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Abstract
Q-learning is a Reinforcement learning technique where an AI agent
learns from experiences. This technique is commonly used together with
the so-called ε-greedy policy. The goal of this thesis was to determine
how a few different random-behavior policies could affect learning rate
of the Q-learning agent. To test this our agent played a reduced instance
of the board game Blokus on a 5 by 5 board, primarily against a random-
playing opponent. During these tests two different policies were tested
that both started with the agent preferring random moves and gradually
moving over to trusting its previous experiences. Both new policies
introduced were able to converge to a close to 100% win rate. The study
showed to be inconclusive however as the game instance was very limited
and with our implementation the agent was able to beat it without
any random behavior at all. Their similar performance to a relatively
non-exploring strategy along with theoretical motivation for their use
indicate that further research on them is motivated.



Referat
Q-learning är en belöningsbaserad inlärningsteknik där en AI-agent lär
sig genom erfarenheter. Den här tekniken förekommer vanligen ihop
med en policy som kallas ε-greedy. Målet med det här arbetet var
att bestämma hur olika policies påverkade inlärningsgraden för den Q-
learningbaserade agenten. För att testa agenten spelades en mindre in-
stans av brädspelet Blokus på ett 5 gånger 5-bräde, först och främst
mot en motspelare som lade sina brickor fullständigt slumpmässigt. Un-
der testerna undersöktes två olika policies som båda startade med att
agenten föredrog planlösa drag för att sedan gradvis gå över till att lita
mer och mer på sina tidigare erfarenheter. Båda nya policies gjorde att
agentens beteende konvergerade till nära 100% vinstfrekvens. Studier-
na visade sig dock vara ofullständiga på grund av att spelinstansen var
väldigt begränsad och att agenten i vår implementation klarade av in-
stansen utan något slumpat beteende över huvud taget. Resultatet gav
dock att båda nya policies hade liknande prestanda på denna instans.
Tillsammans med teoretiska argument för de nya policiernas användning
indikerar detta på att fortsatt undersökning inom området är motiverad.
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Chapter 1

Introduction

Machine learning is a sub-domain of Artificial Intelligence. The machine learn-
ing discipline is focusing on designing algorithms that allows an agent, also called
learner, to evolve behaviors based on the agent’s experience. Hence the name ma-
chine learning. While collecting data, the agent tries to draw conclusions e.g. to
recognize patterns and underlying characteristics for example. One of the goals in
machine learning is for the agent to automatically see these patterns and act in an
intelligent way based on this knowledge. A common problem when implementing
an agent is the vast space of possible “valid” behaviors, or the set of all possible
behaviors given all possible inputs.

There are many approaches on how to design these agents, reinforcement learn-
ing being one of them, and some are especially useful in particular fields. The
applications for machine learning are many; computer vision, search engines, bio-
informatics, stock market analysis, classifying DNA sequences, speech and hand-
writing recognition, game playing, and robot locomotion just to name a few[1].

1.1 Motivation

Q-learning is a well-known algorithm within reinforcement learning, first introduced
in 1989 by Watkins[2] in his PhD.D thesis at Cambridge University. There are
numerous studies on Q-learning being used for reinforcement learning of, among
other applications, several different games; both multi-player, such as Reversi and
tic-tac-toe, and single-player games, with one example being Tetris. For competitive
multi-player games the goal is to beat the other player, e.g. to win. In single-player
games the goal is to win against either an artificial opponent, your own skill, time
or chance[3].

Q-learning’s effectiveness on a game is restricted by both the number of states a
game can be in, the so-called state space, and whether game states can be repeated
or not. Consider chess without the threefold-repetition rule, or any game which
is not guaranteed to end in a finite number of moves. In these cases the agent is
not guaranteed to ever finish a game and will therefore not have learned anything.
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CHAPTER 1. INTRODUCTION

An agent will also not have learned much until a “fair amount” of this state space
has been explored, because it will not have learned the characteristics of the game.
Thus using Q-learning in conjunction with a very complex game will be much less
effective and require an insurmountable number of runs. As the algorithm also has
to know and store values for actions taken from each state, storage space for the
Q-learning algorithm also becomes an issue.

Agents using Q-learning are commonly learning through a so-called ε-greedy
policy. That means there is a chance of ε for the agent to take a random move.
This policy is used to ensure that the agent performs the necessary exploration of
the state space. With this common policy the chance for random behavior is a
fixed value. This thesis was performed with the motivation by that exploration is
assumed to be more important in the beginning but gradually less important when
the agent has explored a significant amount of available states.

