they

lack the doubling die, present in classic backgam-

mon. Instead, if a player manages to bear off all the

checkers before the opponent has borne off a single

one, the winning score will be 2 instead of 1. The

choice of game will be discussed and explained in

subsection 5.2 and suggestions concerning inclu-

sion of other games are mentioned in section 8.

The other difference in Greek backgammon is that

the winner of the opening roll rerolls for his first

turn.

3.3.1 Portes

Apart from the above-mentioned differences, the

game is the same as Western backgammon. The

initial setup is the same as the classic, shown in

Figure 1, and the name itself, Portes, refers to the

strategy of building doors.

3.3.2 Fevga

Fevga means escape, and has to do with the fact

that the players chase each other in the same

counter-clockwise direction on the board. This

setup, shown in Figure 2, is symmetrical along the

diagonal rather than the horizontal.
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4 Computer algorithms
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Figure 2: Setup of Fevga

There’s no hitting, which means that a single

checker controls a point. The strategy is to block

as many points as possible, preferably in a line, to

prevent the opponent from moving. Six consecu-

tive blocked points are called a prime. A player is

not allowed to build a prime in the starting table.

They are allowed elsewhere on the board, but the

player must move if all of the opponent’s check-

ers are placed on the point immediately behind the

prime.

Before being allowed to move anything else, a

player must move the first checker past the starting

point of the other player.

3.3.3 Plakoto

As in Fevga, there’s no hitting. Instead, a blot is

trapped if the opponent lands on it (even if it’s with

a single checker) and can’t be moved until the trap-

ping checker is moved. The closer to the starting

point you get trapped the worse. The strategy is

that, once having trapped important checker, place

as many checkers as possible on that point, to lower

the risk of having to leave the point because of un-

fortunate dice throws. The starting point is called

the mother, and having the mother checker (the last

remaining checker on the mother point) trapped

normally means losing the game with a score of 2

(since it won’t be released until the opponent bears

off the last checkers), unless the opponent’s mother

checker is also trapped.
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Figure 3: Setup of Plakoto

4 Computer algorithms

Backgammon is a stochastic zero-sum game with

perfect information. Given that one player wins as

much as the other player loses, the game is zero-

sum. [6, p. 73][8] Unlike Poker, there’s no infor-

mation that’s available to one player but hidden

from the other, which is the definition for perfect

information. On a theoretical level, what makes

it different from chess is the element of luck intro-

duced by the dice. This makes it stochastic.
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4 Computer algorithms 4.2 Expectimax

For many games, it’s impossible to evaluate ev-

ery possible outcome in order to find the best

move. Instead, we use an n-move look-ahead strat-

egy (where a move is often called a ply). [6,

pp. 73&78] For this reason, there are basically two

classes of algorithms that we need. The first gener-

ates sets of game states that we are likely to see in

the future, and the second makes educated guesses

about a given board when we don’t have time to

wait for a definite answer.

We’ll now give an overview of six algorithms:

Minimax Using a tree structure to find the optimal

strategy for games with perfect information.

Expectimax Adding support for stochastic games

to the game tree.

Alpha-beta pruning Removing branches that

seem unfruitful.

*-Minimax Improving alpha-beta by also pruning

chance nodes.

Knowledge-based Evaluation based on rules dic-

tated by an expert.

Neural networks Evaluation based on a neural

network that has been exposed to thousands

of games.

4.1 Minimax

For evaluating non-stochastic games, we can as-

sume that both players play rationally. We define

rational as in every game state choosing a move

that guarantees victory, if there is one, which is

equivalent to limiting the opponent’s possibilities

to make a good move as much as possible. In a two-

player game, a given player who’s ready to make a

move (calledmax from here on) should pick a path

that prevents the opponent (called min) from get-

ting a chance to win. In that sense, max is always

trying to choose the path that promises the maxi-

mum possible return, knowing that min is always

trying to minimize it. [2][6, p. 74]

Given these simple rules, we can construct a

game tree, with the leaves denoting a win (+1),

a loss (−1) or a draw (0). As max plays ratio-

nally, he treats a game state as winning if there’s

at least one path that’ll make him win. Therefore,

the value minimax(v) of an internal max node v

is maxu∈children(v), and, similarily, the value of an

internal min node v is minu∈children(v).

