
A Lisp compiler for the JVM

or
How to implement dynamic programming languages on top of the JVM

or
Lack of JVM TCO considered annoying

ANTON KINDESTAM
<ANTONKI@KTH.SE>

Bachelor’s Thesis at NADA
Supervisor: Mads Dam

Examiner: Mårten Björkman

iii

Sammanfattning

Att implementera dynamiska och mestadels funktionella programmerings-
språk på miljöer som JVM är allt mer i tiden. Språk såsom Clojure, Scala eller
Python. För att åstadkomma duglig prestanda och Java interoperation bör ett
sådant språk helst kompileras. Denna essä kommer att handla om tekniker
som kan användas för att implementera dynamiska, funktionella programmer-
ingsspråk på JVM:en med speciallt focus på Lisp och Scheme, med en imple-
mentation av en liten Lisp-kompilator för att illustrera några av dessa tekniker.

Abstract

Implementing dynamic, mostly functional, languages on top of an envi-
ronment such as the JVM is getting ever more popular. Languages such as
Clojure, Scala, or Python. To achieve reasonable performance and Java inter-
operability such a language usually needs to be compiled. This thesis will be
about techniques for implementing dynamic and functional languages on the
JVM with a focus on Lisp and Scheme, with an implementation of a small Lisp
compiler demonstrating some of these techniques.

Contents

Contents iv

1 Background 1
1.1 Definitions . 1
1.2 Prior Work . 2
1.3 Preliminary Issues . 2

1.3.1 A (very) brief introduction on Lisp and dynamic programming
languages . 2

1.3.2 Why JVM? . 3
1.3.3 Tail-call optimization . 3
1.3.4 Scoping . 5
1.3.5 Bootstrapping . 8

1.4 Problem statement . 8
1.5 Test cases . 8

2 Methods 11
2.1 General . 11

2.1.1 Overview of compilation . 11
2.2 Functions and function application 12
2.3 Literals . 14

2.3.1 Constants . 14
2.3.2 Complex constants . 15

2.4 Tail-call optimization implementation strategies 17
2.4.1 Handling self-tail-calls . 17
2.4.2 Method-local subroutine approach 20
2.4.3 Trampolines . 20

2.5 Scoping . 21
2.5.1 Static Scope . 21
2.5.2 Lexical Scope and Closures 22
2.5.3 Dynamic Scope . 24

3 Results 27
3.1 How much of the language was implemented? 27

iv

CONTENTS v

3.2 The future? . 27
3.3 Benchmarks . 28

4 References 29

I Appendices 33

5 Appendix A 35

Chapter 1

Background

This section will explain the choices of source language its feature set as well as
some of the vocabulary used in this thesis. The benefits, as well as the drawbacks,
of targeting a virtual machine such as the JVM will be explored.

1.1 Definitions
Term Definition
Lisp LISt Processing A family of dynamic pro-

gramming languages commonly programmed
using a functional programming style.

Functional Programming (FP) A programing style focusing chiefly on func-
tion application and side-effect free comput-
ing.

Virtual Machine (VM) A computer model implemented in software.
JVM Java Virtual Machine A VM originally imple-

mented for the Java programming language.
Java (and more recently a whole flock of dif-
ferent JVM-based languages such as Clojure)
compiles to Java Byte Code which the JVM
then executes. Since there are implementa-
tions of the JVM for different processor ar-
chitectures and environments the same code
runs on portably across many architectures
and operating systems without the need for
recompiling.

1

2 CHAPTER 1. BACKGROUND

Java Byte Code The virtual instruction set supported by the
JVM.

Jasmin A program capable of converting a simple
text representation of Java Byte Code in-
structions to actual Java Byte Code. The
same role an Assembler performs for a reg-
ular (usually implemented in hardware) pro-
cessor architecture.

Source Language The language a compiler reads as its input.
Implementation Language The language the compiler is implemented in.
Target Language The language a compiler outputs to.
REPL Read-Eval-Print-Loop: Traditional name for

the Lisp interactive command line
Bootstrapping The art of pulling oneself up by ones own

bootstraps. In the context of compilers this
usually refers to the act of writing a compiler
capable of compiling itself.

1.2 Prior Work

Before starting this thesis the author had implemented a small interpreter and Lisp
system for Java called LJSP, for silly reasons1. This system will be used as a base,
as well as implementation language, for the compiler and classes implemented for
the interpreter will be able to be conveniently reused for implementing the compiler,
with only minimal changes to them neccesary.

Tricky issues, like mixed-type arithmetic, is already handled by these classes
giving more time to work on the core parts of the compiler.

The interpreter features an interface to Java (currently somewhat quirky and
limited but still useful) using Javas reflection features. This can, among other
things, be used to load generated class files into the runtime after compilation.

1.3 Preliminary Issues

1.3.1 A (very) brief introduction on Lisp and dynamic programming
languages

This section will explain why lisp has been chosen as both the implementation
language of the compiler as well as the source language for it.

1Anything that has something to do with Java ought to have a “J” in the name, and the
interchangeability of the letters “i” and “j” in old alphabets made this silly, and unpronouncable
using modern orthographical rules, substitution obvious.

1.3. PRELIMINARY ISSUES 3

Why Lisp?

Despite, or perhaps because of, its age Lisp shares a lot of common ground (and
thus implementation issues) with more recent and popular dynamic programming
languages such as Python, Ruby or Clojure. The latter which is in fact a modern
dialect of Lisp operating on top of the JVM.

Lisp is well suited for a project like this in particular due to its ease of implemen-
tation. The inherent ability of the language to do a lot given very little is going to
make possible to compile interesting programs without having the compiler support
the entire language (which is fairly small anyway). There is no need to spend time
implementing a parser since one is already available from the LJSP interpreted envi-
ronment. Writing the compiler in and for Lisp, and in this case even in LJSP itself,
becomes very efficient since Lisp code is represented using Lisp data structures so
the compiler can easily be built as a dispatch-on-type set of recursive functions.

1.3.2 Why JVM?

“Attracted by a generally available, machine-independent platform, implementors
of other languages are turning to the Java virtual machine as a delivery vehicle for
their languages.” [JVMSpec] (§1.2).

Other advantages include that the JVM includes native garbage collection giving
more time for actually implementing the language and not a garbage collector, which
is a big investment in development time.

Disadvantages include ineffeciences and having to deal with how the JVM is
closely built around Java, with no inherent support for first-class functions nor the
call-stack manipulations typically used to implement Tail-call optimization.

1.3.3 Tail-call optimization

Functional languages often eschew iteration constructs in favor of plain recursion
[AIM353]. Recursion has one disadvantage however, it uses up stack frames and
can lead to stack overflows given indefinite recursion. Tail-calls are a special case
of recursion that lends itself to optimization allowing for boundless recursion.

What is a Tail-Call?

Whenever the last action, or the expression in tail position, in a function is to
call another function this is a tail-call. For meaningful results the true and false
expressions, respectively, of an if expression2 in tail position also need to be defined,
inductively, as themselves being in tail position [R5RS] (§3.5). This makes sense
since an if expression chooses what block of code will be the last one in this case.

2Lisp doesn’t have statements in the usual sense. Everything is an expression and has a return
value [AIM443] (p. 2) [CLtL2] [R5RS]. For instance the closest approximation of a Lisp if expression
in C is the ternary operator.

4 CHAPTER 1. BACKGROUND

What is tail-call optimization (TCO)?

Whenever the last action of a function is but to return the result of another function
there is no longer any need to keep the stack frame of the calling function, since
the variables therein will inevitably be referenced no longer. By eliminating the
tail-calls, instead replacing them by a goto instruction, allows tail-calls while saving
stack space.