The study will be performed using a strategy board game called Blokus. Blokus
is relatively easy to implement, easy to learn and yet hold the possibility for highly
complex strategies. Though more complex game than both Reversi and tic-tac-toe
the game finishes in a limited amount of moves. Both being more complex and
having a limited amount of moves make the game ideal for this thesis’ focus. It
enables the possibility for the agent to develop advanced strategies and at the same
time it is easy to implement different opponents. An important factor for choosing
Blokus is that reductions can be made to the game while still having a similar game,
should it prove necessary.

1.2 Initial Questions

This study was performed with the intention of determining how well a Q-learning
agent will perform when using different policies for the agent’s random behavior.
As such there were questions regarding the feasibility of use and what impact of the
random behavior of the agent will affect the algorithm’s effectiveness.

• Is it feasible to use the algorithm on the game Blokus?

• How does the agent’s opponent affect the agent’s ability to learn?

• How does the adjustment of the chance of random behavior over time affect
the agent’s learning rate?

The answers to these questions will be based on several parameters. Is the state
space small enough to be storable in memory? Will the study have to be done on
a reduced version of the game? Can the random behavior be remodeled to improve
the agent’s learning rate? Which parameters are optional for the agent to learn
Blokus as well as possible? These are the questions this report aims to answer.
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1.3 Summary of Results
The results of this study are inconclusive. Even though most of the policies tested
seems very rewarding, the game impact made a single misplaced tile play a very big
role in the outcome of the game. This caused the ε-greedy policy to to perform very
bad when ε values were other than 0. When ε was 0, the agent performed equal to
the best configurations of the other policies.

During testing, all opponents except the random agent were defeated almost
instantly. For this reason, most of the presented test results are the performance of
the Q-learning agent when playing against the random agent.

The policies other than ε-greedy were able to reach a win rate of 100% relatively
fast, usually within 50000 played games. For some configurations however, the win
rate fluctuated over time. This was thought to be when the Q-learning agent found
a special case where it would lose or play a draw and develop a new strategy which
does not lead to this case.

1.4 Outline
The thesis report is divided into six chapters. After the introduction in the current
chapter, Chapters 2 and 3 handles the necessary background and discuss previous
work and research. Chapter 4 describes how the problems introduced in Section
1.2 were approached in detail and declares assumptions and constraints applied
to the problem to set the scope of this thesis. The following chapter, Chapter 5,
contain results of the study. The final chapter, Chapter 6, contains conclusions and
thoughts.

For a complete list of acronyms and terms used in this report please see Appendix
A. The complete set of graphs over the results can be found in Appendix B.
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Chapter 2

Background

The purpose of this chapter is to provide insight and context to this project. First
follows an explanation of the game used in the study, Blokus. Later, in Section 2.2
the concept ofmachine learning and some algorithms within its domain is described.

2.1 The Game

Blokus is a strategy game for two to four players. Each player have their own set
of 21 tiles in one color. The game is played on a square board of 20 by 20 squares.
The tiles are the free polyominoes (sequence A000105 in OEIS[4]) of order one to
five, constructed from one to five square pieces, see Figure 2.1.

Figure 2.1. The 21 tiles used in Blokus
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Figure 2.2. The correct and wrong way to place a new tile

Each player start by placing a tile so that one of its squares is placed in the
player’s starting corner. The players then take turns placing tiles. A new tile
must be placed corner to corner a tile of the same color. A tile may not be placed
edge-to-edge with an existing tile of the same color, see Figure 2.2.

The goal is to cover the board with as many squares as possible while preventing
others from doing so. This means that a tile with more squares, though harder to
place, is more rewarding. If a player is unable to place a tile, the turn goes on to the
next player until no more tiles can be placed. At the end of the game, the player
occupying the most squares win.

The starting player is presumed to be at at least a slight advantage, comparable
to first-move advantage in chess[5].

2.2 Machine Learning
Learning is a very general concept of the ability to change and acquire new knowl-
edge based on information. Machine learning concerns algorithms that allow com-
puter programs to evolve similarly. A definition of machine learning is: “A computer
program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , im-
proves with experience E.”[1]. The focus of machine learning lies on experience and
how the agent improves with this experience. There are many different approaches
for how this is done, and this Section describes the arguably most common ap-
proaches.