4.2 Expectimax

Expectimax is a variant of Minimax, used for

stochastic games, where weights are used to eval-

uate the likelihood of different scenarios. In a non-

stochastic game, max and min would just have

made alternating moves, which means that the

Minimax tree consists of alternating max and min

move nodes. The Expectimax tree, on the other

hand, is constructed by placing chance nodes be-

tween every move node in the hierarchy. This is

because after max has made his move, min rolls

the dice before making his move and so on. When

calculating the expected value of a move node, the

probability of the chance children are taken into

consideration. [6, p. 86]

In our case, the probability of a dice roll {x, y} is

given by

P({x, y}) =

 1/36, x = y

1/18, x , y

if we don’t care about the order of x and y.

7



4.4 *-Minimax 4 Computer algorithms

4.3 Alpha-beta pruning

The Expectimax tree quickly grows enormous. If

we assume that every node has b children (the

branching factor) and the depth of the tree is d, the

complexity of the problem will be O(bd). [6, p. 78]

The gameplay in backgammon, even in a situation

where both players make random moves, tends

to move towards an end state, as movement for-

ward along the path is more common than being

hit, placed on the bar and having to start over. It

is, however, entirely possible to find sequences of

movements that would result in an endless game

(consider one checker from each player that always

gets hit by the other when it has reached it’s home

board). Such a game is very unlikely, but it proves

that the game tree can grow infinitely large. Thus,

we need to find a way to limit the branches that we

decide to explore.

One way to optimize the search, is to use Alpha-

beta pruning. Assume that max is about to make

his move, and that he has several options to choose

from. He knows that min will choose the minimal

score he can find among his options. This means

that if we notice that one of the children of the min

node offers a value equal to or worse than a min

node we have already seen, we can immediately

stop evaluating those children, as max knows that

choosing that option would givemin a better game

state than necessary, and it can never help us to

continue with that node. In the same way, we can

stop evaluating children to a max node that are

equal to or better than a max node that we have

already seen. [6, p. 82]

The algorithm makes use of this fact by assigning

an α-value to the max node, a value that can never

decrease. Once max has seen a particular α, he

knows that it is the lowest possible value he can

expect and will not consider anything worse. In

the same way, a min node is associated with a β-

value, which can never increase. As soon as these

conditions are broken, we prune beneath the node

and continue on to the next.

4.4 *-Minimax

Improvements to Alpha-beta pruning were sug-

gested already in 1983, but they didn’t receive

much attention until recently, and they aren’t used

much. The Star1 algorithm makes use of the fact

that we can prune the children of a chance node as

well, since we know the probability and the upper

and lower limits of the value function. The further

improved Star2 requires that a chance node is fol-

lowed by a max/min-node, and does a preliminary

probing that might improve the efficiency of the

search. If it fails, the program can still continue as

Star1. [2][8]

4.5 Knowledge-based evaluation

Knowledge-based algorithms were common in the

early backgammon programs, mostly because of

the limited computational power. In 1979, a

knowledge-based program called BKG defeated

the world champion Luigi Villa 7–1. However, the

author later admitted that the program had been

lucky with the rolls, and probably wouldn’t have

won otherwise. [2]

4.6 Neural networks

The most successful backgammon programs today

use artificial neural networks to evaluate specific

game states. Neurogammon, constructed by Ger-

ald Tesauro, was an early example using an artifi-

cial neural network, trained through supervised

learning. In other words, a human was feed-

ing it game states and told it which the correct

8



5 Constructing our own evaluation function 5.2 Choice of game rules

outcome should be. Tesauro went on to creating

TD-Gammon, which learned backgammon through

self-play. Since backgammon is a stochastic game,

it could avoid ending up in, and thus only learning

about, a specific local area because of suboptimal

training. TD-Gammon belongs to the top-3 players

in the world. [2][4, pp. 210–212][7]

Another excellent backgammon program using

artifical neural networks is the freely distributed

GNU Backgammon, which outperforms commercial

competitors. Apart from forward pruning as a

means of reducing the number of game states, it

also uses different neural networks depending on

the situation, it contains an endgame database and

so on. [2]

5 Constructing our own evalu-

ation function

5.1 Research process

We started off by studying books, reports and lec-

ture notes about Expectimax and Alpha-beta prun-

ing in general, and backgammon AI in particular,

to get an overall view of the current research. Then,

we decided on a few basic strategies to evaluate,

and constructed a rule engine creating a tree of

possible moves and implemented the algorithms

necessary to pick a path through the tree. This was

done in C]. Finally, using tweaks to the algorithm,

a small range of AI players with different tactics

were then used to play a large number of games

against each other. We were especially interested

in finding out whether there was potentially one

dominant player, or whether certain tactics are bet-

ter suited when playing against opponents with

certain other tactics.

