
Automatic Testing of Modern Web Applications
in an Agile Environment

A case study of testing a Google Web Toolkit Web Application using Selenium

SIMON LUNDMARK

Bachelor’s Essay at CSC
Supervisor: Alexander Baltatsis

Examiner: Mads Dam

TRITA xxx yyyy-nn

iii

Abstract

Software testing is generally considered difficult but necessary. With the
growing popularity of agile software development methodologies it is becoming
increasingly necessary to automate this difficult task. Modern web applications
using AJAX technology require a slightly modified testing process.

The primary aim of this study is to highlight some problems regarding au-
tomatic testing of modern web applications. The secondary goal is to evaluate
these suggested problems by performing a case study, comparing the process
of testing a traditional JSP implementation without AJAX technology, with the
process of testing a modern implementation implemented using Google Web
Toolkit. The automatic testing tool Selenium will be used to record and play
the test suite.

Testing the traditional web application implementation was very straight
forward. Testing the modern AJAX web application implementation was not.
Work-arounds do exist and once that lesson is learned Selenium is a welcomed
tool used together with Google Web Toolkit.

iv

Sammanfattning

Testning av programvara anses generellt vara svårt men nödvändigt. Med
den växande populariteten av agila mjukvaruutvecklingsmetoder är det allt
viktigare att automatisera denna svåra uppgift. Moderna webbapplikationer
byggda med AJAX-teknik kräver en något modifierad testprocess.

Det primära syftet med denna studie är att belysa några problem som
berör automatisk testning av moderna webbapplikationer. Det andra målet
är att utvärdera dessa föreslagna problem genom att utföra en fallstudie som
jämför att testa en traditionell JSP implementation utan AJAX-teknik, med
att testa en modern implementation implementerad med hjälp av Google Web
Toolkit. Det automatiserade testverktyget Selenium används för att spela in
och spela upp testsviten.

Att testa den traditionella webbapplikationes implementation var rakt på
sak. Att testa den moderna AJAX-webbapplikationens implementation var inte
det. Sätt att kringgå problemen existerar och när den lektionen är lärd är
Selenium ett välkommet verktyg att användas tillsammans med Google Web
Toolkit.

Contents

Contents v

1 Introduction 1
1.1 Background . 1

1.1.1 Software Testing . 1
1.1.2 Traditional Web . 2
1.1.3 Modern Web . 2
1.1.4 Agile Development . 3
1.1.5 Test Automation . 5

1.2 Problems . 5
1.2.1 Testing User Interface Code 5
1.2.2 Testing AJAX . 6

1.3 Purpose . 7

2 Method 9
2.1 Choice of Method . 9
2.2 The Application Under Test . 10
2.3 Test Suite . 10

3 Study 11
3.1 Implementing the Application Under Test 11

3.1.1 Tools and Frameworks Used 11
3.1.2 Data Tier . 12
3.1.3 Application Logic Tier . 13
3.1.4 The Dual Presentation Tier 14

3.2 Automated Web Application Testing Tool 16
3.2.1 Recording the Test Cases . 17
3.2.2 Executing the Test Suite . 19

4 Results 21
4.1 Testing the Traditional Web Application 21
4.2 Testing the Modern Web Application 21

5 Discussion 23

v

vi CONTENTS

5.1 Sources of Errors . 23
5.2 Suggestions for Future Work . 23
5.3 Conclusion . 24

A Screen shots 25

B The JpaRepository Interface 31

C The GuestbookServiceImpl Class 33

D show.jsp 35

E GWT Test Cases 37

Bibliography 39

Chapter 1

Introduction

1.1 Background

1.1.1 Software Testing

Software testing has always been an important aspect of computer science. It has
at the same time been a very neglected aspect of computer sience and software
development. There has even been claims that computer science is not even a
science, partly due to the low level of testing. In an article titled “Is Computer
Science Science?” written by Peter J. Denning in 2005 he discusses and defends
these claims but in the last section he states the following:

“In a sample of 400 computer science papers published before 1995,
Walter Tichy found that approximately 50% of those proposing models
or hypotheses did not test them. In other fields of science the fraction
of papers with untested hypotheses was about 10%. Tichy concluded
that our failure to test more allowed many unsound ideas to be tried in
practice and lowered the credibility of our field as a science. The relative
youth of our field—barely 60 years old—does not explain the low rate
of testing.” [Denning, 2005]

The theory of software testing has largely been the same for more than three
decades. This can be seen by reading the preface of the second edition of “The Art
of Software Testing” published [Myers et al., 2004]. The first edition was published
in 1979 and the major changes in the second edition covers topics that no one knew
about like web programming and agile programming methodologies1.

Testing web applications can therefore be considered a relatively new field of
study. To make matters more interesting, web applications in general has already
branched into what is defined in this essay as traditional and modern web applica-
tions. The following sections will state the difference between them.

1E.g. eXtreme Programming and Test-Driven Development

1

2 CHAPTER 1. INTRODUCTION

1.1.2 Traditional Web

The building blocks of traditional static web sites are pages (web pages). The user
navigates between these pages using hyperlinks. Following a hyperlink on one page
brings the user to another page. The web site is considered static because the flow
of information is unidirectional, from server to user.

