
Graphics with limited resources

Ludvig Jonsson
ludjon@kth.se

Tim Johan Malmström
tjma@kth.se

Degree Project in Computer Science, First Level, DD143X
Supervisor: Mads Dam

Examiner: Mårten Björkman

Bachelor of Science Thesis Stockholm, Sweden 2012

Abstract
This paper aims to investigate what is being done to im-
prove the use of graphics on mobile devices with focus on
the Android platform and especially Android-based smart-
phones. Today most people use a smartphone in their ev-
eryday life and much of the intended use of traditional per-
sonal computers are moving towards mobile devices. Be-
cause of this, making the most of the limited system re-
sources is a highly relevant issue.

The subject is divided into three parts. The first part
investigates how graphics rendering is done on the Android
platform. The second part is a comparison of the available
rendering options on Android and their respective resource
usage. The last part consists of a practical test of the dif-
ferent rendering methods and results analysis.

The conclusion that could be drawn from this exercise is
that there is no method that is optimal for all situations, all
available rendering options have different uses and advan-
tages. The choice of method should be based on what kind
of graphics is being rendered and how resource demanding
the rendering instructions are.

Contents

Contents

Introduction 1
Preface . 1
Purpose . 1
Research focus . 2
Problem statement . 2

Background 3
History . 3
Resources . 3

Platform . 4
Central Processing Unit (CPU) . 4
Graphics Processing Unit (GPU) . 5
Random Access Memory (RAM) . 5

Android graphics APIs and rendering . 5
Canvas API . 5
OpenGL . 6
Renderscript . 7

Rendering optimization techniques . 7
Hardware and software rendering . 7
Android and hardware acceleration 8

Discussion 9
Differences between the APIs . 9
Hardware and software rendering . 10

Testing method 11
The testing application . 11
The testing device . 12
Benchmarking . 13
Test cases . 13
Expected results . 14

Results analysis 15
Implementation using the different APIs 15
Test results . 16

Conclusions 19
Improvements being done to the graphics rendering 19
Android rendering methods . 20

Abbreviations 21

Test data 22
Canvas with software rendering . 22
Canvas with hardware accelerated rendering 22
OpenGL . 23

Bibliography 24

Introduction

Preface
This document is written for the course Degree Project in Computer Science,
DD143X(dkand12) at the Royal Institute of Technology(KTH). It is written by Tim
Malmström and Ludvig Jonsson who both at the time of writing this documents
are third year students at the computer science program at the Royal Institute of
Technology in Stockholm. The document is written with the purpose of investigat-
ing what is being done to improve the use of graphics within mobile devices with
limited resources.

The supervisor for writing the document is Mads Dam.

The writing has been divided between the authors as follows:
Introduction - Both
Background - History - Ludvig
Background - Resources - Tim
Background - APIs and rendering - Ludvig
Background - Optimizations - Tim
Discussion - Differences - Ludvig
Discussion - Hardware and software - Tim
Testing method - Tim
Result analysis - Tim
Conclusions - Both
Layout and Design - Both
Implementations - Tim

Purpose
With personal computers being used everywhere in todays society the demand for
mobile systems with the same funtionality has emerged. This has put pressure on
manufacturers to create smaller and lighter products that have the same function-
ality as the bigger systems. To achieve this functionality, software developers need

1

INTRODUCTION

to create software that use the more limited resources as efficient as possible.
When the smartphone and the tablet was introduced to the world the limited

resources was one of the manufacturers biggest problems. To get people interested
in change and trying something new, the product has to have clear advantages over
the previous ones.

The use of this kind of limited system resources is the focus of this paper. In
terms of graphics, what is being done and what can be done to use the resources as
efficiently as possible?

Research focus
Since the subject "Graphics with limited resources" is quite wide, we decided to
limit our focus to smartphones. We find the subject of smartphones interesting
and highly relevant since most people in the modern world are using one in their
everyday life.