5.2 Choice of game rules

Backgammon seemed to be an interesting game,

because of the relatively simple set of rules (as op-

posed to chess, for example) and the natural flow of

the game towards an end even when picking ran-

domized legal moves (also as opposed to chess, as

it happens). In other words, a rather naı̈ve player

would still without question be able to play the

game to the end, although maybe not at a very

proficient level.

One thing that troubled us with the classic back-

gammon rules was the doubling die, as it would

require a secondary evaluation function to decide

whether a game state seemed hopeless or, on the

contrary, promising enough to raise the stakes.

This secondary evaluation function would carry

the risk of taking over the game, never allowing

the primary evaluation function to play all the way

to the end.

Knowing about the Greek versions of the game,

we instead decided to focus on the game of Portes.

While it has the element of a double win in case

all of the winner’s checkers are borne off before

any of the opponent’s are, that has little effect on

the gameplay. For human players, this rule makes

the game interesting even after it’s become obvious

who’ll win, but a computer is not affected by those

feelings. Still, there might be a tendency to take

higher risks when there’s nothing more to lose, but

we believe that the effect on the gameplay would

be minor and difficult to take into account.

Having decided on Portes, we wanted to men-

tion Fevga and Plakoto as well, since they are usu-

ally played one after each other. We discussed

implementing rule engines for them too, but that

would’ve made it more difficult to reach a conclu-

sion. Our suggestions regarding the other games

are mentioned in section 8.

9



5.4 Rule engine 5 Constructing our own evaluation function

5.3 Choice of algorithm

Most modern backgammon programs use Expec-

timax in some form. [2][5] The theory behind it is

also perfectly sound, which made it more or less

mandatory for us to implement our software using

these algorithms. Our aim, however, was to have

a look at evaluation functions that differ from the

most common ones.

Given that artificial neural networks are compli-

cated, take a lot of time and resources to train, and

the result of the algorithmic fine-tuning of the lay-

ers is almost impossible to understand, let alone

motivate in an academic paper, we decided to set-

tle for knowledge-based algorithms. Implement-

ing an artificial neural network may very well be a

nice exercise in artificial intelligence, but it might

not deliver many new insights to a project. Most

of all, it’s extremely difficult to explain why the

neural network behaves in a certain way. By in-

stead focusing on creating knowledge-based play-

ers, we could draw conclusions about which prim-

itive evaluation functions seem to work well in a

lookahead environment.

Last but not least, we also discussed what a

human player is really looking for. There are al-

ready backgammon programs out there that could

beat the world champions. Maybe what the world

needs is not another one that is exactly the same,

but rather an opponent that a human player can

learn to master?

5.4 Rule engine

The rule engine in our system is fed a game state, a

dice roll and which of the players is about to move.

It is supposed to return a list of new games states

that are possible given this information. What we

have to keep in mind, is that a set of dice {x, y},

where x , y, can yield different results depending

on the order we choose to make the moves. Con-

sider the state depicted in Figure 4, where Black

is about to move. If he gets the dice roll {1, 2}, he

can choose to move 1–2–4 or 1–3–4, since he de-

cides which move to play first. The final position

of the Black checker will be the same, but landing

on point 2 will hit White’s blot on the way.
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Figure 4: Black is ready to hit White

While this might sound tricky, the implementa-

tion is rather straight-forward. The first step is to

create a function that returns all game states that

are possible after moving a single checker. This

function tries to move a checker from the bar, if

there is one there. Otherwise, it tries to move a

checker from every occupied point on the board.

There are five possibilities:

1. The checker can be moved to either an empty

point, or to a point occupied by checkers of

the same color.

2. The checker hits a blot of the opposite color,

and remains at that point. The blot is moved

10
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to the bar.

3. The checker can be borne off, if it can be done

with the exact number of steps to leave the

board, but only if all checkers are in the home

board.

4. The checker can be borne off, if it can be moved

at least the necessary number of steps and it’s

standing on the rearmost occupied point along

the path.

5. The checker cannot be moved.

Having coded this function, the rest is just a

matter of using the function sequentially to try

all possibilities of the dice roll in any order, and

for the special case that the dice show the same

numbers, instead running the function sequen-

tially four times. If it turns out that an empty

list is returned at any stage (indicating no possible

moves), we settle for the last non-empty list. Any

duplicated state is of course important to remove

to increase efficiency.