Moving on to the building blocks of traditional dynamic web sites. They bring
in another aspect called a form. The user may submit data through filling out this
form and submitting it back to the web server. This gives the user a way to interact
with the web server and it gives the software developer means of building web sites
that can be considered web applications. The communication is bidirectional. A
web page request from the user carries user data, the server receives this data and
then responds with another complete web page of information.

This way of receiving complete web pages over and over again has a few draw-
backs. Some content on each web page received may be static (e.g. the header,
footer and menu). The user will receive the same content over and over again.
Reloading this information puts unnecessary load on the server and wastes band-
width. The result is web applications feeling slow and becoming less usable from
the user’s point of view.

Ambiguity 1. How can software developers create large dynamic web applications
with a high level of bidirectional communication, and still keeping the application
responsive from the user’s point of view?

The next section proposes a solution.

1.1.3 Modern Web

The backbone of the web, HTTP2, has practically been the same since the World
Wide Web was born. Although, in recent years the web development community
has witnessed the rapid development of many advanced web application frameworks
such as jQuery [jQuery Project, 2011] and Dojo Toolkit [The Dojo Foundation,
2011]. The framework of choice for the purposes of this essay is Google Web Toolkit
[GWT Development Team, 2011a], first released in 2006 [GWT Development Team,
2011b]. A common goal of these frameworks is to further improve the interaction
between the user and web server.

Web developers have always been struggling to make the web more dynamic.
These frameworks help web developers break the “user request → page reload →
user request” cycle, making it possible for the user to both send and receive data
without reloading the complete web page. They do this by leveraging advanced
features of the XMLHttpRequest API [W3C, 2010], supported by many modern web
browsers. The use of this technology in web applications is often refferred to using

2HyperText Transfer Protocol

1.1. BACKGROUND 3

its catchier name AJAX3, which has become a buzzword in the web development
community.

Buzzwords does not usually appear alone. Something that often goes hand in
hand with AJAX is “agile” development.

1.1.4 Agile Development
The vast availability of the World Wide Web makes it a very good distribution
channel. Not only for distributing static content, but also for distributing new and
improved versions of dynamic web applications. The length of the web application’s
development cycle is the crucial factor for making optimal use of this distribution
channel.

Static web sites could in theory (and often does in practice) have the shortest
possible release cycle. Just edit the live web page. The worst that could happen is
introducing broken hyperlinks. There is simply no application logic to write or test.

Making good use of this distribution channel for dynamic web applications is
much harder. You are using the same distribution channel as the previous example,
but there is a problem. You have actual application logic. This could be written as
any generic computer software, thus any generic software development and testing
methodology could apply.

An example of a traditional software development cycle is following the ESA4

Software Engineering Standards PSS-05-0 [Mazza, 1994a,b]. See table 1.1 for an
overview of this traditional software development cycle.

The agile development methodologies opposes these traditional methods, defin-
ing new principles which are redefining what is considered important and contradicts
the phases of table 1.1. One decade ago, seventeen people (each of them with many
years of experience in the software industry) met at a ski resort and wrote what they
call their “Manifesto for Agile Software Development” [Beck et al., 2001]. Quoting
the manifesto states quite clearly what they think about traditional development
methodologies:

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.”

3Not Ajax the Greek hero of the Trojan War, son of Telamon, king of Salamis. AJAX is shorthand
for Asynchrounous JavaScript and XML.

4European Space Agency

4 CHAPTER 1. INTRODUCTION

Phase Description Major Activities
UR Definition of the

user requirements
Determination of operational environment
and identification of user requirements

SR Definition of the
software
requirements

Construction of logical model and identifica-
tion of software requirements

AD Definition of the
architectural design

Construction of physical model and definition
of major components

DD Detailed design and
production of the
code

Module design, coding, unit tests, integration
tests and system tests

TR Transfer of the
software to
operations

Installation and provisional acceptance tests

OM Operations and
maintenance

Final acceptance tests, operations and main-
tenance of code and documentation

Table 1.1. ESA Software Engineering Standards PSS-05-0 development phases

The manifesto also proposes twelve principles to follow. One of them states
that the development team should “Deliver working software frequently, from a
couple of weeks to a couple of months, with a preference to the shorter timescale”.
Since the World Wide Web makes such a good distribution channel, using agile
software development methodologies to create web applications can be considered a
very productive and seemingly successful combination. This fact brings up another
ambiguity.

Ambiguity 2. How does a software development team keep the software working5,
while responding to change6 so frequently7?

An attempt to clarify ambiguity 2 is to identify what activities are required
to produce working software. The next step is to determine how to make these
activities as fast as possible – thereby agile. While skimming through table 1.1 one
will notice that there are basically three major activities a software development
team should participate in: definitions, coding and testing. The first two activities
are outside the scope of this essay but the third activity leads us into the next
section.