2.2.1 Q-Learning

In reinforcement learning agents interact with an environment by performing ac-
tions, going from one state to another. Most methods are based on an estimation
of the reward for actions, by guessing the value of the states the actions will lead
to. When performing an action from a state the agent observes the reward given as
well as the estimated value of newly available states.

The reinforcement learning technique Q-learning belongs to the class of learning
methods called temporal difference learning[6]. Temporal-difference methods com-
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pares the expected reward to the actual reward after each performed action and
then improves the estimated state value based on what the agent has learned from
the actual reward given. Thus the algorithm learns from experience.

Q-learning makes use of the so-called Q-function, also called action-value function[7],
which takes a pair of a state s and action a, and returns the estimated total future
reward when performing action a from state s. Each such possible pair is assigned
a value, called the Q-value, and together they form the values of the Q-function.

The key is to compare the expected reward to the reward given by the environ-
ment when doing the action. After performing an action a from the state s, the
environment will move the agent to a new state s′ and give the agent a reward r.
This enables a better estimation of Q(s, a). The two estimations are:

Q(s, a)1 = Q(s, a)
Q(s, a)2 = r + γmaxQ(s′, a′)

(2.1)

The variable γ, called discount factor, affects the importance of future rewards.
The discount factor is always given a value 0 ≤ γ < 1. A γ value of 0 makes the
agent consider only the latest reward given, while a value close to 1 makes the new
experiences slowly add up over time, working for a long-term reward instead. The
new and old Q-value can be weighted together for a new estimate. This forms the
formula used in the update step in the actual Q-learning algorithm.

Q(s, a)← Q(s, a) + η[r + γmaxQ(s′, a′)−Q(s, a)] (2.2)

The variable η, the learning rate of the algorithm, decide how much of Q(s, a)2
in equation (2.1) will affect the new value. The range is 0 < η ≤ 1. If the value is
1, the equation would be equal to Q(s, a)2 and only take the newest estimate into
account. A value close to 0 makes the algorithm learn from new experiences very
slowly as the new estimate is not taken into consideration as much.

The last important part of the Q-learning algorithm is the type of policy the
agent will follow. A goal for the agent is to perform as good as possible, thus
finding a policy which gives the greatest reward. There is always at least one such
optimal policy[8]. The so called greedy policy is following the currently best path of
actions. During learning however, for the values to converge into good estimates it
is required that the agent visits all available states to gain information about them.
This makes it necessary for the agent to explore other actions than the estimated
optimal ones.

The ε-greedy policy takes a random action with the probability of ε and takes
the estimated optimal, or greedy, action with a probability of 1− ε each step.

The Q-learning algorithm can be written as follows:

7
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Algorithm 1 The Q-Learning Algorithm[6]
For all pairs (s,a) initialize Q(s, a) arbitrarily
Initialize s
while not done do
Choose a based on Q(s, a) using the ε-greedy policy
Take the action a and observe the reward r and next state s′
Update Q(s, a) using (2.2)
Store s′ in s

end while

2.2.2 Artificial Neural Networks
Another approach within machine learning that is outside the scope of this study
is Artificial Neural Networks (usually referred to as ANN:s). Inspired by biological
neural networks, ANN:s consist of a group of connected artificial neurons. They
are often used to find complex patterns and relationships[9]. ANN:s are capable
of learning, and can be given a specific task to solve, a set of observations and a
class of functions. The ANN will then solve it optimally when considering the cost
function C.

To find the best solution, the cost function measures how far away a particular
solution is from an optimal solution. By iterating over the solution space, the
learning algorithm finds the solution with the smallest cost.

2.2.3 Different Kinds of Learning
In machine learning algorithms can be classified depending on how the learning is
done. The categories are as follows[8]:

• Supervised learning is when the algorithm is given a set of examples to map
correct respond depending on input. ANN:s are a perfect example of this.

• Unsupervised learning algorithms are not given the correct responses to input,
but the task is to categorize similar inputs together and find what they have
in common.

• Reinforcement learning is something in between supervised and unsupervised
learning. The reward given after each action is a hint of what the correct
response might be, the task is to find the way to maximize the cumulative
reward[7]. The Q-learning algorithm used in this project is an example of a
reinforcement-learning algorithm.

• Evolutionary learning is inspired by biological evolution where the most fit
versions survive and form a new, better generation.

8



Chapter 3

Previous Research

Previous research has been done both on the importance of the different variables
in the Q-learning algorithm[10], as well as the quality of the algorithm itself[11][12].