Since the rule engine is such an important part of

the solution, we decided to independently design

our own rule engines. We then tested them on

the same input data, to make sure that the output

was exactly the same. Once we were certain that

the programs produced the same sets of possible

moves, one of them was discarded. The reason for

spending extra time with the rule engine was that

an AI player can be more or less clever in the way it

makes its decisions, but as long as the rule engine is

guaranteed to be correct, the AI players are forced

to obey the rules of the game. In other words,

with a buggy rule engine, none of the results of

the test runs could be used to draw conclusions,

whereas a buggy player could only affect its own

results. What’s more, the distinction between bugs

and poor performance is a bit more fuzzy for an AI

player.

5.5 AI players

We constructed several evaluation functions, and

discussed which properties should be tested. We

agreed that most of the strategic game states that

we could come up with should be possible to detect

without explicitly trying to make forecasts to find

them. For example, struggling to place the check-

ers so that they are in reach of hitting the oppo-

nent’s blots might be meaningless, since the game

tree should be able to find these opportunities au-

tomatically through the lookahead. Contrarily, the

more sophisticated the algorithm tries to be, the

more prone it is to exhibit unintended side effects.

Besides, if we actually managed to construct an

AI player that predicts the future successfully for

a given board, it also gets an unfair advantage to

other algorithms as it would be similar to evalu-

ating the game tree to different levels for different

algorithms. Thus, we decided that only the most

basic properties should be tested.

We are in no way experts on backgammon, and

hence based the strategy on what is well-known

about the game. Since the overall strategy of Portes

is to build doors, we decided to base one strategy

on building many doors (in the ideal case as many

doors with two checkers as possible) and another

on avoiding being hit (which means that we don’t

care about the number of doors). We wanted to

limit the scores for all evaluation functions to the

interval [−1, 1], partly to make them easier to un-

derstand for a human, and partly to make certain

that we won’t accidentally overflow a variable or

lose precision. The output from the evaluation

functions doesn’t have to be comparable between

the different functions, though, as they are only
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5.5 AI players 5 Constructing our own evaluation function

measured against themselves for different game

states. After having experimented we settled on

these players:

Hit1 Prefers hitting the opponent’s blots. This is

done by calculating the evaluation scores

e(s,max) = .055 × hmin and

e(s′,min) = −.055 × h′max

for the game states s and s′ where hmin and

h′max are the number of the opponent’s check-

ers currently placed on the bar (i.e. waiting to

be entered into the board) in their respective

game states. Since there are only 15 checkers,

we get e(s,max) ∈ [0, .825]. As we can see, the

score is proportional to the number of check-

ers on the bar, which means that a game state

where we would hit one checker with 100 %

probability is considered equivalent to a game

state where we would hit two checkers with

50 % probability and none with 50 %.

Hit2 Tries to hit the opponent’s blots, while pro-

tecting its own. It using proportional scores

like Hit1, but focuses on the difference in

checkers on the bar between the opponent and

itself,

e(s,max) = .055 × (hmin − hmax) and

e(s′,min) = −.055 × (h′max − h′min).

In this case, e ∈ [−.825, .825].

Door Prefers building many doors and limiting

the same for the opponent, by assigning a

score proportional to the difference in num-

ber of doors,

e(s,max) = .05 × (dmax − dmin) and

e(s′,min) = −.05 × (d′min − d′max),

where dmax and dmin represent the number

of points with at least two of the respective

player’s own checkers. With 15 checkers,

there can be a maximum of 7 doors, and we

get e ∈ [−.35, .35]. Note that this strategy is

not the same as avoiding blots. Such a strat-

egy would not care whether the doors have

many checkers on them or only a few, as long

as we’re not leaving any checkers alone.

DoorHit1 With this player, we started experiment-

ing for real. This one wants to hit the oppo-

nent’s blots while protecting its own. At the

same time, it prefers doors. Using the same

notation as above, this is the player we settled

for:

e(s,max) = .025 × (dmax − dmin)

+ .02525 × (hmin − hmax) and

e(s′,min) = −.025 × (d′min − d′max)

− .02525 × (h′max − h′min)

The result is e ∈ [−.55375, .55375].