5Item 2 of the agile manifesto: “Working software over comprehensive documentation”
6Item 4 of the agile manifesto: “Responding to change over following a plan”
7Third principle of the agile manifesto: “Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the shorter timescale”

1.2. PROBLEMS 5

1.1.5 Test Automation
Referring back to the first section of this chapter, which states that lots of computer
software is untested – digging into the literature on the topic gives us a possible
explanation why. Software testing is hard to do and even considered practically
impossible in some aspects. The chapter titled “The Realities of Software Testing”
in “Software Testing” [Patton, 2005] lists a few testing axioms8, the following list
shows a few of them:

• It’s impossible to test a program completely

• Testing can’t show that bugs don’t exist

• The more bugs you find, the more bugs there are

• Not all the bugs you find will be fixed

• When a bug’s a bug is difficult to say

• Product specifications are never final

This does not look very promising. Although [Myers et al., 2004] states some-
thing that gives hope and help software developers focus on how to tackle this
seemingly impossible task:

“Given constraints on time and cost, the key issue of testing becomes:
What subset of all possible test cases has the highest probability of de-
tecting the most errors?”

Now when we know what to focus on and taking time into account in an attempt
to act agile, another axiom is hereby defined:

Axiom 1. Automatic testing performed by computer programs is faster than manual
testing performed by human beings.

This basically means that the agile software development team always should
strive towards automating their testing processes.

1.2 Problems

1.2.1 Testing User Interface Code
When developing modern web applications you can make test coverage very high just
by starting out with a well thought out architecture. A very common architecture is
the three-tier architecture. The developers create three independent modules. One

8A statement or proposition that is regarded as being established, accepted, or self-evidently
true.

6 CHAPTER 1. INTRODUCTION

Common misconceptions:
Dirties design
It doesn’t catch bugs
It’s slower
It’s boring
Hard to change
Too many interfaces
Testing is for QA
Valid excuses:
Legacy code-base
Don’t know how
I write UI ← !

Table 1.2. Common misconceptions and valid excuses for software engineers not
writing their test code, according to [Hevery, 2011].

module for the data storage and data access. Another module for the application
logic, and a third module for the user interface. The two first modules may be unit
tested9 and created using test-driven development. So the actual application logic
is quite easily tested, but what about the user interface?

Miško Hevery works as an agile coach at Google, in his recent presentation
[Hevery, 2011] he lists some common misconceptions about testing – and more
importantly he lists three valid excuses for not writing test code. See table 1.2
where he states that it is a valid excuse to skip writing test code if it regards user
interface code10 – this is a problem.

Problem 1. Software testing in general is considered very difficult. User interface
testing is said to be even more difficult.

1.2.2 Testing AJAX

Moving on to another problem. Traditional web applications have been around for
a relatively long time compared to modern web applications.

Problem 2. It seems to be a gap in the literature covering this topic and the func-
tionality of automatic testing tools for user interfaces when it comes to testing AJAX

technology.

9If you are working in the Java platform, a popular choice of tools is using JUnit as the unit
testing framework and EasyMock for mocking out the interactions with the other tiers. A deeper
explanation is outside the scope of this essay.

10To be fair, he also focuses strongly on writing clean code and moving all application logic
away from the user interface code – moving code from the part that is difficult to test into the part
that is easy to test.

1.3. PURPOSE 7

1.3 Purpose
Automated testing tools are crucial for any agile software development team. The
primary aim of this study is to highlight some problems regarding agile development
of web applications. The secondary goal is to evaluate these suggested problems by
performing a case study.

There are many aspects of testing software and many different tools and methods
to use. The purpose of this particular study is to evaluate a specific tool used
for automated user interface testing of modern web applications built using AJAX

technology, compared to testing a traditional web application.

Chapter 2

Method

2.1 Choice of Method

The following list states some different combinations in which this case study could
have been performed:

1. Only analyzing previous published studies, no implementation.

2. Writing a small web application with one AJAX user interface and test it using
multiple different testing tools.

3. Writing a small web application with multiple AJAX user interfaces (using
different frameworks for implementing them) and test them using a single
testing tool.

4. Writing a small web application with multiple AJAX user interfaces (using
different frameworks) and test it using a multiple testing tools.

The first item in the above list was rejected because this field of study is still
relatively new. Methods 2-4 seemed to expand the scope too much for the time
frame of this bachelor’s essay.

The method of choice: write a small web application with two separate user
interfaces. One implemented using a modern AJAX framework and another using a
traditional web application framework. Thus creating two frontends for the same
backend, and testing those two front-ends using a single testing tool. This will
give the study a “scientific control” causing the result to be a comparison between
testing the two different types of web application frontends. Small enough scope
but still has a good chance of delivering interesting results. Also easily reproduced
for studying other AJAX frameworks and repeating this research.

9

10 CHAPTER 2. METHOD

2.2 The Application Under Test
A study like this must have a well defined application under test. This is the
application which will be implemented so there is something to actually test. To
keep the focus on what is important in this study – the actual automatic testing –
it is crucial to keep the web application simple. The chosen application is a very
simple traditional guestbook application. This guestbook has got three1 features:

• The user may create a new guestbook entry by entering the name of the author
and the guestbook message in a form, then submitting this form by clicking
a button.

• The guestbook entries will be shown in a list below the form, accompanied by
the dates of the guestbook entries.

• This guestbook entry list will only display a maximum of 5 guestbook entries.
If more than 5 guestbook entries are stored in the guestbook, links below the
list can be used to navigate between the other pages of maximum 5 guestbook
entries (this is called pagination). The most recent guestbook entry is always
shown as the first entry in the list, right below the form on the first page.