We have also decided to focus on smartphones running the Android platform
since the Android phones are dominating the smartphone market having 50,9 %
of the total smartphone sales according to Gartner’s analysis of global smartphone
sales in Q4 2011.[8]

Problem statement
The problem statement is as follows:

• What recent changes have been made in Android to make the use of the
limited resources more efficient?

• What are the differences between the different rendering methods used in
Android and their resource usage?

• Evaluate the performance and resource usage of the rendering methods in
Android.

With the first question the goal is to understand what techniques are used to make
the resource usage more efficient and why. The second question is an analysis and
comparison of the different rendering methods used in Android. The third question
is answered in two different parts. First the rendering methods are compared from
a theoretical point of view. Then the theoretical conclusions are tested using bench-
marks to compare their performance. Following this the test results are analysed
leading to conclusions that answer the problem statement.

2

Background

History
When comparing a modern mobile phone to one released fifteen, ten or even five
years ago, it is clear that the development is progressing very fast. The devices
still serve the same basic purposes, like being able to make phone calls and send
text messages. With the increasing hardware performance and the phones being
more advanced in general, the amount has grown from just a few to what seems
like unlimited uses.

Some of the differences are obvious when comparing the looks of an older mobile
phone and a modern smartphone. The older monochrome displays and physical
buttons where replaced by much larger, touch-sensitive color displays. Since the
older phones were mostly used to make phone calls and send text messages, the
hardware was not and did not really need to be that powerful. With the new, larger
screens supported by new, more powerful hardware, the differences in functionality
between the smartphone and the standard personal computer have become virtually
non-existent.

Earlier, the different functions of the mobile phones were integrated in the op-
erating system and the different phone manufacturers had their own platforms.
Nowadays almost all smartphones are based on an already established platform like
Android or iOS. The big advantage with this is that when releasing an Android-
based smartphone (for example), there already exists a couple of million applications
which can be installed to extend the functionality of the device.

The more powerful hardware makes it possible for these applications to include
advanced graphics, but since the smartphones are limited in aspects like physical
size and battery life, it is still very important to use the hardware as efficiently as
possible in the graphics rendering process to make the most of it.

Resources
The graphics rendering process is a process that requires the use of several different
system resources. What resources are being used and how they are being used
has varied a lot over time, from having distinct RAM and GPU that does not
affect the performance of the rest of the system whatsoever, to the more advanced

3

BACKGROUND

cooperations between GPUs and the CPUs.
The graphics rendering in modern personal computers are developing in a di-

rection that increases the separation between the graphics processing and other
processes. This is mostly since the space required for cooling and for the processors
is not a problem. Because of the limited space within a mobile device most of the
newly developed devices contain a CPU with a integrated GPU which means that
the graphics processing share the same resources as other system processes. This
makes efficient graphics rendering an even more important part of the applications.

The most important system resources used by the graphics rendering is the CPU,
GPU, RAM and the platform which is not really a resource per se, but more of a
controller for the resources. Even though the CPU and GPU use the same resources
they are separated since separating CPU requests from GPU requests makes the
process handling more efficient.

Platform
A platform is both a sort of hardware architecture and a chipset containing a soft-
ware framework.[10] In the case of a mobile device the platform usually contains all
the hardware of the device since there rarely are any extension ports or possibilities
to change the device’s hardware. This is something that makes the system more
stable and reliable than a personal computer since there is less that can go wrong
when there is no possibility to switch hardware.

The software framework put on the chipset is in Android devices parts of the
operating system and some basic resources like timers, boot instructions and inter-
rupt controllers. The chipset also contains the instructions and controllers for the
hardware components.

The reason why the platform is relevant in this case is because the platform
controls the hardware resource usage and thereby how much and what resources
can be used by the rendering processes.

The platform that we performed our tests on is the one used in the Android
phone Samsung Galaxy Nexus. The platform is called OMAP4460 and is developed
by Texas Instruments.[7] The Samsung Galaxy Nexus is a recently released Android
smartphone running the Android 4.0 operating system.