DoorHit2 Similar to DoorHit1 but with more com-

plicated calculations. Hits the opponent’s

blots, protects its own, prefers doors (small

ones) with increasing value if the doors are

placed in the home board. From the perspec-

tive of player max, a door i is assigned a cu-

mulative grade

ni =


2, for a door of max checkers

+ 1, iff in max’s home board

− 1, iff more than 4 checkers

For the opponent’s doors, another cumulative

grade is calculated for each door j:

m j =

 −2, for a door of min checkers

+ 1, iff more than 4 checkers

12
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These grades are then combined with the

number of checkers on the bar:

e(s,max) = .01 ×

∑
i

ni +
∑

j

m j


+ .029 × (hmin − hmax)

e(s′,min) is calculated similarily. For this eval-

uation function, e ∈ [−.635, .635].

Random Completely random moves, for compar-

ison. The score is calculated uniformly so that

e ∈ [−1, 1].

The idea with these players was that they’d return

a constant reward or penalty based on a count of

hits or doors. They are really primitive, but they

are mostly meant to be simple enough so that their

behavior can be compared and understood.

We also tried to implement a player that val-

ued states that gave him a lot of options, since a

very limited set of options generally means that the

opponent has an advantage in some way. Unfor-

tunately, it turned out that the calculation of how

many possible moves there are was too expensive

to try out, even when reducing the depth of the

tree.

5.6 Automated test framework

We constructed an automated test harness in order

to let the different players compete against each

other. It didn’t try to modify or develop the players

itself, but rather simplified the execution of the

programs, while keeping track of the scores.

6 Results

Using Expectimax with Alpha-beta pruning and a

depth (ply) of 3, we tested all combination of our
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8 Further research

six players against each other. These tests were

generally performed in series of 100 games, but we

ran more games with a few of them, to get more

reliable results. The outcome of these tests can be

viewed in Table 1. For each result, we ran a two-

tailed sign test. We decided on a cut-off for our

presentation of p-values at 5 %. Anything above

that should be run a substantial number of times

more if we want to reach any conclusions.

First, we noted that the player Random loses to

all other players. This means that our AI play-

ers are working, as they are at least doing a better

job than pure randomness does. While we have

to admit that it was a bit discouraging that they

didn’t perform even better, we have to keep in

mind that they all use extremely basic strategies.

Even though there might be theoretical discussions

about the usage for a randomizing player, we had

no longer any need for it for the purpose of devel-

oping an evaluation function, and could therefore

discard it.

Having removed Random, we could clearly see

that Hit1 was losing to all the remaining play-

ers. Among the rest, however, the patterns are not

completely obvious. Of course, Hit2 performed

well against Door as well as against DoorHit2, but

DoorHit1 put up a good fight. Actually, when just

looking at the numbers, it seems like a cycle is al-

most formed as Hit2 is better than DoorHit2, which

is slightly better than DoorHit1, which is virtually

as good as Hit2. This reminds us of games like

rock-paper-scissors, where there is no absolute win-

ner but rather different ways of beating different

opponents. In our case, though, we concluded

that Hit2 outperformed all other players except for

one, which it still performed well against. Thus,

we declared Hit2 the winner.

7 Conclusions

The tests took a long time to run, and if we had

had the computational power to run more of them

we could’ve received results that were statistically

better. However, we believe that it wouldn’t have

changed anything.

Hit2 was the player that tried to hit the oppo-

nent’s blots while protecting its own. We find it

facinating that such a simple set of rules can prove

to be the dominant one, but are at the same time

surprised that the very similar Hit1 performed so

poorly. It seems that halfway right can be com-

pletely wrong. But the explanation for the success

of Hit2 might be that it turned out to be a good

strategy for building doors as well (since it dislikes

lonely checkers), while the purely door-building

player might not have been able to pose a threat to

the opponent, or even maintain an offensive posi-

tion on its own in the long run if it at the same time

wanted to maximize the number of doors.

We have managed to construct a player that out-

performs several other players, and especially a

random player. We do realize, however, that a hu-

man player would likely easily defeat it. The pro-

gram might perhaps be able to play against novice

human players, but it’s not difficult to understand

why modern backgammon programs are based on

artificial neural networks.

8 Further research

A possible continuation of this work, might be to

develop the test framework into one that auto-

matically runs tests for a long time while genet-

ically mutating different variables, and maybe also

using different evaluation functions with variable

weights. At the same time, tests against a human
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player would be interesting, to see to which level

this program could evolve.

Another interesting topic is whether similar stra-

tegies would work for the other games, explained

in section 3, if the players are used together with

different rule engines. What are the common de-

nominators for these games?
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