2.3 Test Suite
A set of test cases is called a test suite. The test suite for this study will contain
the following two test cases:

1. Assert that after entering values in the form and clicking the submit button,
a new guestbook entry is created and shown.

2. Assert that after creating six guestbook entries, the first guestbook entry cre-
ated is no longer visible. But after navigating to the second page, it becomes
visible.

If the two different implementations of the fontend forces the implementation of
the test cases to change, of course there will be four test cases in total. Although if
the test tool can handle testing different implementations of the same user interface,
that is a really good feature of the test tool.

1Actually there’s one more feature used to simplify the automatic testing. It’s a feature to
delete all guestbook entries using one single web request – but this is supposed to be hidden from
users when using the guestbook in production mode.

Chapter 3

Study

3.1 Implementing the Application Under Test

3.1.1 Tools and Frameworks Used

Table 3.1 shows a summary of the environment used to perform this study. It’s a
Java Enterprise Edition web application built using Spring Framework to increase
development productivity. When developing in the Java environment, a tool is often
used to manage the build cycle and the third party dependencies. Apache Maven is

Description Software Version
Operating system Mac OS X 10.6.6
Web browser Mozilla Firefox 3.6.16
Automated UI testing tool Selenium IDE 1.0.10
AJAX framework Google Web Toolkit 2.2.0
Software development platform Java (vendor: Apple Inc.) 1.6.0_24
Software project management tool Apache Maven 3.0.2
Java IDE Eclipse 3.6.1
JavaEE API version Servlet 2.5
JavaEE API version JavaServer Pages 2.1
JavaEE API version JSP Standard Tag Library 1.2
SQL Database HSQLDB 1.8.0.10
Object-renational mapping library Hibernate 3.6.0
Java Bean to Java Bean mapper Dozer 5.3.2
Java Persistence API library Hibernate-JPA-2.0-API 1.0.0
Java application framework Spring Framework 3.0.5
Data access layer enhancements spring-data-jpa 1.0.0.M2
Servlet Container maven-jetty-plugin 6.1.26

Table 3.1. This summarizes the environment used to perform this study

11

12 CHAPTER 3. STUDY

a very popular choice for this. A guestbook needs a database to store the guestbook
entries. A lightweight in-memory database was used called HSQLDB. To manage
the mapping between Java objects and the relational database the Java Persistence
API was used, using the Hibernate implementation.

To keep the focus on the web application’s user interface instead of heavy back-
end code, two important libraries was used. One is Spring MVC, part of the Spring
Framework. It helps creating web applications following the Model-View-Controller
pattern. The other one is for keeping the actually hand-written database access code
to zero1. For this the second milestone release of the very impressive and brand
new spring-data-jpa library was used.

3.1.2 Data Tier

The data tier in this application shows how very slim the data tier in a Java appli-
cation can be, and this is good since this study tries to focus on the user interface
aspects. It consists entirely of one Java Persistence API entity class (see listing 3.1)
and one repository interface (see listing 3.2). Everything else related to the data is
solved implicitly and automatically by Hibernate and spring-data-jpa at runtime.

@Entity
public class EntryEntity {

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

private String author;

private String message;

private Date date;

/* Public getters and setters omitted */
}

Listing 3.1. The guestbook entry Java Persistence API entity

public interface EntryRepository
extends JpaRepository<EntryEntity, Long> {}

Listing 3.2. The guestbook repository

Just for clarification listing B.1 in appendix B shows the methods defined in the
JpaRepository interface.

1The only thing you need to do is create an empty interface (see listing 3.2 for an example)
extending another interface which defines all the necessary Create-Update-Delete methods. As a
side note, to create domain specific database queries you only need to write the method signature
in the interface and the library will implicitly create implementation for you at runtime. Very
impressive indeed.

3.1. IMPLEMENTING THE APPLICATION UNDER TEST 13

3.1.3 Application Logic Tier
In the application logic tier the data model is represented by a serializable2 EntryModel
class (see listing 3.3), and the mapping between the EntryModel and EntryEntity

classes is carried out by a nice little library called Dozer3. All of the application logic
is contained in an implementation of the GuestbookService interface (see listing
3.4 for the interface, or listing C.1 in appendix C for the actual implementation).

public class EntryModel implements Serializable {

private String author;
private String message;
private Date date;

/* Public getters and setters omitted */
}

Listing 3.3. The guestbook entry model class

@RemoteServiceRelativePath("../spring/gwt-rpc/guestbookService")
public interface GuestbookService extends RemoteService {

public static final int PAGE_SIZE = 5;

public ArrayList<EntryModel> getGuestbookPage(int pageNumber);

public Long getNumberOfPages();

public Long createNewGuestbookEntry(EntryModel entry);

}

Listing 3.4. The GuestbookService interface, this defines the application logic.

The curious reader may have noticed the annotation on the GuestbookService

interface. It tells the Google Web Toolkit to treat this service as an RPC4 service
used to make asynchronous requests to the web server from the web browser. Com-
munication between the browser showing the traditional web application and web
server will go through the GuestbookController (see listing 3.5).