Consider the following function:

(defun foo (a)
(bar (+ a 2)))

Which might be compiled to something like (pseudo-assembly, RISC-style):

foo:
pop a ; receive argument a on stack
add temp, a, 2 ; (+ a 2) -> temp register

push ret-reg ; save our return address on stack, so it doesn’t
; get clobbered by the call to bar

push temp ; argument to bar

call bar ; run (bar temp) -> result to result-reg.
; ret-reg is set to program counter.

pop ret-reg ; restore our return address
goto-reg ret-reg ; return to address in ret-reg. the return instruction.

; result-reg has ben set by bar,
; this is what constitues the return value.

Replacing the call instruction with a goto one obtains:

foo:
pop a
add temp, a, 2
push temp ; argument to bar
goto bar ; transfer control to bar. which receives the

; argument. ret-reg remains unchanged. bar sets
; result-reg and then immediately returns to
; the caller of foo (the value of ret-reg)

No longer is it neccesary to use the stack to save the return address. Leaving
ret-reg untouched will have bar jump directly to foos caller. The argument to
bar, pushed on the stack, is popped inside bar, keeping the stack from growing at
all. Any stack usage, for spilled registers or the like, inside foo would have to to

1.3. PRELIMINARY ISSUES 5

be popped before the goto. Even if bar the stack size would remain bounded, of
course given that bar has also had it’s tail-calls eliminated (essentially turning the
act of self-tail-recursion into iteration). [AIM443]

While eliminating tail-calls can be thought of as an optional optimization in
many languages 3 for many (mostly) functional programming languages proper tail
recursion is a requirement of the language [R5RS] (§3.5).

This is so since those languages might either have a few iteration constructs, but
whose usage is considered unfavorable or non-functional in nature, or completely
lack regular iteration statements, as is the case with LJSP, relying completely on
recursion for iterative tasks, perhaps even implementing (as library functions/syntax
not in the core language) some iterative constructs by way of recursion4 [AIM353]
(§1.2).

One of the big issues this thesis will tackle is how to implement TCO on top of
the JVM. The JVM, being a virtual machine optimized for Java specifically, has no
way of jumping between subroutines like above. In fact it completely lacks regular
subroutines5 and has only methods associated with either classes (static methods)
or objects, since this is all that Java needs.

1.3.4 Scoping

This section will explain the different variable scoping terms used in this thesis.
Useful terms when speaking about variable scoping [CLtL2] (§3):

Scope The textual portion of a program during which a variable may be referenced.

Extent The interval of time during which references may occur.

Lexical Scoping

A lexically scoped binding can only be referenced within the body of some construct
enclosing part of the program . The scope extends to the bodies of enclosing con-
structs within the outer body, allowing for instance nested functions to access, and
mutate, bindings introduced by the function that created them.

The bindings are said to be of indefinite extent, that is they can be kept so long
something is using them, so that if a function closing over a value is returned that
value will be kept until so long as a reference to that function closure is kept.

Example (pseudo-code):

function foo(x):-

3For example GCC optimizes tail-calls for the C language, which by no means requires it [gcc].
4This is done in the bootstrap code for the LJSP interpreter implementing (currently a subset

of the functionality of) dolist and dotimes, from Common Lisp [CLtL2] (§7.8.3), using macros
and recursive higher-order functions.

5This is not entirely true, the JVM has a form of subroutines that are local to a method used for
compiling the finally-clause of a try-catch-finally exception-handling construct [JVMSpec] (chapter
6 operations jsr, jsr_w and ret and section 7.13).

6 CHAPTER 1. BACKGROUND

function bar(y):-
return y + x

return bar(x) + x

The free variable x in bar is resolved to the x introduced by foo. Running foo(k)
will thus yield k+k+k.

Example with mutation:

function make-incrementer(x):-
function inc(y):-

x = x + y
return x

return inc
...

>> a = make-incrementer(2)
<closure inc 1>
>> a(2)
4
>> a(1)
5
>> b = make-incrementer(123)
<closure inc 2>
>> b(5)
128
>> a(6)
11

Erratic example:

function foobar(x):-
function baz(y):-

return y + x
return baz(x) + y ; y not defined in this scope

This is an error for lexically scoped x and y. Since ys scope only extends throughout
the body of baz, however the variable x is available in both foobar and baz.

Static Scoping

While often used synonumously with lexical scoping static scoping, as used in this
thesis, will refer to the subset of lexically scoped variable bindings that are never
captured by any function other than the defining one. That is the variables scope
exists only in the body of the function that established the variable binding, and not
in the bodies of any nested functions. This is similar to the C model, (disregarding
for a while that it typically lacks nested functions).

1.3. PRELIMINARY ISSUES 7

Example:

function foo(x):-
function bar(x):-

return x*3
return bar(x) + 2

is valid for a statically scoped x, since all x:s are local to their defining functions.

function foo(x):-
function bar():-

return x*3
return x + bar()

Would however result in a compiler error, or similar, since the free variable x is not
in scope in bars environment, where as it would be with true lexical scoping.

This is the only scoping supported by the example LJSP compiler built for this
thesis (but further extension of the compiler is planned, see section 3.2 The future?
on page 27).

Dynamic Scoping

Dynamically scoped variables are said to have indefinite scope, that is they can be
referenced anywhere in the code, and dynamic extent. The latter means that they
are referenceable between establishment and explicit disestablishment, at runtime.
Thus mirroring the actual runtime call stack.

In fact one convenient way of thinking of dynamically bound variables ar
Example (all variables are dynamically bound):

function bar(b):-
print(a) ; can access a here if called from foo
print(b) ; the b here will however be 12 when

; called from foo, and not 18, since that
; b has been shadowed by the b in the arguments to bar

function foo(a, b):-
bar(12)

...

>> foo(123, 18)
123
12
<void>
>> bar(23) ; this will fail since a is not defined
<somefail>

8 CHAPTER 1. BACKGROUND

Some implementations of dynamic scoping, such as the one used by the LJSP in-
terpreter, will default to nil when accessing a non-defined variable thus failing in
a much more subtle way for the last call to bar.

This is the only kind of scoping available in the LJSP interpreter6.

1.3.5 Bootstrapping

A compiler that is capable of compiling itself is also capable of freeing itself from the
original environment. A compiler that has been bootstrapped is sometimes referred
to as self-hosting in the sense that to generate a new version of the compiler program
no other “host” system but the compiler program is required.

The extent to which the compiler can free itself of the original environment is
not necessarily the same for every compiler. This holds true for dynamic program-
ming languages especially, for which the runtime environment and the environment
of the compiler need not, and usually is not, be disjoint. Even more so on top
of an environment such as the JVM. E.g. the case presented in this thesis still
depends on some data structures originally defined in Java, and can’t be consider
fully self-hosting. Additional work on the compiler to define the data structures
independently of Java could, however, result in a truly independent compiler.

1.4 Problem statement

Implement a compiler for a, possbly extended, subset of the Lisp language LJSP.
The compiler shall be written itself in LJSP in a manner that will make it

possible to, with further work7 than presented in this thesis, eventually bootstrap.
The compiler shall be able to compile a naive implementation of a recursive

function computing the fibonacci series, as well as a more efficient tail-recursive
implementation.

1.5 Test cases

The goal is to run these test cases, first interpretively using the existing LJSP
interpreter, and then run the compiled versions. To compare the results gotten
from both versions:

6This kind of semantic dichotomy between the compiler implementation and interpreter imple-
mentation is typical of old Lisp implementations since, implementation-wise, dynamically scoped
variables are easier to implement more efficiently in an interpreter, while the statically scoped
variables are more easily compiled.

7Due to time constraints and the focus of this thesis the compiler will only be worked towards
bootstrapping as a long-term goal rather than actually bootstrapping.