Central Processing Unit (CPU)
The central processing unit is the part that executes instructions on a system. The
CPU takes instructions in binary code and executes them. The biggest problem
with the CPU within mobile devices is that it generates a lot of heat. This often
forces the manufacturers to limit the processors capabilities to be able to use them
in the smaller devices.

In our testing the device uses a 1,2 GHz dual core CPU. According to Texas
Instruments the processor used in the OMAP4460 has the capacity to reach speeds

4

BACKGROUND

up to 1,5 GHz although because of the problem with cooling in a mobile device
Google has chosen to lower the clock frequence.

Graphics Processing Unit (GPU)
A GPU is an electronic circuit designed to be able to quickly alter memory and
perform instructions rendering images to a frame buffer that is intended to be
shown on a display. As mentioned earlier there are several different kinds of GPU
types. The ideal type performance-wise is the one where the GPU runs a separate
processor with the sole purpose of executing graphics instructions. This gives the
graphics processor better image rendering speed than the more general CPU. The
kind of GPU that is used in our testing is an integrated GPU.

The integrated GPU does not have a processor of its own but is instead more
of an optimizing unit that optimizes the instructions for calculating graphics and
then relies on the CPU for executing them. The integrated GPU provides enough
performance to calculate graphics in most situations. There are many advantages
with using integrated GPUs - it is more cost efficient, space efficient and consumes
less power. The only downside is the performance.

Random Access Memory (RAM)
The random access memory (RAM) is a memory which is made for being able to
read and write from all memory positions quickly. RAM is therefore used as a
temporary data storage for active processes, any data that needs to be accessed
quickly. For more long term storage, devices use a storage memory that is not as
quick but has room for much more data.

In mobile devices the RAM is usually divided into two parts, the part that is
accessed and used by the operating system and the part reserved for other processes.
This prevents less important processes from having any affect on the performance
of the operating system.

The RAM is a very important resource for the graphics processing since the
already existing bitmaps used for the rendering as well as the draw buffer are stored
there for fast access.

Android graphics APIs and rendering
Rendering is the process of generating the graphical components of a computer pro-
gram. The purpose of this section is to go through the different rendering methods,
their advantages and disadvantages.

Canvas API
The Canvas API is a very simple tool for rendering graphics on Android. To be able
to understand how the Canvas API works, the first thing to understand is what a

5

BACKGROUND

View object is and how it is used in the Android development process. The View
object is the basic building block for user interface components when developing a
standard SDK application for Android. It handles the graphics rendering and user
input.

A Canvas is drawn by calling the onDraw method of the View with the Canvas
object as a parameter. By calling methods of the Canvas class such as drawText,
drawCircle and drawPicture the developer can decide what graphical components
should be rendered and where they should be positioned on the screen.

The Canvas API is the standard way of rendering graphical components of a
GUI application on Android. It is a great tool for simple graphics, but there are
other methods better suited for including more advanced graphics in an application.

OpenGL
OpenGL (short for Open Graphics Library) is a cross-platform graphics language
for producing 2D and 3D graphics. It is developed by Silicon Graphics and is the
most widely used graphics API of the computer industry.[12]

Android uses a subset of OpenGL called OpenGL ES (OpenGL for Embedded
Systems). It is specifically designed for embedded systems like video game consoles
and mobile phones, and is basically a stripped down version of OpenGL. [5]

Android supports OpenGL in two different ways - through the standard An-
droid framework API and through something called Android NDK. NDK is short
for Native Development Kit and it is used to build applications (or parts of appli-
cations) in native code outside the Android Java VM(Virtual Machine) as opposed
to building applications in Java on the SDK level.

When building applications with the NDK, there is no access to the usual GUI
toolkit (View objects, events) of the Android platform, but with full access to
OpenGL the NDK is ideal for a few specific purposes (like porting applications
written in OpenGL for another platform).