3.1 Learning Rate and Discount Factor
Independently of the policy being followed, the Q-learning algorithm is capable
of estimating the Q-values correctly[6]. Even so, it is important to consider the
learning rate and discount factor in implementation. Arvidsson and Wallgren[10]
found out that for a simple two-player game with a small board, a learning rate and
discount factor of 0.8 showed the best results. They claim that some tests indicated
that even higher values for the discount factor might be better.

These tests however were all performed without giving the agent any interme-
diate rewards. Intermediate rewards make the agent prefer short-term rewards to
begin with and gives the agent work toward an initially greedy strategy.

3.2 Strengths and Weaknesses in Q-Learning
The nature of Q-learning has been a popular topic of research, as have its strengths
and weaknesses. Fairly recent research by Forsberg and Mattsson[12] states that
Q-learning is unable to recognize patterns and can not see similarities in strategies
to predict them.

It is possible to implement Q-learning agents using ANN:s, shown by Björkqvist
and Wester in their bachelor’s thesis[11]. Their implementation, using 64 ANN:s
for their Reversi agent, one ANN for each move, was able to detect patterns. To
summarize, the agent improved during time, against agents with different policies.

This implies, along with the result from Forsberg and Mattsson, that the imple-
mentation and not only the algorithm is of most importance for the result.
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Chapter 4

Analysis

This chapter outlines choices made in the implementation, the approach used and
how results were analyzed. The constraints from the original problem are presented
in Section 4.1. The methods used are explained in Section 4.2. Section 4.3 describes
the agents, both the Q-learning agent as well as other agents that were ones. Fi-
nally, Section 4.4 presents methods used for measuring performance with different
configurations.

4.1 Constraints
To scale down the problem, it was necessary to put constraints on the implemen-
tation. This was done to get useful results while keeping the complexity of the
implementation as well as the scope of the study at a reasonable level.

The constraints placed on the game are as follows:

• A full-size board is too expensive.

• A full set of tiles is too expensive.

• The agent will always play first.

The constraints placed on the agent are as follows:

• The learning rate and discount factor, variables η and γ, are not changed.

• The agent will not detect and merge states from different move orders that
are identical.

The board size and the number of tiles available are two interrelated quantities.
If the number of available tiles drastically decreased and the board size was kept
the same all players would have more than enough room for all of their available
tiles. This would lead to a lot of, if not only, draws. Keeping all 21 tiles is simply
not feasible as state space becomes ridiculously large. To find a lower limit to
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this state space a single player was considered. He plays alone instead of against
someone and is always able to place all tiles available but only in one way. This
crude approximation would give a state space of 21! different states, between two
and three times more than the number of addressable bytes in a 64-bit computer.
Approaching this original problem with Q-learning was clearly not feasible and the
number of tiles has to be reduced. To still have a game where players could block
the other player the board size was reduced as well.

Making the agent always play first was to simplify analysis of gameplay results.
The choice of keeping η and γ unchanged is simply because they are outside the
scope of this report.

The data structure used to represent state space is a tree where each node
represents a state and states which can be reached from this node are represented
as children. When the agent reach a state for the first time, new state node children
for that state are created, eliminating “impossible” states from taking space in the
data structure.

Not merging identical states was done out of simplicity. In retrospect this could
have been done using a hash table.

4.2 Method

The size of the board was limited to 5 by 5 and the number of tiles to 4 (all
polyominoes of order 3). There was a positive reward of one given for each square
on a tile that the agent places and a negative of one for each square on a tile that
the opponent places. Winning will give a positive reward equal to twice the amount
of squares on a player’s starting tiles. Losing will give a negative reward of the same
quantity. Ending up in a draw will give the agent a negative reward of half of what
it receives when losing. This means that the agent will prefer draws over losing and
winning above all.

For all studies η and γ values of 0.8 were used, as suggested by the previously
mentioned thesis by Arvidsson and Wallgren[10]. It should be pointed out that these
values were suggested for agents which unlike ours used no intermediate rewards.
Finding optimal values for η and γ was outside the scope of the report and these
values were used either way.

The different policies for random behavior use different functions to change
a corresponding ε during learning. Epsilon-greedy uses a fixed value while other
change based on the number of played games and one policy also depend on the
number of played tiles in the current game.

All methods were modeled after that there is no learning phase. The ε policy
for the agent will be used for its entire lifespan.