1.5. TEST CASES 9

(nlambda fib (n)
(if (= n 0)

0
(if (= n 1)

1
(+ (fib (- n 1))

(fib (- n 2))))))

(lambda (n)
((nlambda calc-fib (n a b)

(if (= n 0)
a
(calc-fib (- n 1) b (+ a b))))

n 0 1))

They both compute the n:th number of the fibonacci sequence. They use the naive
recursive definition (time complexity: O(2n)) and a a tail-recursive, or iterative if
you prefer, version (time complexity: O(n)).

The first one, due to it’s ridiculous time complexity and amount of function calls,
is a very good performance test for small integer arithmetics and non-tail-recursive
function calls.

Chapter 2

Methods

This chapter will deal with the implementation techniques used, and not used, and
(possibly) slated to be used for the LJSP compiler. It is also useful in the general
sense to dynamic languages on the JVM since some of the issues it tackles, like
first-class functions, are common with Lisp.

2.1 General

2.1.1 Overview of compilation
General description of compiler passes in a Lisp or Lisp-like compiler [Kawa] (§7).

Reading
Reads the input from a a file, string, or the interactive prompt (REPL). Parses
the indata to LJSP data structures.

Semantic Analysis
Macro expansion takes place. Lexical analysis of free variables is performed,
and closures are annotated. Different sorts of rewrites are performed.1

Code Generation
Run on the resulting code form the semantic analysis. Takes LJSP datastruc-
tures and dispatches recursively, based on type and structure, on it generating
bytecode fit for feeding in to Jasmin.

Assembly
The output of the code generator is run through jasmin producing a Java class
file.2

Loading
1The LJSP compiler currently lacks this step, but it is planned and neccesary for more advanced

features.
2Currently performed manually.

11

12 CHAPTER 2. METHODS

The generated Java class file is loaded into the JVM, an object is instantiated
and bound to a variable so the function may be called.3

2.2 Functions and function application
Java doesn’t have functions as first-class values, while that is a prominent feature of
any functional language and LJSP is just like Scheme in this regard. Achieving this
in Java is pretty straight-forward however: A Procedure4 class can be created for
representing function, or procedure5, objects. Then by subclassing and overriding
a virtual method run6 to contain code generated from the function body function
objects in the Scheme sense becomes possible, by way of instantiating such a subclass
and passing it around.

Example:

abstract class Procedure extends LispObject {
...
public abstract LispObject run(LispObject[] args);

}

Using this class the primitive function car might be implemented in pure Java as
follows:

class car extends Procedure {
public LispObject run(LispObject[] o) {

return ((o[0]) == null) ? null : ((Cons)o[0]).car;
}

}

7

The run method takes as it’s argument an array of LispObjects and can thus
support any number of arguments, including functions with variable arity, at the

3Currently performed, mostly, manually.
4A Procedure class was already available from the LJSP interpreter used for, among other

things, defining the various built-in functions. An advantage of using this already-available class
is ready interoperability with the interpreter. That is we can run the compiled functions directly
from the interpreters REPL (Read-Eval-Print-Loop or simply put a sort of command line).

5Which might be better nomenclature since they are not functions in the strict mathematical
sense, since they can have side-effects. For instance Scheme prefers this nomenclature. However
primarily “function” will be used throughout this thesis (with a few obvious exceptions).

6In most other literature concerning Lisp on the JVM this method is named apply but due to
implementation details of the LJSP interpreter this name was not available.

7Notably omitted: Checks to ensure that the correct amount of arguments is passed. At the
time of writing this is implemented in a fashion optimized for ease of implementation of primitive
functions exported from the interpreter (using constructor arguments to Procedure to tell it how
to do such checking). This is however slated to change to benefit the compiled version which
preferrably compiles in a hard-coded equivalent of such checks. Currently compiled code simply
ignores receiving too many arguments.

2.2. FUNCTIONS AND FUNCTION APPLICATION 13

expense of a slightly clumsy calling convention. This is neccesary since there is
no support for variable arity methods in the JVM, the variable arity methods in
Java merely being syntactic sugar for passing extra arguments in an array [JLS3]
(§15.12.4.2). At the time of writing this is the approach implemented in the LJSP
compiler.

Variable arity procedures

Due to how functions are first-class values in this language the caller may in many
situations have no idea of what the actual parameter list of the function it calls
looks like.

The sensible solution is thus to make it the responsibility of the callee to create
the list structure needed for any rest-parameter needed.

An optimization for calling fixed-arity functions

Since most functions are of just a few arguments an optimization, for all fixed arity
functions with less than an arbitrary number K arguments, using several methods
of differing arity is possible:

abstract class Procedure extends LispObject {
public abstract LispObject runN(LispObject[] args);
public abstract LispObject run0();
public abstract LispObject run1(LispObject arg1);
public abstract LispObject run2(LispObject arg1, LispObject arg2);
...

}

This continues up to the method runK.
car, taking exactly one argument, could then be constructed as follows:

class car extends Procedure {
public LispObject runN(LispObject[] o) {

if (o.length != 1)
throw new WrongArguments();

return this.run1(o[0]);
}
public LispObject run0() {

throw new WrongArguments();
}
public LispObject run1(LispObject arg) {

return (arg == null) ? null : ((Cons)arg).car;
}
public LispObject run2(LispObject arg1, LispObject arg2) {

throw new WrongArguments();
}

14 CHAPTER 2. METHODS

...
}

And an example of how a variable arity procedure might be compiled:

class foo extends Procedure {
public LispObject runN(LispObject[] args) {

// Do stuff with args. If applicable check that enough
// arguments were received.
return some_result;

}
public LispObject run0() {

return this.runN(new LispObject[]{});
}
...
public LispObject run2(LispObject arg1, LispObject arg2) {

return this.runN(new LispObject[]{arg1, arg2});
}
...

}

This makes it possible for compiled code to avoid costly construction and decon-
struction of Java arrays to pass arguments to functions. The caller, always knowing
how many arguments it sends8, simply picks which run method to call (letting the
callee handle any array construction in the case of variable arity functions) and
defaulting to runN if there are more than K arguments. [Kawa] (§6)

2.3 Literals
This section will elaborate on techniques to compile in literal constants in LJSP
code.

2.3.1 Constants
Whenever the compiler stumbles across an expression like (+ a 1) an appropriate
representation of the 1 (which according to semantics evaluates to itself) needs to
be emitted.

Now 1 is a small enough integer to be represented with LispFixnum which is
used for all integers that will fit into a Java long, that is a 64-bit signed two’s
complement integer [JVMSpec] (§2.4.1).

The simple (however probably not the most efficient approach) is to simply emit
code (at the very spot the literal is found, similar to how the compiler references

8With the notable exception of calling using the function apply which takes as it’s arguments
a function and a list, calling the function with the elements of the list as the actual arguments.
This is neatly resolved by compiling apply to always call using the runN method.

2.3. LITERALS 15

a variable) for creating a LispFixnum object with a value of 1. This can be done
using the LispFixnum(long) constructor. An equivalent Java expression of how
the compiler emits a literal 1 would be:

new LispFixnum(1)

or in the Jasmin representation of Java bytecode (actual compiler output with
comments for clarity):

new LispFixnum
dup
ldc2_w 1 ; load 1 in long representation (uses two stack positions)
invokenonvirtual LispFixnum.<init>(J)V ; Constructor. uses up

; top three stack positions
;; a reference to the object is now on top of the stack

Similar code would be generated for floating point numbers, however instead
creating an object of type LispFlonum, using the LispFlonum(double) constructor.
The same is true of character and string constants using constructors LispChar(char)
and LispString(java.lang.String) respectively. Even the arrays (LispArray)
receive roughly the same treatment.