@Controller
@RequestMapping("/guestbook")
public class GuestbookController {

@Autowired
private GuestbookService guestbookService;

@Autowired
private EntryRepository repository;

2The reason for this is explained when describing the GWT communication in section 3.1.4
3Dozer copies all the matching Java Bean properties it can find from one instance to another.
4Remote Procedure Call

14 CHAPTER 3. STUDY

@RequestMapping("/show")
public ModelAndView show(@RequestParam(defaultValue = "1") int pageNumber)

throws IOException {
ModelAndView modelAndView = new ModelAndView("show");
modelAndView.addObject("formModel", new EntryModel());
modelAndView.addObject("currentPageNumber", pageNumber);
modelAndView.addObject("numberOfPages", guestbookService.getNumberOfPages());
modelAndView.addObject("entries", guestbookService.getGuestbookPage(pageNumber));
return modelAndView;

}

@RequestMapping(value = "/new", method = RequestMethod.POST)
public String newEntry(@ModelAttribute EntryModel entry) {
guestbookService.createNewGuestbookEntry(entry);
return "redirect:show";

}

@RequestMapping("/clear")
public void newEntry(HttpServletResponse response) throws IOException {
repository.deleteAll();
response.getWriter().println("Guestbook entries cleared");

}
}

Listing 3.5. The GuestbookController class, this defines the traditional client-server
communication

3.1.4 The Dual Presentation Tier
Two screenshots says more than two thousand lines of code examples. See appendix
A to see the screen shots of the two separate presentation tiers (figures A.1 and A.2).
Notice that they are rendered identically in the browser, except the headline. The
only difference is how they communicate with the server and how the data renders
in the browser.

Traditional Web Application Framework: JSP

This is simply a very simple JSP5 implementation of the graphical user interface.
The important part to note is that it is using a traditional form post to submit
the data to the web server (see listing D.1 in appendix D to read the implementa-
tion). This JSP page is served from the GuestbookController (listing 3.5) and it
communicates back to it when posting the form.

AJAX Framework: GWT

Now when it comes to the modern web application frontend, things look a bit
different. Listing 3.6 shows the content of Guestbook.html from which the GWT
(Google Web Toolkit) application is loaded.

<html>
<head>

5JavaServer Pages

3.1. IMPLEMENTING THE APPLICATION UNDER TEST 15

<title>GWT Guestbook</title>
<script type="text/javascript" language="javascript"

src="Guestbook/Guestbook.nocache.js"></script>
</head>
<body>
<h1>GWT Guestbook</h1>
<p>Hello and welcome to my guestbook. Please leave me a message here!</p>
<hr />
<div id="form"></div>
<hr />
<div id="entries"></div>
<hr />
<div id="pagination"></div>
<hr />

</body>
</html>

Listing 3.6. The Guestbook.html file from which the GWT application is loaded

The file looks quite empty, but not when opened in a web browser. Actually the
included JavaScript file is a Java program that Google Web Toolkit has compiled
into JavaScript. This Java program is then populating the DOM6 tree with HTML
elements. It is also handling the asynchronous communication between browser and
server. GWT have automatically generated an asynchronous implementation of the
GuestbookService (listing 3.4) which is used in the examples of this communication,
seen in listing 3.7 and listing 3.8. See how only the serializable java objects are
traveling between browser and server.

button.addClickHandler(new ClickHandler() {
public void onClick(ClickEvent event) {
final EntryModel entry = new EntryModel();
entry.setAuthor(textBox.getText());
textBox.setText("");
entry.setMessage(textArea.getText());
textArea.setText("");
entry.setDate(new Date());

if (entries.size() >= GuestbookService.PAGE_SIZE) {
entries.removeLast();

}
entries.addFirst(entry);

rerenderEntries();

guestbookService.createNewGuestbookEntry(entry, new AsyncCallback<Long>() {
public void onFailure(Throwable caught) {
rpcFailure(caught);

}
public void onSuccess(Long totalNumberOfPages) {
int newTotalNumberOfPages = Integer.parseInt(totalNumberOfPages.toString());
updatePageNumbering(currentPageNumber, newTotalNumberOfPages);

}
});

}
});

6Document Object Model

16 CHAPTER 3. STUDY

Listing 3.7. The ClickHandler of the submit button of the AJAX form. Notice how
the text box and text area are cleared after getting the values. This needs to be done
since the web browser is not refreshing the whole web page when submitting the form.

What’s fascinating about these listings is that this code is actually executed in
the user’s web browser after being compiled to JavaScript. (Nowadays it is possible
to put lots of application logic out in the web browsers, reducing load on the web
servers and giving the users a better user experience at the same time).

guestbookService.getGuestbookPage(pageNumber,
new AsyncCallback<ArrayList<EntryModel>>() {

public void onSuccess(ArrayList<EntryModel> result) {
entries.clear();
entries.addAll(result);
rerenderEntries();

}

public void onFailure(Throwable caught) {
rpcFailure(caught);

}
});

Listing 3.8. This shows how the list of five guestbook entries per page is asyn-
chronously fetched from the web server and then rendered directly in the web browser
using the helper method rerenderEntries().