To measure the performance of the Q-learning agent, the number of wins, losses
and draws were collected during the learning period. The Q-learning agent learned
playing 2 player games against all opponents, including itself, using different policies.
For each opponent, the Q-learning agent would start knowing nothing about the

12
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game. Each 100th game, total number of wins, draws and losses were saved. This
was done until for 100000 games for each test. Over time it was possible to see
how the agent progressed and how many games were necessary for a good policy to
develop.

4.2.1 First Policy – Fixed Epsilon-Greedy Policy
A fixed ε value is a common method used in the ε-greedy policy. Other methods
were compared to this textbook policy to see if they were rewarding to use.

Low values for ε means that the agent will not explore other options very often.
A high value means that the agent will explore other options and learn from them
but instead not use what it has previously learned. The values 0, 0.2, 0.5 and 0.8
were chosen as reasonable values to compare for ε. It should be noted that ε = 0
means deterministic behavior.

4.2.2 Second Policy – Epsilon-Decreasing Policy
A decreasing ε value is motivated by that when the agent starts playing it will know
nothing about the game. Therefore completely random actions are appropriate to
have an exploratory behavior at the beginning. As the agent learns more about
the game it will be more capable of estimating which move is the best. Thus a
decreasing ε value seems appropriate.

The following formula for a decreasing ε was investigated as a second policy:

ε = c

c+ |runs|
(4.1)

Epsilon will decrease with the number of finished games and the function will
converge to 0. Thus the agent’s policy will converge to deterministic behavior. The
rate at which ε decreases will depend on which constant c is chosen. This c was
given values 1, 16, 100, 200, 500, 1000 and 2000.

4.2.3 Third Policy – Depth-Dependent Decreasing Epsilon
State space branches out from the first state (empty board) as most states have
options they will give birth to at least a few new states. Therefore on a certain
depth in the acyclic state-space graph, in our implementation a tree, more states
are expected. That is, when more pieces have been placed the board have more
possible states. States on a level further down are thus expected to be less visited.
Therefore when visiting a state further down in the graph it should be more probable
to select a random move as it is less likely that it has been done before.

A policy where the ε converge with different rates depending on their depth
takes account for this. The following formula for a decreasing ε was investigated as
a third policy:

ε = cperformed_moves

cperformed_moves + |runs|
(4.2)

13
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It is important to note that games with repeated states don not have this acyclic-
graph behavior. In those “depth” is not clearly defined. This policy was indented
for use in problems where depth is clearly defined.

In the studied implementation depth was defined as the nth tile to be placed
from that player. This limits depth to the total number of tiles per player. With
4 available tiles and a c value of 5 has cperformed_moves ranging between 51 and 54,
that is 5 and 625, which correspond to the c value in the previous policy.

c values of 1.5, 2, 3, 4 and 5 were studied.

4.3 Agents
The implementation holds two kind of agents; the main agent using Q-learning and
opponent agents with static strategies.

4.3.1 Q-Learning Agent
The Q-learning agent is the one whose learning rate using different random-behavior
probabilities is the focus of this research. When encountering previously unvisited
states their Q-values are initially set to 0. Another approach that was not used is
to initialize them to random values.

Except for the different new random-behavior policies that change during train-
ing the agent acts just according to the Q-learning algorithm.

4.3.2 Other Agents
There were three agents with different policies working as opponents to the Q-
learning agent.

• The simple agent always choose the first action, which places the smallest tile.

• The greedy agent always choose the last action, which places the largest tile
with the idea to gain as much area as possible.

• The random agent always choose actions arbitrarily.

4.4 Performance Measurement
The simple and greedy agents were primarily used to assert that our Q-learning
agent reliably beat agents using a fixed strategy.

The opponent used in the ε-evaluating studies was a random agent. This ensured
that our agent learned characteristics of the game and not how to beat a single
player. A random player is also the hardest player for a Q-learning agent to reliably
beat.

To be able to evaluate how good the agent performed a reference run was per-
formed where the random agent got to play against itself. This was done to measure
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a possible first-move advantage to have appropriate reference values. Because of this
first-move advantage if the agent won as often as it lost it would be presumed to be
performing worse than its opponents. An average of the win/draw/loss ratio was
used to be able to be able to draw conclusions from the other results.

A final test was performed to assert the agent’s performance against itself.