The process is similar for bignums, integers of arbitrary size, but due to their
nature of possibly not fitting in the native integer types of Java instead the number
is emitted as a string (in decimal) and then passed to the static method

public static LispBignum LispBignum.parse(java.lang.String)

, a factory method if you will, which then parses the string into a LispBignum
interpretation9. Example compiler output (with extra comment):

ldc_w "1231312312312312312312312312312313123"
invokestatic LispBignum.parse(Ljava.lang.String;)LLispBignum;
;; a LispBignum reference is now on top of the stack

2.3.2 Complex constants
A Lisp typically has a quote special form10, and LJSP is no exception, that sup-
presses evaluation of the enclosed expression and instead returns the data structure
as is allowing for complex constants of lists possibly containing their own sublists
and more.

Code for constructing the same structure could be recursively generated and
inserted into the exact place where the quote-expression occurred, similar to how
numbers we’re handled in the previous section. Thus making:

9At the time of writing it simply uses the BigInteger(java.lang.String) constructor of the
Java standard library’s java.math.BigInteger (the internal representation currently used for
LispBignum:s).

10Since usage of quote is so ubiquitous typical Lisp readers, or Lisp parsers, have special syntax
such that, for instance ’foo == (quote foo) [R5RS] (§4.1.2) [CLtL2] (§1.2.7).

16 CHAPTER 2. METHODS

(lambda () (quote (1 a)))

equivalent to the code

(lambda () (cons 1 (cons (intern "a") nil)))

This is however not quite optimal, since constantly recreating constant data
in this fashion upon every call to the function would make many cases with com-
plex constants be significantly slower than their interpreted counterparts, due to
excessive allocation.

This also deviates from the interpreted semantics where

(let ((f (lambda () (quote (1 a)))))
(eq?11 (f) (f))) ⇒ t

holds. Since the same object, the very same one that constitues part of the function
body, is always returned by the function.

Furthermore Scheme, with which LJSP happens to share a good deal of its
semantics, requires quoted constants to always evaluate to the same object ([Incre-
mental] (§3.11) cf. [R5RS] (§7.2)).

A method for initializing function constants at load-time is neccesary. In Java
static final fields may be initialized at class load time using a static initiliazer
[JVMSpec] (§2.11) [JLS3] (§8.7).

By declaring a static final field, in the class for the function object, for each
quoted constant in the body of the function being compiled and emitting code in
the static initializer for constructing the literal. Were the quoted literal appeared
in the code code to fetch the static field is emitted instead.

The previous example compiles to something like:

public class f extends Procedure {
private static final lit1;

static { // Initializer
f.lit1 = new Cons(new LispFixnum(1),

new Cons(Symbol.intern("a"), null));
}

public LispObject run(LispObject[] o) {
return f.lit1;

}

// some constructor stuff omitted
...

}
11eq? is equivalent to a pointer compare in C or the comparison operator in Java as used on ob-

ject references. What it tests is if two references are referencing the same object.

2.4. TAIL-CALL OPTIMIZATION IMPLEMENTATION STRATEGIES 17

Thus the code for recreating the quoted constant is run once at class load-time, and
(eq? (f) (f)) ⇒ t holds.

Of course the “simple” constants of the previous subsection would likely benefit
(both performance-wise as well as being semantically closer to the interpreter) from
a similar treatment as the constants written quote with the quote form in this sec-
tion, and a planned feature is to emit all constants to private static final fields
of the generated class with extra logic to avoid duplicate constants, and duplicate
fields, as long as the data structures involved are immutable (which holds for all
numerical types used in LJSP as well as for characters and symbols).

2.4 Tail-call optimization implementation strategies
This section will describe a number of approaches to implement tail-call optimiza-
tion on the JVM, why they seem plausible and why they work/don’t work.

2.4.1 Handling self-tail-calls
Probably the most important and most common case of tail-calls are tail-calls from
a function to itself, otherwise known as tail recursion. Implementing this special
case of tail-call elimination is likely the simplest, of the practically implementable
alternatives presented in this thesis, since no circumvention of the fact that JVM
can only perform jumps within a method [JVMSpec] needs to be performed; for
this case jumps need only be performed within the method.

The method to implement this is almost exactly the same as the conventional
(and completely general on a machine permitting jumps between functions) goto-
based approach

By inserting a label at the top of the generated run(LispObject[]) method and,
whenever something is found out to be a self-tail-call by the compiler, generating
code to set (carefully avoiding to not set variables until all function arguments have
been computed12), instead of push to stack13, the local variables and then jump to
this label the need for a regular function call has been eliminated.

Example:

(nlambda fact (n acc)
(if (= 0 n)

acc
(fact (- n 1) (* n acc))))

Compiles to (actual compiler output, body only, with some additional comments):

.method public run([LLispObject;)LLispObject;
12e.g. (nlambda calc-fib (n a b) (if (= n 0) a (calc-fib (- n 1) b (+ a b))))

wouldn’t work correctly if a was set before computing (+ a b)
13Note how this is different to the somewhat simpler (and given the right machine also completely

general) method proposed in section 1.3.3 (p. 4) and [Incremental] (§3.10) (cf. [AIM443])

18 CHAPTER 2. METHODS

.limit stack 255

.limit locals 255

;; prologue to take apart the array with the arguments to the
;; function and store them in local variables, counting from 5
aload_1
ldc_w 0
aaload
astore 5
aload_1
ldc_w 1
aaload
astore 6
;; end prologue
Lselftail:
;; (if (= 0 n) acc (fact (- n 1) (* n acc)))
;; condition: (= 0 n)
new LispFixnum
dup
ldc2_w 0
invokenonvirtual LispFixnum.<init>(J)V
aload 5
;; convert the java boolean to a lispier boolean
ifeq L78
getstatic FACT/t LLispObject;
goto L77
L78:
aconst_null
L77:
;; end condition
ifnonnull L76 ; branches to the true-expr
;; false-expr: (fact (- n 1) (* n acc))
;; self-recursive tail-call args: ((- n 1) (* n acc))
aload 5
checkcast LispNumber
new LispFixnum
dup
ldc2_w 1
invokenonvirtual LispFixnum.<init>(J)V
checkcast LispNumber
invokevirtual LispNumber.sub(LLispNumber;)LLispNumber;
aload 5
checkcast LispNumber
aload 6

2.4. TAIL-CALL OPTIMIZATION IMPLEMENTATION STRATEGIES 19

checkcast LispNumber
invokevirtual LispNumber.mul(LLispNumber;)LLispNumber;
astore 6
astore 5
goto Lselftail
goto L75 ; Don’t also run the true-expr like a fool
L76:
;; true-expr: acc
aload 6
L75:
;; endif
areturn
;; endlambda

.end method

If compiling without eliminating the tail-call the call-site would instead look some-
thing like (the local variable 0 refers to Java’s this, that is the object (and in this
case this is the function object) which the method is running on):

;; (fact (- n 1) (* n acc))
aload 0
checkcast Procedure
; preparing args
ldc_w 2
anewarray LispObject
dup
ldc_w 0
aload 5
checkcast LispNumber
new LispFixnum
dup
ldc2_w 1
invokenonvirtual LispFixnum.<init>(J)V
checkcast LispNumber
invokevirtual LispNumber.sub(LLispNumber;)LLispNumber;
aastore
dup
ldc_w 1
aload 5
checkcast LispNumber
aload 6
checkcast LispNumber
invokevirtual LispNumber.mul(LLispNumber;)LLispNumber;
aastore
; end preparing args

20 CHAPTER 2. METHODS

invokevirtual Procedure.run([LLispObject;)LLispObject;

Even if implementing another more general approach to TCO on the JVM imple-
menting this approach to self-tail-calls is still very useful as a further optimization.
It is by far the most common case of tail recursion and this approach is much faster
than most alternatives to implementing general TCO [Kawa].

This is the only kind of TCO implemented in the LJSP compiler as of writing.