Using native code does not automatically increase the performance of the ap-
plication, but it provides a more complex view of the application and more cus-
tomizability. The native code also gives developers the possibility of embedding
corresponding native libraries into the application package file and thus the possi-
bility to embed OpenGL.

The standard option is to use something called OpenGL wrapper functions. A
wrapper function is basically a function whose main purpose is to call a second
function in another framework or library. In this case, the wrapper functions are
using something called JNI (Java Native Interface) to make calls down to the native
OpenGL library. OpenGL wrapper functions makes it possible for the developer to
use the OpenGL API at the SDK level. This means an application can be written
using the standard SDK APIs and still include parts of OpenGL.

6

BACKGROUND

Renderscript
Renderscript is another graphics rendering API for Android, developed with the goal
of bringing a lower level, high performance graphics API to the Android platform.[6]
An application using Renderscript is a standard SDK application running in the
Android VM but with some external parts operating at native level. The external
parts are written in Renderscript code (in the C99 language).

The application can be divided into two parts, the Android framework and the
Renderscript runtime. The lower level Renderscript runtime is controlled by the
higher level Android system that runs in the Android VM. The memory allocation
is handled by the Android VM which binds the memory to the Renderscript runtime
so the Renderscript code can read from and write to it.

By compiling the Renderscript native code at runtime, the application maintains
the portability of the application and the benefits of native code.

With Renderscript, the performance of your application can be optimized by
running graphics operations or other advanced computations on the native level
(when they simply take too much time to run at the SDK level). Renderscript
also has the possibility to, at runtime, determine the best way to run a particular
operation to achieve the highest possible performance. Renderscript may decide to
send the graphic operations to the GPU or decide that it is better to split up the
computations and send them to the multi-core CPU.

All this can be done without losing any of the functionality of the SDK APIs.

Rendering optimization techniques
After chosing an API to work with there are also some techniques to optimize the
rendering performance further. One of the biggest changes recently to optimize
rendering performance is Hardware acceleration in the Canvas API. This section
explains the difference between hardware and software rendering and how hardware
acceleration was introduced in Android development.

Hardware and software rendering
The main difference between hardware and software rendering is how rendering
processes are executed. When rendering using software rendering all instructions are
sent directly to the CPU without using any form of graphics hardware. As opposed
to software rendering the hardware rendering runs all its rendering instructions
through the graphics hardware. There are advantages and disadvantages of both
methods.

The biggest advantage of using software rendering is that it is simple. Since
the instructions are sent directly to the general purpose CPU they do not have to
be restricted by the more limited capabilities of the GPU. The limitations of the
GPU is a big disadvantage with using hardware accelerated rendering, they make
the code more complex. Another disadvantage of using hardware rendering is that

7

BACKGROUND

the more complex instructions require use of more memory. Since the instructions
are more specific in the hardware rendering the processor can in most cases execute
them faster than in the case with software rendering.

So choosing between hardware and software rendering is a question of the bal-
ance between the use of RAM and CPU. Since they both have their advantages and
disadvantages the choice must be made for each case.

Android and hardware acceleration
Android has always used some kind of hardware acceleration[3] although before the
Android 3.0 release it was limited to the use of system graphics such as menus and
the top scrollbar. Since the graphics in Android devices has always been divided into
different components called windows, the handling of those windows was done using
hardware accelerated rendering while the content of those windows was software
accelerated.

Before Android 3.0 the limtations of hardware use provided additional stabil-
ity and security since no third party applications had full access to the hardware
resources of the device. In Android 3.0 Google added the

<application android:hardwareAccelerated="true" ... >

attribute to applications. This was mostly made as a test to see if the system would
run stable using the hardware acceleration and was therefore disabled as default.
After seeing the improvement made by this change Google decided to have the
hardware acceleration enabled as default in Android 4.0 even though it was not yet
usable for all drawing operations.