15





Chapter 5

Results

This chapter contains the result from the study using the policies described in
Chapter 4. Each Section here holds the results from different policies. Section 5.1
contains measurements using a fixed epsilon-greedy policy. Next, in Section 5.2, the
results using epsilon-decreasing policy is presented. Finally are the results from the
third policy, depth-dependent decreasing epsilon, in Section 5.3. For the complete
set of graphs available, including the ones presented here, please refer to Appendix
B.

17



CHAPTER 5. RESULTS

0

20

40

60

80

100

0 100002000030000400005000060000700008000090000100000

Pe
rc
en
t

Number of played games

Wins
Draws
Losses

Figure 5.1. Results for the Q-learning agent playing against the random agent with
a fixed ε of 0

5.1 Fixed Epsilon-Greedy Policy
The focus has been on the tests where the random agent, presented in Section
4.3.2, was the opponent. This is because both the simple and greedy agent were
defeated after less than 1000 games for all configurations of this policy. For ε = 0.2
a perfect win rate of 100% is reached in around 1000 played games against both
static strategies. The configuration of ε = 0 reaches a perfect win rate before 100
games for the greedy agent and 200 games for the simple agent.

The test on the first policy against the random agent which performed best is
presented in Figure 5.1. It can be seen that just before 35000 played games is where
the policy reach a 100% win rate.

None of the tested non-zero ε values converged to a 100% win rate.

Average performance for epsilon-greedy policy, ε = 0

Wins 93.252% Draws 4.015% Losses 2.733%
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5.2. EPSILON-DECREASING POLICY
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Figure 5.2. Results for the Q-learning agent playing against the random agent with
the configuration of ε = 1/(1 + |runs|), using the epsilon-decreasing policy

5.2 Epsilon-Decreasing Policy
For the Epsilon-Decreasing Policy both the simple and greedy agent are defeated
quickly compared to the random agent, this time under less than 300 games for
all the configurations. Because of this, the focus was on the test with the random
agent being the opponent. For a full list of graphs versus the random agent using
this policy see Appendix B.3.

In Figure 5.2 the configuration giving the best performance for the Q-learning
agent is displayed. The win rate of 100% in this test is reached first after around
40000 played games.

Draw rate is almost always higher than the loss rate.

Average performance for epsilon-decreasing strategy, ε = 1/(1 + |runs|)

Wins 92.634% Draws 4.407% Losses 2.959%
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Figure 5.3. Performance of the Q-learning agent playing against the random agent
with configuration ε = 4performed_moves/(4performed_moves+|runs|) using the depth-
dependent decreasing-epsilon policy.

5.3 Depth-Dependent Decreasing Epsilon
The opponent most difficult to defeat was by far the random agent. This is the
reason the test with the random agent playing the opponent were in focus. It took
around 400 games on the best configuration of ε = 4performed_moves/(4performed_moves+
|runs|) for the Q-learning agent to get a 100% win rate over both the greedy agent
and the simple agent.

The same configuration against a random agent took under 30000 played games
for the Q-learning agent to reach a 100% win rate, here displayed in Figure 5.3.

The Depth-Dependent Decreasing Epsilon policy had the best average win rate
as well as being the fastest to converge to a 100% win rate.

Average performance for depth-dependent decreasing epsilon,
ε = 4performed_moves/(4performed_moves + |runs|)

Wins 93.706% Draws 3.711% Losses 2.583%
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5.4. COMPARISON
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Figure 5.4. Win rate for the Q-learning agent for each policy using the parameters
giving the best test results.

5.4 Comparison
To compare the policies different performances, both average win rate and win
rate over time are presented here. Presented data are from the test results of the
Q-learning agent versus random agent.

Figure 5.4 compares the best results for each policy, displaying the win rate for
each over the number of games played. They can be seen individually in Figure
5.1, 5.2 and 5.3. Please note that the x-axis only range up to 55000 played games,
compared to the individual figures which ranges from 0 to 100000.

The first policy maintains 100% win rate after almost 35000 played games. The
second policy maintains 100% after about 40000 games and the third after almost
30000 games.

Average win rate over the best test result for each policy

Wins first policy: 93.252%Wins second policy: 92.634%Wins third policy: 93.706%
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Chapter 6

Conclusions

This chapter contains conclusions in Section 6.1 drawn from the results achieved in
Chapter 5 and the theoretical background and constraints presented in Chapter 4.
There are also some thoughts on how the game instance have affected the results in
Section 6.2 and some suggestions on further investigations are given in Section 6.3.