2.4.2 Method-local subroutine approach
The only way of performing method calls on the JVM is by using the invoke* series
of instructions, and returns performed using the *return of instructions [JVMSpec].
The method invocation instructions take their arguments (including the object on
which the method is invoked for instance methods, in a way it can be considered the
first argument) on the stack and automatically store the arguments in the method
local variables. The call convention of the JVM is thus, in a sense, fixed and there
is no way to directly manipulate stack frames. It is not possible to perform a goto
to another method nor is it possible to assign to a methods local variables since
they are associated with the current frame, which is created every time a method
is invoked [JVMSpec] (§3.6).

To escape this call convention imposed by the JVM functions could be im-
plemented as subroutines all within one method and defining a new function call
convention, using the operand stack of the current frame, for these subroutines. The
JVM comes with three instructions, jsr <label>, jsr_w <label> and ret <local variable>,
that in conjunction can be used to implement subroutines. Since this calling con-
vention is done on the operand stack direct stack manipulation would be possible,
and for all tail-calls gotos could be issued (like in the example of section 1.3.3 (p.
4)).

This is however not possible on a modern and standards-compliant JVM im-
plementation since the subroutine instructions can not be used in a truly recursive
manner, since the verifier forbids it14 [JVMSpec] (§4.8.2). In the specification for
the new java standard, Java SE 7, it has been deprecated altogether (not without
backwards compatability for code compiled using an older version) [JVMSpec SE
7] (§4.10.2.5). However this may be a useful, if non-portable technique, given that
there are a handful of JVM implementations that seem to blatantly disregard this
part of the specification15.

2.4.3 Trampolines
One method of achieving general tail-recursion is trampolines [Baker]. By setting
up an iterative procedure like (pseudo-code):

14It does so in more than one way. Most obviously the part
15Or perhaps, the author suspects in particular due to the examples of recursive jsr usage

floating across the net, conforms to an older edition of the JVM specification (of which the author
has been unable to procure a copy of)

2.5. SCOPING 21

function trampoline(fn, args):-
obj = make-tramp-thunk(lambda: apply(fn, args)) ; create starter thunk
while tramp-thunk?(obj): ; continue ’til we get something

; that isn’t fit for bouncing
obj = apply-tramp-thunk(obj())

return obj

And transforming functions to return a thunk with what would have been the tail-
call of the function one can implement tail-recursion on a machine lacking direct
stack manipulation by way of constantly bouncing up and down.

An example tail-recursive implementation of factorial adapted to be run by a
trampoline, like the one above:

(defun fact (n acc)
(if (zero? n)

acc
(make-tramp-thunk (lambda () (fact (1- n) (* n acc))))))

The trampoline loop could be implemented in Java and the transformation could
be made in the semantic analysis pass of the compiler.

2.5 Scoping
This section discusses on how to handle the different scoping methods in compiled
code.

Note that these scoping methods are not exclusive of each other. Even if having
true lexical scoping with closures the static scope implementation method serves as
a useful optimization for variables that the compiler can prove as not having been
captured.

2.5.1 Static Scope
Static scope, as described in section 1.3.4 (p. 6), is very straightforward to imple-
ment on the JVM since each frame can have up to 65535 local variables [JVMSpec]
(§4.10) (essentially registers from an assembly language point of view). By simply
mapping received values to these variables static scoping is achieved as it is natively
supported by the JVM.

(nlambda <selfname> <arg-spec> . <body>)

Due to the current LJSP compiler only supporting static scoping this construct
(mmnemonic: named lambda), essentially a specialization of labels was neccesary
for self-recursive functions . It binds the function itself to a variable in the function
body’s scope. It accomplishes this by binding the local variable 0, corresponding to
Javas this in all instance methods [JVMSpec] (§7.6), to the variable specified as
<selfname> in the static scope of the function.

22 CHAPTER 2. METHODS

Example:

(nlambda foo (a b) ...)

⇒

.method public run([LLispObject;)LLispObject;
.limit stack 255 ; java requires these be set, set
.limit locals 255 ; them to some generic big-enough size

;; function prologue deconstructing arguments array
aload_1 ; the first method argument is gotten in local variable 1
ldc_w 0
aaload
astore 5
aload_1
ldc_w 1
aaload
astore 6
;; end prologue

... do stuff (aload) with local variables 0 = foo, 5 = a and 6 = b ...

areturn
.end method

2.5.2 Lexical Scope and Closures

Simple copying

Let’s first consider lexical scoping, and specifically lexical closures16, where the
closed over variable bindings are never mutated, that is set is never used on them.

Example code (nlambda names provided for clarity, not for any self-recursion):

;; Bind function to global variable foo
(defvar foo

(nlambda foo (a)
(nlambda bar (x) (+ x a))))

...
;; usage could look like:
;; (hoge and pyon are already declared variables, perhaps declared special)
>> (setq hoge (foo 12))
<closure 1 bar>

16Which is what sets true lexical scoping apart from the statically scoped local variables in the
previous section.

2.5. SCOPING 23

>> (setq pyon (foo 11))
<closure 2 bar>
>> (hoge 2)
14
>> (pyon 33)
44
>> (hoge 1)
13

In this case the inner lambda, bar, has a free variable in a. However it doesn’t
mutate the binding of a so we may simply copy it into the Procedure subclass,
at function construction. Thus closures can take their free variables as constructor
arguments and save these to fields (which can be made final for extra guarantees
of not mutating the binding). These can be treated in the same way that statically
scoped/local variables in the previous section, but instead the variable a in bars
body would be mapped to a final instance variable in the closure object.

It could be compiled as such:

class foo extends Procedure {
public foo() {}
public LispObject run(LispObject[] o) {

return new bar(o[0]); // return closure
}

}

class bar extends Procedure {
private final LispObject free1;
public bar(LispObject free1) {

this.free1 = free1;
}
public LispObject run(LispObject[] o) {

// (+ x a) argument x, closed-over variable a
return ((LispNumber)o[0]).add((LispNumber)free1);

}
}

Mutating “functions” such as rplaca (replace car/head of list), rplacd (replace
cdr/tail of list) and aset (set element in array) doesn’t count as mutating the
variable binding. They don’t change the variable bindings like set does, instead
they mutate the data structure that the closed over variable binding is referencing.
Thus even though data is being mutated just copying all free variable references
like before will have correct semantics.

In fact the situation is very similar to the very hairy and only conditions under
which Java has lexical closures; inner classes in a non-static context can refer to

24 CHAPTER 2. METHODS

local variables and instance varibles declared in the enclosing class/scope given that
they have been declared final (Go to [JLS3] (§8.1.3) and check if I was right.)

Now a fully-fledged LJSP compiler wouldn’t be quite complete without set.
Does this spell the end for this approach to lexical closures?

No. The compiler could check for usage of set, both in closures and closuree,
on captured/free variables in the semantic analysis stage and use this method to
implement lexical closures in the absence of it. At the same time the semantic
analysis will assess all function bodies for free variables and annotates them for the
code generator.

Even better: In the presence of set the compiler could exploit that rplaca,
rplacd and aset can mutate state without having to touch the binding of the free
variable (which also is impossible since the instance variable was declared final).
In the case were the set is used the reference free variable is rewritten using one
level of indirection, with the help of a mutable data type, in this case the array.

An example of this nifty rewrite (adapted from [Incremental] to fit LJSP):

(let ((f (lambda (c)
(cons (lambda (v) (set ’c v))

(lambda () c)))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

⇒
(let ((f (lambda (t0)

(let ((c (make-array (list t0))))
(cons (lambda (v)

(aset c 0 v)
v)

(lambda () (aref c 0)))))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

Thus the code generator only has to handle closures over immutable bindings [In-
cremental] (§3.9, §3.12). Naturally this could be done using conses or other mutable
datastructures allowing for this sort of indirect referencing.