3.2 Automated Web Application Testing Tool
This study is about automatic testing of web applications, and the method requires
the choice of one testing tool. Here follows a subset of the available tools on the
market:

• Sahi <http://sahi.co.in/w/>

• Selenium <http://seleniumhq.org/>

• SOAtest <http://www.parasoft.com/>

• TestComplete <http://www.automatedqa.com/>

• Watir <http://watir.com/>

• WebUI Test Studio <http://www.telerik.com/>

Some research showed that by using Selenium it is possible to make the number
of regression bugs released to production essentially drop to zero. That is the
experience Chris McMahon got by using Selenium which he explains in detail in his
article [McMahon, 2009].

3.2. AUTOMATED WEB APPLICATION TESTING TOOL 17

Command Target Value
open /dkand11/spring/guestbook/clear
assertTextPresent Guestbook entries cleared
open /dkand11/spring/guestbook/show
assertTextPresent JSP Guestbook
type author Author using JSP version
type message A JSP test message
clickAndWait submit
assertTextPresent Author using JSP version
assertTextPresent A JSP test message

Table 3.2. Selenium test case for the JSP frontend: test writing a single entry.

3.2.1 Recording the Test Cases

Selenium IDE is a Mozilla Firefox add-on, allowing close integration with the web
browser while recording and playing the test suite. A very easy way to use the
Selenium IDE follows in the next section which describes the work flow of creating
the test cases for the traditional JSP web application.

Traditional Web Application Test Cases

1. Open the application under test in Firefox.

2. Start the Selenium IDE add-on from the Tools menu. It will start directly
in recording mode, remembering every action you perform on the application
under test from now on.

3. Perform the actions you want, for example writing text into form field and
clicking the submit button.

4. When the submit is completed and you now see the new content in the web
browser, select the text and right click. Selenium IDE have populated this
context menu with some Selenium commands, for example “assertTextPre-
sent”.

5. Stop the recording and hit the play button in Selenium IDE and watch all of
the actions you just performed swoosh by on the screen in blazing speed.

The standard way of representing a Selenium test case is as a three column
table7. Table 3.2 shows the recording of test case number 1 of section 2.3. Table
3.3 shows the recording of test case number 2.

7The default file format is actually a HTML table.

18 CHAPTER 3. STUDY

Command Target Value
open /dkand11/spring/guestbook/clear
assertTextPresent Guestbook entries cleared
open /dkand11/spring/guestbook/show
type author Simon
type message First message
clickAndWait submit
type author Simon
type message Second message
clickAndWait submit
type author Simon
type message Third message
clickAndWait submit
type author Simon
type message Fourth message
clickAndWait submit
type author Simon
type message Fifth message
clickAndWait submit
type author Simon
type message Sixth message
clickAndWait submit
assertTextNotPresent First message
clickAndWait link=2
assertTextPresent First message

Table 3.3. Selenium test case for the JSP frontend: test pagination.

Modern Web Application Test Cases

This is the most interesting and important part of this study. Is it possible to
just perform the same procedure as above for testing the GWT application? The
first experiment was to just change the target of the open command to /dkand11/-

Guestbook.html which would open the GWT application instead. Both test cases
failed because GWT does not set the ID property on the HTML elements which
GWT generates and puts in the DOM.

Not surprisingly this have already been considered in the GWT development
team. Developers may take extra measures to ensure ID property are set on elements
that are supposed to be part of automatic testing. The base class of all user interface
classes is com.google.gwt.user.client.ui.UIObject and it defines a method void

ensureDebugId(String id), which according to the API “allows it to integrate with
third-party libraries and test tools”.

3.2. AUTOMATED WEB APPLICATION TESTING TOOL 19

So after manually setting the ID properties of each element participating in the
test, and reflecting these changes in the test suite (now doubling the number of tests
in the test suite) – does the tests succeed when played back? They do not. The
clickAndWait command fails if the web page has not reloaded within 30 seconds.
Since AJAX technology allows us to send and receive data without reloading the web
page, this causes every clickAndWait command to time out.

This too have already been considered, this time by the Selenium development
team. The Selenium documentation [Selenium Project, 2011] states that “This is
done using waitFor commands, as waitForElementPresent or waitForVisible,
which wait dynamically, checking for the desired condition every second and con-
tinuing to the next command in the script as soon as the condition is met”.

The test cases for the modern web application, which are very similar to the tra-
ditional ones, are available in appendix E. Note the user of the waitForTextPresent
command.

3.2.2 Executing the Test Suite
Previously recorded tests are played back simply by clicking the play button in
Selenium IDE. Two screen shots of the Selenium IDE in action can be seen in
appendix A. Figure A.3 shows all of the tests succeeding.

Figure A.4 is more interesting. It shows what happens when the server build and
run process was misconfigured for a while during this study. The GWT compilation
step was by mistake left out of the process, causing the necessary JavaScript file not
being generated. The GWT version of the user interface now only contained the
HTML of listing 3.6, thus causing both of the GWT test cases to fail. A closer look
at which step of the test case failed shows exactly what was wrong, so the failed
test case really helped in correcting this error.

This concludes this study. The results are summarized in the next chapter.

Chapter 4

Results

4.1 Testing the Traditional Web Application
• The test cases were simply recorded in one take.

• They did not need any modifications afterwards, they ran successfully directly
when the recording was stopped.

• Testing the traditional web application was a very stable and straight forward
process.