6.1 Policy Analysis

This thesis’ aim was to design new policies for Q-learning and to evaluate them. In
this section is an analysis of how worthwhile each policy is as well as reasoning on
why the results look like they do.

6.1.1 Fixed Epsilon-Greedy Policy

The fact that our ε-greedy policy where ε was 0 worked at all is implementation
specific. All values were initially zero when unexplored. When a state leads to a
loss it eventually gets a negative value, meaning that unexplored options will be
explored as soon as it gets known that the current strategy leads to a loss or draw.

It does not necessarily lead to the agent finding the path to maximized reward
as it will only change strategies if it loses and be happy with any result where the
agent wins. This is why an ε of 0 is not textbook Q-learning. Q-learning is supposed
to eventually explore the entire state space and converge to a maximum. In this
instance the agent can find a reliable way to win regardless of the opponent’s moves.
In other instances it is possible that the agent might have had to settle for a draw
occasionally or even to lose.

For the sake of completeness another example of epsilon-greedy should be dis-
cussed as well. Because when using an ε of 0.2 results were less successful. See
Figure B.3 in Appendix B. Using this value seems to lead to the agent converg-
ing to winning only around 75-80% of the time. This corresponds to the agent
performing random moves 20% of the time.
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From this a conclusion can be drawn that this particular game or instance of the
game is not forgiving of bad moves. Because doing the correct move 80% of the time
isn’t enough to win reliably even though the agent has the first-player advantage.

Higher ε values will make the agent learn faster, but ignore what it has learned
far too often. We can’t be sure that this ε value is optimal but it seems to work
well.

6.1.2 Epsilon-Decreasing Policy

The Epsilon-Decreasing policy seems very rewarding. It should work in all types of
games which have a finite number of moves, as the more an agent explores the less
it needs to explore later.

It’s probable that 1 is the optimal constant c in the formula (4.1), it’s just the
best one found. 4 for one might have been even better. Finding optimal values is
not important as it is very game dependent as well as game-instance dependent.
The game Blokus itself is largely outside the scope of the report.

Some of the graphs, presented in Appendix B.3, seem to reach an optimal win
rate and win for a few ten thousand games but then start losing for a while. This is
assumed to be that after a strategy has seemed good for a while the opponent finds
a case where the player actually loses. This means that new strategies have to be
explored again. After gradually figuring one out the agent goes back to a good win
rate. This would probably keep on happening if even more games are played than
the ones displayed in the graphs.

The graphs with a very high constant c, see formula 4.1 in Section 4.2, maintain
a portion of random behavior for a very long time. This is believed to be better for
other games which take a lot longer to learn.

6.1.3 Depth-Dependent Decreasing Epsilon

This strategy focuses on explorations that are relatively untested further down the
tree rather than questioning moves done near the root. These early moves will
mostly to be tested early in the game and presumed to still be good. It tries to
perform minor optimizations in estimated optimal strategy by questioning later
moves rather than early ones.

A few of these graphs show that after a while the agent start losing or playing
draws. Just like in the previous policy this is believed to be because the agent finds
out a flaw in its current strategy and has to consider new earlier moves and relearn.

The constant c, see formula 4.2 in Section 4.2, in this policy is believed to
correlate to the average branching factor of the game. Thus it is believed to be
most effective in games where the moves have a fairly constant branching factor
excluding repeated states.
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6.1.4 General Conclusions
Overall it’s not clear that when a policy hits a 100% win rate it will stay that way,
as shown in the graphs. The agent might learn of some special cases where it would
lose and try to re-learn a better, or safer, strategy.

All results are highly dependent on the game being played. This is probably
a result of the few number of tiles the players have. One game is over so quickly,
critical moves have a very high impact on the result.

6.2 Game Impact
Unlike the original game and a lot of other games, in this instance of Blokus a single
misplaced tile quite often leads to disastrous results. From manually playing this
instance it has been noted that a player can actually be locked out from the game
in as few as two moves by the starting player.

This large focus on placing every single tile correctly makes ε-greedy perform
extra bad. To exaggerate, choosing random tile placement 20% of the time 20% of
the moves could be missteps that would lead to a loss. The situation when using
the ε-greedy is similar. This explains why the agent performs so bad in our case
though using a common random-behavior policy. In the original version of Blokus
these missteps would likely cause small fluctuations in score which the agent could
learn to overcome by dominating the random agent.

6.3 Further Research
Unfortunately this study of new policies showed inconclusive results. As there’s
theoretical reasoning behind them, see Section 4.2, further research has potential
to uncover their uses.