8

Discussion

In this chapter the rendering methods are compared leading to conclusions which
are tested in the following chapter.

Differences between the APIs
In the previous chapter, four rendering methods were mentioned:

• Canvas API

• Renderscript

• OpenGL Wrappers

• NDK OpenGL

These rendering methods were of course not created with the exact same purposes
in mind. The Canvas API is meant to be a simple tool for rendering the GUI
components (like buttons and menus) and other simple graphics of a standard An-
droid application. Using the more advanced options for this kind of graphics would
just make things more complicated rather than improve the performance of the
application.

The purpose of the Canvas API is to be able to render simple graphical com-
ponents in a simple and straightforward way. The other options are meant to be
used for more advanced graphics like 3D graphics, something that the Canvas API
simply does not support. OpenGL and Renderscript were created for the same
main purpose - to make it possible for the Android developers to go beyond what
the Canvas API has to offer, both in terms of functionality and performance.

Since Android 3.0, when GPU acceleration was added to third party applica-
tions, the overall performance of the Canvas API has increased. When hardware
acceleration is enabled, all rendering done at the SDK level is processed as OpenGL
calls to the GPU. This increases the overall performance when rendering advanced
graphical components.

Both the OpenGL options come with some disadvantages.
Since the wrapper option needs to call from SDK to native level for every

OpenGL operation the NDK option will achieve better performance rendering ad-
vanced graphics. When using the NDK option with native access to OpenGL, the

9

DISCUSSION

application loses its portability since the NDK compiles the application for the spe-
cific chip architecture that it is running on. The NDK option also does not contain
the GUI toolkit found in the SDK APIs, like the View objects and the events.

Renderscript is supposed to solve the problem of having to choose between
performance and portability. Renderscript offers performance similar to the perfor-
mance of OpenGL with the NDK. This is accomplished by executing performance
critical parts of the application on a native level as opposed to executing them in
the Android VM.[2]

By compiling the Renderscript code at runtime, it solves the problem with native
code and portability. This is different from the OpenGL options where the whole
application either is written in native code (with the NDK) or the whole application
runs in the Android VM. Renderscript is a mix between these two in the sense that
it offers both the portability of the OpenGL wrappers option (and the rest of the
tools and APIs of the SDK) and performance equal to OpenGL in the NDK.

Hardware and software rendering
Since hardware rendering is considered to be an optimization of the Canvas APIs
rendering and therefore also enabled by default in the latest Android release, as-
sumptions could be made that hardware rendering is simply faster and better than
software rendering. This, however, is not always the case.

Since the hardware rendering uses a different model for the graphics rendering
the instructions go through more stages of processing than they do in the software
rendering model before actually being executed. This means that for simple render-
ing instructions where the graphics processing can not improve the execution time of
the instructions, hardware acceleration just delays the execution of the instructions.

So when the rendering instructions runs hardware accelerated they are being
processed more before being executed. This also provides the effect of hardware
accelerated rendering needing to allocate more memory than the software rendering
would need to execute the same instructions.

For most advanced rendering instructions the hardware rendering can improve
the instructions execution time more than the actual processing takes which im-
proves the overall performance. But if the instructions are simple the rendering ac-
tually benefits from just running the instructions by software rendering. Hardware
accelerated rendering needs to allocate more memory than the software accelerated
rendering for both simple and advanced instructions.

10

Testing method

As discussed in the previous chapter there are big differences between the APIs
regarding performance within applications and quite specific cases for where to use
which API. Another important aspect of the choice is the complexity of the code
used for the rendering in the different cases.

The testing application
The test case that is going to be run in the test is a simple graphics rendering appli-
cation. Since the goal of the application is not to push the hardware to the maximum
performance, but instead to show differences between the rendering methods in a
concrete test.