2.5.3 Dynamic Scope
In Common Lisp a variable can be declared special (locally as well as globally,
however for the purposes of this paper only the global case will be considered) having
that variable be dynamically bound, allowing to mix the differently scoped sorts of
variables in a way fitting the problem at hand17. Using defvar and defparameter

17Useful examples include global variables that can be temporarily overridden by rebinding.
For instance rebinding the global variable *standard-output* in Common Lisp has the effect of

2.5. SCOPING 25

to define global variables also has the effect of making the variable special [CLtL2]
(§9.2, §5.2).

There are two main approaches, that are basically the same for interpreted and
compiled code. Aside from that book keeping is neccesary to keep track of what
symbols have ben declared as a special, this can simply be implemented as a
property of the Symbol object.

Value slot

Each symbol gets one field/slot value that is bound to the current top-level binding
of the variable. Whenever the variable is rebound the old variable is saved in either
a local variable (thus implicitly utilizing the native java stack) or pushed down a
stack for retrieval upon exit of the new binding and the restoring of the old one
[MACLISP] (§3.2, §6.1).

This approach has the benefit of access speed to the detriment of rebinding
speed. Due to the global shared state it imposes it is also fundamentally threading-
incompatible.

This is the model currently implemented by the LJSP interpreter18.
The latter approach to value slot based dynamical bindings, with a separate

push-down stack, has the benefit of being able to eliminate tail-calls even in an
environment with only dynamic variables (The LJSP interpreter uses this to great
effect) [DynaTail].

Environments

Another approach would be to supply each function invocation with an easily ex-
tendable environment object of some sort. This dynamic environment object would
then be used to lookup dynamically bound variables at runtime.

This would require a slight rewrite of the, for this particular example non-
optimized, Procedure class proposed in section 2.2 (p. 12):

abstract class Procedure extends LispObject {
...
public abstract LispObject run(LispObject[] o,

Environment dynamicEnvironment);
}

This environment is passed on at every function call site so if foo calls bar bar
will inherit the dynamic environment of foo, possibly extending it. In the case of a

redirection the standard output stream, since output functions define to output to the stream
object pointed to by *standard-output*. In fact LJSP also has a global value *standard-output*
used in the same way.

18And it has led to no end of problems when trying to deal with creating Swing applications in
LJSP. One needs to be very very careful to run no code in parallel when there is the regular main
thread and the Swing event loop.

26 CHAPTER 2. METHODS

mixed lexical/dynamic scoping environment like Common Lisp if the name of one
of the arguments of bar coincides with the name of a variable declared special the
environment will be augmented shadowing the old declaration of that variable until
bar returns.

This method of handling dynamically scoped variables mimics almost exactly
how environments are passed around in many Lisp interpreters, including the very
first one [McCarthy60].

This method has the benefit that, for suitably built environment data structures,
threads in a multi-threaded application would be able to share the same base-level
binding of a dynamic variable yet capable of shadowing this binding with their
own to have a thread-local top-level dynamic variable binding. Different threads
will reference the same base environment, but will have their own environment
extensions on top of this. Sort of like a multi-headed stack.

The drawbacks include slower lookup of dynamic variables as well as extra over-
head due to always passing on the dynamic environment, even in cases were it
might not be needed (a sufficiently smart compiler might be able to alleviate this
somewhat however).

Chapter 3

Results

3.1 How much of the language was implemented?

3.2 The future?
• Have compiled functions handle receiving, by causing an error condition, too

many arguments instead of silently ignoring it.

• Implement the optimization for function calls in section 2.2 (p. 12) at the
same time as the above (this makes sense as that model makes checking for
function arity much more effective than otherwise.)

• Implement compiler support for variable arity procedures.

• Implement a semantical analysis stage of compilation.

• Have the compiler support macros with a macro-expansion pass prior to se-
mantic analysis and code generation.

• Implement lexically and dynamically bound variables, preferably while re-
taining the current model of statically scoped variables, as an optimization,
when semantic analysis has found a variable neither captured by a closure nor
declared as dynamically bound.

• Implement set and have it work for lexical scoping (to keep it fun; closures
would be too trivial otherwise) and dynamic scoping alike.

• Replace or fix the old reader currently used by the LJSP interpreter.

• Have the compiler bootstrap.

• Find out how much of the reflection-based model of Java interoperability, used
by the interpreter, can be salvaged and made into a newer better defined and
more easily compiled approach to Java interoperability.

27

28 CHAPTER 3. RESULTS

3.3 Benchmarks
See separate attachement.

The differences betweeen the compiled fib-trec and interpreted ditto is smaller
than the difference between fib compiled and non-compiled. Likely since fib-trec
is tail-recursive (time complexitiy of O(n)) and the result gets big very fast before
it starts getting slow. Likely most of the execution time of the fib-trec taken up
by bignum arithmetics.

Chapter 4

References

[gcc]
Using and Porting the GNU Compiler Collection – GCC version 3.0.2

§17 Passes and Files of the Compiler

Available from, among others (fetched April 13, 2012):
http://sunsite.ualberta.ca/Documentation/Gnu/gcc-3.0.2/html_mono/
gcc.html#SEC170

[R5RS]
Richard Kelsey, William Clinger, Jonathan Rees et al.

Revised5 Report on the Algorithmic Language Scheme

(20 February, 1998)

[JVMSpec]
Tim Lindholm, Frank Yellin.

The Java™ Virtual Machine Specification – Second edition
ISBN 0-201-43294-3

[JVMSpec SE 7]
Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley

The Java™ Virtual Machine Specification – Java SE 7 Edition

[AIM443]
Guy Lewis Steele Jr.

Debunking The “Expensive Procedure Call” Myth, or,
Procedure Call Implementations Considered Harmful, or,
Lambda: The Ultimate GOTO

AI Memo 443. MIT AI Lab (October, 1977)

29

http://sunsite.ualberta.ca/Documentation/Gnu/gcc-3.0.2/html_mono/gcc.html#SEC170
http://sunsite.ualberta.ca/Documentation/Gnu/gcc-3.0.2/html_mono/gcc.html#SEC170

30 CHAPTER 4. REFERENCES

[AIM353]
Guy Lewis Steele Jr. and Gerald Jay Sussman
Lambda: The Ultimate Imperative
AI Memo 353. MIT AI Lab (March 10, 1976)

[Kawa]
Per Bothner
Kawa: Compiling Scheme to Java
Cygnys Solutions

[JLS3]
James Gosling, Bill Joy, Guy Steele, Gilad Bracha
The Java™ Language Specification – Third Edition
ISBN 0-321-24678-0
(May, 2005)

[CLtL2]
Guy L. Steele Jr.
Common Lisp the Language, 2nd edition
ISBN 1-55558-041-6
Thinking Machines, Inc.

[Incremental]
Abdulaziz Ghuloum
An Incremental Approach to Compiler Construction
Proceedings of the 2006 Scheme and Functional Programming Workshop Uni-
versity of Chicago Technical Report TR-2006-06
Department of Computer Science, Indiana University, Bloomington, IN 47408

[DynaTail]
Darius Bacon
Tail Recursion with Dynamic Scope
Available at (fetched April 13, 2012):
http://wry.me/~darius/writings/dynatail.html

[MACLISP]
David A. Moon
MACLISP Reference Manual
Project MAC, MIT
Cambridge, Massachusetts
Revision ∅
April 1974

http://wry.me/~darius/writings/dynatail.html

31

[McCarthy60]
John McCarthy
Recursive Fucntions of Symbolic Expressions and Their Computation by Ma-
chine, part 1
Massachussetts Institute of Technology, Cambridge, Mass.
Published in Communications of the ACM April, 1960

[Baker]
Henry G. Baker
CONS Should Not CONS Its Arguments, Part II: Cheney on the M.T.A.
DRAFT for comp.lang.scheme.c Feb. 4, 1994
ACM Sigplan Notices 30, 9 (Sept. 1995), 17-20.