4.2 Testing the Modern Web Application
• The previously recorded test cases for a seemingly identical web application

needed modification to successfully test this web application user interface.

• GWT brings in another layer of abstraction when it populates the DOM tree
as it wishes, forcing the developer to keep an extra eye on the DOM tree when
telling Selenium where to find certain elements like form fields and buttons.

• It was definitely not a straight forward process creating these test cases.

• The extra complexity that GWT brings into the user interface code makes
the test suite feel more necessary and actually feels very welcomed in the
development process.

21

Chapter 5

Discussion

5.1 Sources of Errors
The testability of a web application, or any software for that matter, depends on how
it was implemented. It is always a risk that software engineers create programs that
are hard or nearly impossible to test. High level of coupling and lots of dependencies
on global state is a recipe for a testability nightmare. When evaluating a specific
testing tool, there is a risk that the application under test simply was badly written
and was effectively unsuitable for execution using any testing tool available.

5.2 Suggestions for Future Work
The automatic tests features that Selenium provides does not make it a complete
user interface testing tool. A user interface is so much more than a functional
flow through forms and HTTP requests. An application needs to be usable. To be
competitive in the software industry the user interface must look good, have a good
layout and should follow the latest trend in web design.

A list of suggested future studies follows. It is based on a few things that
Selenium is missing in functionality.

• Crawling a web site for automatic spell checking.

• Crawling a web site for automatic broken link checking.

• Automatic testing of esthetics. For example analyzing web pages for com-
monly known patterns we humans tend to like e.g. the golden ratio.

• Automatic readability checking. E.g. it is hard to read large masses of text
in wide columns.

• Automatic testing of more esthetics, there are known color combinations that
the majority of people dislike in combination. An extreme example of a de-
tectable web design problem would be white text on white background.

23

24 CHAPTER 5. DISCUSSION

5.3 Conclusion
Today there are lots of tools available to help agile software development teams
automate their user interface testing. If the application under test is a traditional
web application using Selenium is an elegant solution to problem 1 (see section 1.2).

The process of testing modern AJAX web applications still have some polishing
and streamlining left before using Selenium can be called an elegant solution, in
comparison. Problem 2 still stands.

While testing the GWT application struck some problems, work-arounds do
exist and once that lesson is learned Selenium is a welcomed tool used together
with Google Web Toolkit.

Appendix A

Screen shots

25

26 APPENDIX A. SCREEN SHOTS

Figure A.1. Screen shot showing the traditional JSP version of the guestbook
frontend.

27

Figure A.2. Screen shot showing the modern GWT version of the guestbook fron-
tend.

28 APPENDIX A. SCREEN SHOTS

Figure A.3. Screen shot showing a successful execution of the Selenium test suite.

29

Figure A.4. Screen shot showing a failed execution of the Selenium test suite. This
error is related to figure A.5.

30 APPENDIX A. SCREEN SHOTS

Figure A.5. Screen shot showing the modern GWT version of the guestbook fron-
tend when the included JavaScript file is missing, showing what it looks like when
the developer forgot to perform the GWT compilation build step.

Appendix B

The JpaRepository Interface

public interface JpaRepository<T, ID extends Serializable> extends
PagingAndSortingRepository<T, ID> {

T save(T entity);

List<T> save(Iterable<? extends T> entities);

T findOne(ID id);

boolean exists(ID id);

List<T> findAll();

Long count();

void delete(T entity);

void delete(Iterable<? extends T> entities);

void deleteAll();

List<T> findAll(Sort sort);

Page<T> findAll(Pageable pageable);

void flush();

T saveAndFlush(T entity);

void deleteInBatch(Iterable<T> entities);
}

Listing B.1. The org.springframework.data.jpa.repository.JpaRepository in-
terface. Every method in this interface is also marked @Transactional, but that was
omitted here.

31

Appendix C

The GuestbookServiceImpl Class

@Service
public class GuestbookServiceImpl implements GuestbookService {

@Autowired
private EntryRepository repository;

@Autowired
private Mapper mapper;

@Override
public ArrayList<EntryModel> getGuestbookPage(int pageNumber) {
ArrayList<EntryModel> models = new ArrayList<EntryModel>();
PageRequest pageRequest = new PageRequest(

pageNumber - 1, PAGE_SIZE, Sort.Direction.DESC, "date");

for (EntryEntity entity : repository.findAll(pageRequest)) {
EntryModel model = mapper.map(entity, EntryModel.class);
models.add(model);

}
return models;

}

@Override
public Long getNumberOfPages() {
long numberOfPages = (long) Math.ceil(

repository.count() / (double) PAGE_SIZE);
return new Long(numberOfPages == 0 ? 1 : numberOfPages);

}

@Override
public Long createNewGuestbookEntry(EntryModel entry) {
EntryEntity entity = mapper.map(entry, EntryEntity.class);

if (entry.getDate() == null) {
entity.setDate(new Date());

}

repository.save(entity);
return getNumberOfPages();

}

}

Listing C.1. The guestbook service implementation – the application logic.