The testing application will show ovals and squares of different colors and sizes
as fast as possible. To keep the randomization of the shapes from stealing system
resources from the rendering the first part of the testing is a program generating
test data. It creates 1000 randomized shapes and stores them in a file read by the
testing programs. The predefined shapes also makes sure that the APIs face the
same level of difficulty in the rendering since they all render exactly the same frames
during the testing.

11

TESTING METHOD

Figure 1. Some screenshots from the testing application

The testing device
The testing device is as mentioned earlier a smartphone using the Android 4.0
operating system. The model chosen to work with is a Samsung Galaxy Nexus
which was released in November 2011.

12

TESTING METHOD

Figure 2. Samsung Galaxy Nexus

Benchmarking
Benchmarking is the process of comparing performance metrics. The dimensions
compared are often in terms of time, cost and efficiency. Benchmarking is used to
compare the different methods in the test. The units that are benchmarked are
FPS (Frames Per Second) and memory usage.

FPS is probably the most interesting unit since it is the main performance
unit within rendering, and user-experienced problems with graphics often concern
having a low framerate. The memory usage is very interesting when looking at the
improvements of the rendering techniques. As stated earlier the decision between
hardware or software accelerated rendering is often a compromise between memory
usage and performance.

Test cases
To get results that seem relevant to the discussion we chose to run the test using
Canvas with both hardware accelerated rendering and software rendering. We also
chose to run the test using OpenGL to get a comparison between the higher level
Canvas API and one operating at a lower level.

13

TESTING METHOD

Expected results
The rendering used in the test cases will not be too advanced since there will only
be one object rendered at a time but the application will still push the APIs to give
as high FPS as they can. We expected OpenGL to be the API that can render
the highest amount of FPS since it runs at lower level and is made for rendering
animated graphics. Other results that are expected is that the hardware accelerated
rendering should need to allocate more memory than the software rendering and
should show a different amount of FPS. The FPS difference between the software
and hardware rendering will probably be in favor of the software rendering because
of the simplicity of the rendering instructions used.

14

Results analysis

Implementing and running tests using some of the APIs gives an even deeper un-
derstanding about their differences. This chapter contains information about what
results the testing gave and discussion about the results.

Implementation using the different APIs
For a developer it is very important how the different APIs are implemented. If
the application is not meant to be using advanced graphics rendering the developer
wants simple functions for drawing graphics. Meanwhile a developer that writes an
application with the advanced animations and rendering will want more freedom in
customizing the graphics and therefore will not mind the more complex code.

The differences in difficulty is something that became obvious directly when
implementing the test code. As the canvas API is not made for the more advanced
rendering it has simple functions to draw the basic shapes. The functions such
as drawRect() and drawOval() are in the API to enable the simple drawing of
rectangles and ovals. These functions made the implementation of the canvas API
very easy. Where a canvas is created, the shape is drawn, the graphics buffer is
invalidated to provoke the redrawing that gives the next shape and so on.

When implementing the OpenGL test code it was obvious that the whole ren-
dering process would be much more advanced, but at the same time that the possi-
bilities of rendering more advanced graphics was there. OpenGL builds its graphics
on triples of vertices that are interpreted as triangles so in the testing example
when drawing a square, the square is written as 4 vertexes connected together by
5 edges.[9] The ovals were drawn by first calculating the coordinates of the edge of
the oval using polar coordinates, and then rendered using triangles originating from
a vertex in the center of the circle to the calculated coordinates.

15

RESULTS ANALYSIS

Figure 3. A square rendered using 4 vertexes and 5 edges

Test results
The results from the benchmarks taken while running the tests on the device gave
the following results:

Canvas with Canvas with hardware OpenGL
software rendering accelerated rendering

Average FPS 19 15 90
Maximum FPS 22 34 96
Minimum FPS 19 7 62
Memory usage(bytes) 3,991,872 4,407,840 4,155,632

As predicted in the discussion OpenGL as the API made for animations shows to
be by far the fastest of the three in rendering graphics. Between the hardware
accelerated rendering and the software rendering the difference is not as significant.
The software rendering is a bit faster since as mentioned earlier the instructions for
rendering in the test are very simple which benefits the software rendering.