Part I

Appendices

33

Chapter 5

Appendix A

Contains the compiler code in all it’s messy (it is still littered with old code in
comments, how horrible!) glory.

Also available, together with the neccesary runtime environment, at:

http://www.nada.kth.se/~antonki/programmering/ljsp-kandx.tar.bz2

1 ;−∗− Mode : Lisp −∗−
2
3 ; ; ; IDEA: (doesn ’ t r e a l l y be long here ?) S t a r t having f e x p r s (or
4 ; ; ; s i m i l a r) so you can be meaner in how you handle macros (as
5 ; ; ; s t a t i c a l l y as CL f o r instance) .
6
7 ; ; ; Can you somehow coerce the JVM i nto t h i n k i n g duck−typing i s a good idea ?
8
9 ; ; TODO: DONE−ish add argument to p r e t t y much e v e r y t h in g to keep track of

t a i l − c a l l or not
10 ; ; ∗ Judicious f i n a l s everywhere (we don ’ t s u b c l a s s the generated c l a s s e s

a f t e r a l l)
11 ; ; ∗ Perhaps move classname out of the environment p l i s t ?
12 ; ; ∗ More correct−amount−of−args−checking and the l i k e s
13 ; ; ∗ Make a l l environtment be ONE environment and convey s t a t i c / l e x i c a l /

dynamic using the p l i s t ins tead ? ! ? ! ?
14 ; ; ∗ ins tead of having the creepy %l i t e r a l − v a r s% and %l i t e r a l − i n i t% type

v a r i a b l e s scan code ahead of
15 ; ; time to generate a t a b l e of constants ? (we don ’ t win much on t h i s move

except
16 ; ; having c leaner code with l e s s s i d e − e f f e c t s
17
18
19 (require ’ java)
20
21 ; ; Perhaps move t h i s to s t u f f . l j s p due to i t ’ s b o o t s t r a p p i n e s s i s h n e s s ?
22 (unless (running−compiled ?)
23 (defmacro defvar (a)
24 (unless (symbol−value (cadr a)) ; un less a lready bound
25 (l i s t ’ s e t q (cadr a) (caddr a)))))
26
27
28 ; ; FOR NOW
29 (defvar c f i b ’ (nlambda f i b (n) (i f (= n 0) 0 (i f (= n 1) 1 (+ (f i b (− n 1)) (f i b

(− n 2)))))))
30
31 (defvar c f i b − t r e c ’ (lambda (n)
32 ((nlambda c a l c − f i b (n a b)
33 (i f (= n 0)
34 a
35 (c a l c − f i b (− n 1) b (+ a b))))
36 n 0 1)))

35

http://www.nada.kth.se/~antonki/programmering/ljsp-kandx.tar.bz2

36 CHAPTER 5. APPENDIX A

37
38 (defvar f c o l l a t z ’ (nlambda c o l l a t z (n) (print n) (i f (= n 1) n i l (c o l l a t z (i f (= (

mod n 2) 0) (/ n 2) (+ 1 (∗ n 3)))))))
39
40 ; ; d i f f e r s s e m a n t i c a l l y s l i g h t l y from the mapcar1 in s t u f f . l j s p (as ide from wierd

binding−s tu f f s , i t doesn ’ t use end? f o r end of l i s t)
41 (defvar mopcor1 ’ (nlambda mapcar1 (fnx l s t x) (i f l s t x (cons (fnx (car l s t x)) (

mapcar1 fnx (cdr l s t x))) n i l)))
42
43 ; ; d i f f e r s s e m a n t i c a l l y s l i g h t l y from the assq in s t u f f . l j s p (as ide from wierd

binding−s tu f f s , i t doesn ’ t use end? f o r end of l i s t)
44 ; ; l e f t some crud in ((lambda n i l n i l)) (from macro expansion) , f o r t e s t i n g , in i t

but removed others t h a t wouldn ’ t work in s t a t i c scoping . . .
45 (defvar cassq ’ (nlambda assq (key a l i s t) (i f (eq? a l i s t n i l) ((lambda n i l n i l)) (

i f (eq? key (car (car a l i s t))) (car a l i s t) (assq key (cdr a l i s t))))))
46
47 (defvar quote−test (subst−symbols
48 ’ (lambda (a)
49 (cons a ’(#\W (1231312312312312312312312312312313123 .

5343412914294967296) (<a> <c>) b #(he j din f i s k (1 2
3)) " potat i smossa " . 1 2 . 4)))

50 ; ; s ince the current reader has no syntax f o r introducing NaN’
s we do t h i s . the compiler needs to handle i t

51 ; ; a f t e r a l l and maybe the reader supports some syntax f o r NaN
in the f u t u r e

52 ’<a> (/ 0 . 0 0 . 0)
53 ’ (/ 1 . 0 0 . 0) ; same f o r pos i n f
54 ’<c> (/ 1 . 0 −0.0))) ; same f o r neg i n f
55
56 (defvar c f a c t ’ (nlambda f a c t (n acc) (i f (= 0 n) acc (f a c t (− n 1) (∗ n acc)))))
57
58 ; ; Blargh my parser i s broken in many strange ways and crazy so l e t ’ s
59 ; ; have a crazy v a r i a b l e f o r t h i s
60 (defvar d b l f n u t t (pr in1−to−str ing ’ | " |))
61
62 (d e f v a r n l "
63 ")
64
65 (d e f v a r ∗compiled−body∗ ’ ())
66
67 (d e f v a r ∗ dynamic−variables ∗ ’ ())
68
69 (d e f v a r ∗ l abe l−counter ∗ 0)
70 (d e f v a r ∗ func labe l−counter ∗ 0)
71 (d e f v a r ∗ stat ic−var−counter ∗ 0)
72
73 ; ; These are dynmic v a r i a b l e s l o c a l l y o v e r r i d e d to conta in
74 ; ; i n i t i a l i z i n g code , and the s t a t i c v a r i a b l e d e f i n i t i o n s f o r a l l the
75 ; ; l i t e r a l s , i n t o t h e i r s t a t i c v a r i a b l e s , f o r the c u r r e n t l y compi l ing
76 ; ; c l a s s f i l e . De fvarr ing them l i k e t h i s makes them be SPECIAL (or whatever)
77 (d e f v a r %l i t e r a l − i n i t% n i l)
78 (d e f v a r %l i t e r a l − v a r s% n i l)
79
80 ; ; l o c a l v a r i a b l e s 5 and above are f o r s t a t i c environment . 0 to 5 have
81 ; ; s p e c i a l uses . With 0 always r e f e r r i n g to the t h i s v a r i a b l e . 3 being
82 ; ; a temp v a r i a b l e and the o t h e r s are f o r the time being undef ined .
83 (d e f v a r +r e s e r v e d − r e g s − s p l i t+ 5)
84
85 (defun get− l abe l ()
86 (concat "L" (i n c ∗ l abe l−counter ∗)))
87
88 (defun g e t − f u n c l a b e l ()
89 (concat "FUN" (i n c ∗ func labe l−counter ∗)))
90
91 (defun get−static−var−name ()
92 (concat " l i t " (i n c ∗ stat ic−var−counter ∗)))
93
94
95
96 ; ; ; ; Functions implemented us ing java c l a s s e s that perhaps should be
97 ; ; ; ; made b ui l t − in to ease boot−strapping and p o r t a b i l i t y
98
99 ; ; For p o r t a b i l i t y s sake c o n s i d e r makeing t h i s a b u i l t in subr