In particular research in the following areas are suggested:

• Board size and number of tiles. Two constraints of this study were the use of
a 5 by 5 board instead of the original 20 by 20 board and the use of 4 tiles
instead of 21. Reasoning suggest that a larger board would be more forgiving
for misplaced tiles, which would affect the results for the policies. The impact
of the number of tiles used was not investigated either but probably had some
effect as well. These are both points that could be investigated in further
research is motivated.

• Different games/applications. This same study could be conducted on another
problem than the board game Blokus. There’s no reason to keep them both
connected.

• Maximizing reward. Instead of measuring wins, draws and losses, accumulated
reward could have been evaluated instead. This would have given different
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results and graphs. Had that been done the new policies would likely defeat
the ε-greedy with ε = 0, because it is likely to get stuck in a local maximum.

• Merging states. Another constraint of this study was to not implement the
possibility of detecting and merging identical states in the tree data structure.
It is unclear how much impact this would have had on the learning rate and
storage of state space.
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Appendix A

Terms and Acronyms

Agent Also called learner. A program implemented to learn and interact.

AI Artificial Intelligence.

ANN Artificial Neural Network, model used to process information.

Consumer Refers to a theoretical piece of code which makes use of the mutability
data collected.

Reinforcement learning Is an approach in Machine Learning concerned with
how an agent ought to act in an environment so as to maximize the cumulative
reward.

Policy The policy for choosing the next action. Commonly used policies are;
greedy, ε-greedy, Boltzmann distribution and random.

State value Each state in the current policy has a value of estimated future reward.

Temporal difference A class of learning methods which improve the estimated
state values in every time step. For more information, see [7] page 133.

ε The probability of random action in the ε-greedy policy. Pronounced epsilon.
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Appendix B

Graphs

The first graph shows the results of a random agent playing against another ran-
dom agent, where the results of the one playing the first move are displayed. Last
is the performance of a Q-learning agent playing against another Q-learning agent,
using the depth-dependent decreasing-epsilon policy. All other graphs are the per-
formances of the main Q-learning agent playing against the random agent. For a
description of the random agent, please refer to Section 4.3.2. Under each figure
the configurations for the policy used are given.

31



APPENDIX B. GRAPHS

B.1 Random Run
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Figure B.1. Random run

Random Average

Wins: 46.45% Draws: 31.98% Losses: 21.57%
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B.2. FIXED EPSILON-GREEDY POLICY

B.2 Fixed Epsilon-Greedy Policy
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Figure B.2. ε = 0
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Figure B.3. ε = 0.2
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Figure B.4. ε = 0.5
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B.2. FIXED EPSILON-GREEDY POLICY
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Figure B.5. ε = 0.8
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B.3 Epsilon-Decreasing Policy
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Figure B.6. ε = 1/(1 + |runs|)
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B.3. EPSILON-DECREASING POLICY
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Figure B.7. ε = 16/(16 + |runs|))
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Figure B.8. ε = 100/(100 + |runs|)
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Figure B.9. ε = 200/(200 + |runs|)
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Figure B.10. ε = 500/(500 + |runs|)
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Figure B.11. ε = 1000/(1000 + |runs|)
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Figure B.12. ε = 2000/(2000+runs)
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B.4 Depth-Dependent Decreasing-Epsilon
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Figure B.13. ε = 1.5performed_moves/(1.5performed_moves + |runs|)
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B.4. DEPTH-DEPENDENT DECREASING-EPSILON
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Figure B.14. ε = 2performed_moves/(2performed_moves + |runs|)
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Figure B.15. ε = 3performed_moves/(3performed_moves + |runs|)

41



APPENDIX B. GRAPHS

0

20

40

60

80

100

0 100002000030000400005000060000700008000090000100000

Pe
rc
en
t

Number of played games

Wins
Draws
Losses

Figure B.16. ε = (4performed_moves/(4performed_moves + |runs|)
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Figure B.17. ε = (5performed_moves/(5performed_moves + |runs|)
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B.4. DEPTH-DEPENDENT DECREASING-EPSILON

B.4.1 Agent vs. Agent – Depth-Dependent Decreasing-Epsilon Policy
Due to the short time it took for the agent to beat itself, please note the x-axis only
range from 0 to 10000 played games.
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Figure B.18. ε = (1.5performed_moves/(1.5performed_moves + |runs|)
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