16

RESULTS ANALYSIS

Figure 4. Graphs over FPS rendering performance

The really interesting fact about the FPS output from the different APIs is how
stable the different APIs are. With the software accelerated rendering only having a
fluctuation of 3 FPS both the Canvas with hardware acceleration and the OpenGL
vary much more in stability.

In the graphs we can also see that the minimum FPS rendered is in the beginning
of the test in the OpenGL and Canvas using hardware rendering cases. The reason
for this is probably because of the GPUs drawing cache which in the beginning
loads the instructions needed for future rendering.

The big difference between the hardware accelerated Canvas and OpenGL is
that OpenGL has clear cache instructions and therefore keeps the rendering speed
after the initial cache loading while the Canvas tries to make more improvements
to the rendering and by doing this has to rewrite the GPU cache which creates the
frame drops that can be seen in the graph above.

The software rendering also has its minimum in the beginning loading instruc-
tions to the CPU cache. After this the software rendering keeps a steady rate since

17

RESULTS ANALYSIS

the rendering instructions are run without any severe changes in the process.
The memory allocation of the different APIs showed exactly as expected that

the hardware accelerated Canvas needed to allocate the most memory of the three
during the test. OpenGL needed a bit less memory because of not trying to make
unnecessary improvements for the rendering. Also as expected the software rendered
Canvas needed the least memory since the instructions are run directly on the CPU
and not needing to allocate any memory for the GPU improvements.

18

Conclusions

The problem statement is as follows:

• What recent changes have been made in Android to make the use of the
limited resources more efficient?

• What are the differences between the different rendering methods used in
Android and their resource usage?

• Evaluate the performance and resource usage of the rendering methods in
Android.

The theoretical discussion combined with the test results lead to the conclusions in
this chapter.

Improvements being done to the graphics rendering
The main improvement within the graphics rendering of Android devices lately
has been the support for hardware acceleration. The hardware acceleration allows
the code written in the higher level to be processed and improved at the lower level
before actually being executed by the CPU. For advanced rendering instructions this
improves the rendering performance. However since the tests run where using such
simple instructions for rendering the hardware acceleration proved to be unnecessary
and actually decreasing the performance, which proved the doubts that Google had
when introducing the option. But in general it is an improvement and since there
are downsides as well Google has allowed the developers having more knowledge the
choice of enabling or disabling the hardware acceleration for separate levels of the
program.

In general many of the improvements being done are about getting more pro-
cessing to run at a lower level which can be seen by the constant development of
new lower level APIs that are being released to the Android system. However with
the hardware development and the focus on graphics increasing there will always
be new ways of improving the rendering performance.

19

CONCLUSIONS

Android rendering methods
Even though the Android rendering methods overlap each other in their functional-
ity, the purposes for which they were created differ a lot. There is not a rendering
method that is optimal in all situations. The choise of rendering method depends
on what needs to be accomplished.

The main difference that affects the performance of the application is what
parts of the graphic instructions are being run at what level. With the Canvas API,
there is the option to enable hardware acceleration. When developing standard
GUI applications with no additional graphical effects, the application will probably
not benefit from enabling hardware acceleration. However, when the application
being developed contains custom graphics and the graphical computations are more
advanced, hardware acceleration will increase the performance.

The other rendering options (OpenGL, Renderscript) are not meant to compete
with the Canvas API, but rather be extensions where the Canvas API simply can
not do what you want. This applies to both performance and functionality. The
main difference performance-wise is that with OpenGL, much of the computation is
being done at native level. When the application contains advanced graphics with
resource demanding computation that simply takes too much time to run in the
Android VM, OpenGL will be a better choice since the application performance
will benefit from running these computations at native level.