33

Appendix D

show.jsp

<html>
<head><title>JSP Guestbook</title></head>
<body>
<h1>JSP Guestbook</h1>
<p>Hello and welcome to my guestbook. Please leave me a message here!</p>
<hr />
<div id="form">
<form:form commandName="formModel" action="new">
Author:<form:input cssClass="textfield" path="author" />
Message:<form:textarea path="message" />
<input type="submit" value="Submit" id="submit" />

</form:form>
</div>
<hr />
<div id="entries">
<c:forEach var="entry" items="${entries}">
<div class="entry">
${entry.author}
${entry.date}
${entry.message}

</div>
</c:forEach>
</div>
<hr />
<div id="pagination">
<div>Page:<%
int numberOfPages = Integer.parseInt(request.getAttribute("numberOfPages").toString());
int currentPageNumber = Integer.parseInt(request.getAttribute("currentPageNumber").toString());
for (int i = 1; i <= numberOfPages; i++) {
if (i == currentPageNumber) {
out.print("" + i + "");

} else {
out.print("" + i + "");

}
}
%></div>
</div>
<hr />

</body>
</html>

Listing D.1. JSP implementation using JSTL tags to implement some minor view
logic. Note that some uninteresting parts are omitted.

35

Appendix E

GWT Test Cases

Command Target Value
open /dkand11/spring/guestbook/clear
assertTextPresent Guestbook entries cleared
open /dkand11/Guestbook.html
assertTextPresent GWT Guestbook
type gwt-debug-author Author using GWT version
type gwt-debug-message A GWT test message
click gwt-debug-submit
waitForTextPresent Author using GWT version
assertTextPresent A GWT test message

Table E.1. Selenium test case for the GWT frontend: test writing a single entry.

37

38 APPENDIX E. GWT TEST CASES

Command Target Value
open /dkand11/spring/guestbook/clear
assertTextPresent Guestbook entries cleared
open /dkand11/Guestbook.html
type gwt-debug-author Simon
type gwt-debug-message First message
click gwt-debug-submit
waitForTextPresent First message
type gwt-debug-author Simon
type gwt-debug-message Second message
click gwt-debug-submit
waitForTextPresent Second message
type gwt-debug-author Simon
type gwt-debug-message Third message
click gwt-debug-submit
waitForTextPresent Third message
type gwt-debug-author Simon
type gwt-debug-message Fourth message
click gwt-debug-submit
waitForTextPresent Fourth message
type gwt-debug-author Simon
type gwt-debug-message Fifth message
click gwt-debug-submit
waitForTextPresent Fifth message
type gwt-debug-author Simon
type gwt-debug-message Sixth message
click gwt-debug-submit
waitForTextPresent Sixth message
assertTextNotPresent First message
click link=2
waitForTextPresent First message

Table E.2. Selenium test case for the GWT frontend: test pagination.

Bibliography

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas. Manifesto for agile software development.
http://agilemanifesto.org/, 2001. Date of access 2011-04-11.

Peter J. Denning. Is computer science science? Commun. ACM, 48:27–31, April
2005. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1053291.1053309. URL
http://doi.acm.org/10.1145/1053291.1053309.

GWT Development Team. Google web toolkit official website. http://code.

google.com/webtoolkit/, 2011a. Date of access 2011-04-11.

GWT Development Team. Google web toolkit release archive. http://code.

google.com/webtoolkit/versions.html, 2011b. Date of access 2011-04-11.

Miško Hevery. Video recording and slides: Psychology of testing
at wealthfront engineering. http://misko.hevery.com/2011/02/14/

video-recording-slides-psychology-of-testing-at-wealthfront-engineering/,
2011. Date of access 2011-04-11.

The jQuery Project. jquery official website. http://jquery.com/, 2011. Date of
access 2011-04-11.

C. Mazza. Esa software engineering standards issue 2. ftp://ftp.estec.esa.nl/

pub/wm/wme/bssc/PSS050.pdf, 1994a. Date of access 2011-04-11.

C. Mazza. Software engineering standards. Prentice Hall, 1994b. ISBN
9780131065680. URL http://books.google.com/books?id=0NZQAAAAYAAJ.

Chris McMahon. History of a large test automation project using selenium. In
Proceedings of the 2009 Agile Conference, AGILE ’09, pages 363–368, Washing-
ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3768-9. doi:
http://dx.doi.org/10.1109/AGILE.2009.9. URL http://dx.doi.org/10.1109/

AGILE.2009.9.

39

40 BIBLIOGRAPHY

G.J. Myers, T. Badgett, T.M. Thomas, and C. Sandler. The art of software testing.
Business Data Processing: A Wiley Series. John Wiley & Sons, 2004. ISBN
9780471469124. URL http://books.google.com/books?id=OeDMuVI79IoC.

R. Patton. Software Testing. Safari Books Online. Sams, 2005. ISBN
9780672327988. URL http://books.google.com/books?id=MTEiAQAAIAAJ.

Selenium Project. Selenium documentation. http://seleniumhq.org/docs/book/
Selenium_Documentation.pdf, 2011. Date of access 2011-03-10.

The Dojo Foundation. Dojo toolkit official website. http://dojotoolkit.org/,
2011. Date of access 2011-04-11.

W3C. Xmlhttprequest w3c candidate recommendation 3 august 2010. http://www.
w3.org/TR/2010/CR-XMLHttpRequest-20100803/, 2010. Date of access 2011-04-
11.