20

Abbreviations

CPU Central Processing Unit
GPU Graphics Processing Unit
RAM Random Access Memory
SDK Software Development Kit
NDK Native Development Kit
API Application Programming Interface
FPS Frames Per Second

21

Test data

Canvas with software rendering
Benchmarked FPS at given frame number

FPS 19 21 21 21 22 21 21 21 20 20 22 20
Frame 19 40 61 82 104 125 146 167 187 207 229 249

FPS 20 21 21 21 20 21 20 21 21 20 21 20
Frame 269 290 311 332 352 373 393 414 435 455 476 496

FPS 21 22 21 21 21 21 21 21 21 21 22 21
Frame 517 539 560 581 602 623 644 665 686 707 729 750

FPS 20 22 21 20 22 22 22 21 22 22 21
Frame 770 792 813 833 855 877 899 920 942 964 985

Average FPS calculated by number of frames rendered / runtime
19 FPS
Total amount of memory allocated by the application
3,991,872 bytes

Canvas with hardware accelerated rendering
Benchmarked FPS at given frame number

FPS 7 15 27 18 17 19 18 22 13 14 23 20
Frame 7 22 49 67 84 103 121 143 156 170 193 213

FPS 19 18 9 16 13 34 14 13 20 20 11 24
Frame 232 250 259 275 288 322 336 349 369 389 400 424

FPS 18 16 12 16 10 21 20 13 19 14 22 18
Frame 442 458 470 486 496 517 537 550 569 583 605 623

FPS 14 17 22 9 17 25 22 15 16 18 18 19
Frame 637 654 676 685 702 727 749 764 780 798 816 835

22

TEST DATA

FPS 11 15 23 22 19 20 17 22 14
Frame 846 861 884 906 925 945 962 984 998

Average FPS calculated by number of frames rendered / runtime
15 FPS
Total amount of memory allocated by the application
4,407,840 bytes

OpenGL
Benchmarked FPS at given frame number

FPS 62 82 87 81 86 95 96 96 95 96 96
Frame 62 144 231 312 398 493 589 685 780 876 972

Average FPS calculated by number of frames rendered / runtime
90 FPS
Total amount of memory allocated by the application
4,155,632 bytes

23

Bibliography

[1] blog post Google Engineer, Chet Haase. Android rendering options.
http://graphics-geek.blogspot.se/2011/06/android-rendering-options.html.

[2] blog post Google Engineer, R. Jason Sams. Introducing renderscript.
http://android-developers.blogspot.se/2011/02/introducing-renderscript.html.

[3] Google+ post Google Engineer, Dianne Hackborn. How about some android
graphics true facts?
https://plus.google.com/105051985738280261832/posts/2FXDCz8x93s.

[4] Google Inc. Graphics on android.
http://developer.android.com/guide/topics/graphics/index.html.

[5] Google Inc. Opengl on android.
http://developer.android.com/guide/topics/graphics/opengl.html.

[6] Google Inc. Renderscript.
http://developer.android.com/guide/topics/renderscript/index.html.

[7] Texas Instruments. Omap 4 mobile applications platform.
http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf, 2011.

[8] Feb 2012" "Mark Brownlow. Smartphone statistics and market share.
http://www.email-marketing-reports.com/wireless-mobile/smartphone-
statistics.htm#smartphones.

[9] Consultant at Jayway Per-Erik Bergman. Opengl es tutorial part ii - building
a polygon.
http://blog.jayway.com/2009/12/04/opengl-es-tutorial-for-android-

[10] Wikipedia: Computing platform. simple definition of a platform.
http://en.wikipedia.org/wiki/Computing_platform.

[11] Adreno Graphics processing Units. Snapdragon processors and adreno gpu
integration within them.
https://developer.qualcomm.com/discover/chipsets-and-modems/adreno,
2012.

24

BIBLIOGRAPHY

[12] Wikipedia. Opengl in general. http://sv.wikipedia.org/wiki/OpenGL.

25