100 (defun concat s t r s

37

101 (l e t ((sb (send S t r i n g B u i l d e r ’ newInstance)))
102 (d o l i s t (s t r s t r s)
103 (send sb ’ append s t r))
104 (send sb ’ t o S t r i n g)))
105
106 ; ; Same : f o r p o r t a b i l i t y s sake c o n s i d e r making t h i s b u i l t in or s i m i l a r
107 (defun load−proc (name)
108 (l e t ((name (i f (type ? ’ symbol name) (prin1−to−str ing name) name)))
109 (send (send Class ’ forName name) ’ newInstance)))
110
111 (defun concat−nl s t r s
112 (apply concat (f l a t t e n (mapcar (lambda (x) (l i s t x n l)) s t r s))))
113
114 (defun NaN? (a)
115 (send Double ’ isNaN a))
116
117 (defun i n f i n i t e ? (a)
118 (send Double ’ i s I n f i n i t e a))
119
120 ; ; ; ; End f u n c t i o n s us ing java
121
122
123 ; ; ; ; CODE WALKER FOR LEXICAL ANALYSIS
124 ; ; ; ; Used to f i n d f r e e v a r i a b l e s in lambdas (and macros) mainly
125 ; ; This here th ing does NOT want code with macros in i t (HINT :
126 ; ; remember to expand macros way e a r l y) (j u s t th ink about the
127 ; ; c o n f u s i o n l e t would be , f o r i n s t a n c e) . Also think about : l o c a l
128 ; ; macros WTF?
129
130 (defun analyze (a . r s t)
131 (l e t ((l o c a l − v a r i a b l e s (car r s t)))
132 (uniq (s o r t − l i s t (analyze−expr a l o c a l − v a r i a b l e s) hash <) eq ?)))
133
134
135 (defun analyze−expr (a l o c a l − v a r i a b l e s)
136 (i f (atom? a)
137 (i f (and (type ? ’ symbol a)
138 (not (member a l o c a l − v a r i a b l e s))
139 (not (member a ∗ dynamic−variables ∗)))
140 (l i s t a)
141 ’ ())
142 (case (car a)
143 (quote ’ ()) ; no v a r i a b l e s can be captured in a quote
144 (lambda (analyze−lambda a l o c a l − v a r i a b l e s)) ; macro?
145 (i f (a n a l y z e − l i s t a l o c a l − v a r i a b l e s)) ; Treat i f s p e c i a l l y in f u t u r e

? (i s t h e r e a po int in c l o s i n g over the VARIABLE i f ?)
146 (o t h e r w i s e (a n a l y z e − l i s t a l o c a l − v a r i a b l e s)))))
147
148 (defun analyze−lambda (a l o c a l − v a r i a b l e s)
149 (u n l e s s (eq ? (car a) ’ lambda) ; macro?
150 (e r r o r "You ought to supply me with a lambda when you want to analyze f r e e

v a r i a b l e s in a lambda . "))
151 (l e t r e c ((scan (lambda (l s t acc)
152 (cond ((n u l l ? l s t) (r e v e r s e ! acc))
153 ((atom? l s t) (r e v e r s e ! (cons l s t acc)))
154 (t (scan (cdr l s t) (cons (car l s t) acc)))))))
155 (a n a l y z e − l i s t (cddr a) (append (scan (cadr a) n i l) l o c a l − v a r i a b l e s))))
156
157 (defun a n a l y z e − l i s t (a l o c a l − v a r i a b l e s)
158 (l e t r e c ((roop (lambda (l s t acc)
159 (i f (end ? l s t)
160 acc
161 (roop (cdr l s t) (append acc (analyze−expr (car l s t)

l o c a l − v a r i a b l e s)))))))
162 (roop a n i l)))
163
164 ; ; Remember to check i f t h e r e are too many arguments as w e l l in t h i n g s l i k e i f and

p r i n t
165
166 (defun emit− i f (a e t a i l)
167 (l e t ((c o n d i t i o n (cadr a))
168 (true−expr (caddr a))
169 (f a l s e − e xp r (cadddr a))
170 (l a b e l (get− l abe l))

38 CHAPTER 5. APPENDIX A

171 (l a b e l − a f t e r (get− l abe l)))
172 (concat " ; ; " a nl
173 (emit−expr c o n d i t i o n e n i l)
174 " i f n o n n u l l " l a b e l " ; branches to the true−expr " n l
175 (emit−expr f a l s e − e xp r e t a i l)
176 " goto " l a b e l − a f t e r " ; Don ’ t a l s o run the true−expr l i k e a f o o l " n l
177 l a b e l " : " n l
178 (emit−expr true−expr e t a i l)
179 l a b e l − a f t e r " : " n l
180 " ; ; e n d i f " n l)))
181
182 ; ; ; ; Used by emit− funcal l to generate code f o r how to s t r u c t u r e arguments b e f o r e

the a c t u a l c a l l
183 ; ; ; ; This p a r t i c u l a r vers ion i s when passing arguments in an array
184 (defun emit− funargs (args e)
185 (l e t r e c ((roop (lambda (l s t e cn tr asm)
186 (i f (end ? l s t)
187 asm
188 (roop (cdr l s t)
189 e
190 (1+ cnt r)
191 (concat asm
192 " dup " n l
193 " ldc_w " cn tr n l
194 (emit−expr (car l s t) e n i l)
195 " a a s t o r e " n l))))))
196 (l e t ((l e n (length args)))
197 (i f (z e r o ? l e n)
198 (concat " aconst_nul l " n l) ; very s l i g h t opt imizat ion of the no−argument

case
199 (concat " ldc_w " l e n nl
200 " anewarray LispObject " n l
201 (roop args e 0 " "))))))
202
203
204 ; ; Version f o r passing arguments on s tack in r e g u l a r order
205 #; (defun emit−funargs (args e)
206 (i f a rgs
207 (apply concat (mapcar (lambda (x) (emit−expr x e n i l)) args)))
208 " ")
209
210 ; ; This w i l l need to do d i f f e r e n t t h i n g s f o r a non−compiled funct ion a
211 ; ; compiled funct ion a compiled or non−compiled macro according to
212 ; ; t h e i r current b indings (we f e a r l e s s l y ignore t h a t f o r the
213 ; ; dynamical ly scoped case our funct ion bindings might change and
214 ; ; such . This i s l e s s a problem in the l e x i c a l l y scoped case yet s t i l l
215 ; ; a problem f o r some cases (which cases ?))
216 ; ; WHEN JSR−ing (or s i m i l a r) :
217 ; ; Don’ t f o r g e t to reverse the a r g l i s t
218 ; ; Don’ t f o r g e t to push l o c a l vars
219 ; ; TODO: Think up ways to s t o r e v a r i a b l e s t o g e t h e r with some s o r t of type data so

we know when to do what f u n c a l l
220
221 ; ; POSSIBLE OPTIMIZATION: I n l i n e in a nice way when j u s t a r e g u l a r
222 ; ; non−recursive lambda−thingy (l i k e the case the let− or progn macro
223 ; ; would generate (e s p e c i a l l y the l a t t e r one i s t r i v i a l))
224 (defun emit− funca l l (a e t a i l)
225 (l e t ((fun (car a))
226 (args (cdr a)))
227 (i f (and t a i l
228 (type ? ’ symbol fun)
229 (print (get−var iable−property fun ’ s e l f e)))
230 (e m i t − s e l f − r e c u r s i v e − t a i l − c a l l a rgs e)
231 (concat " ; ; " a n l
232 (emit−expr fun e n i l) ; puts the funct ion i t s e l f on the

s t ack
233 " c h e c k c a s t Procedure " n l
234 " ; prepar ing args " n l
235 (emit− funargs args e)
236 " ; end prepar ing args " n l
237 " i n v o k e v i r t u a l Procedure . run ([LLispObject ;) LLispObject ; " n l))))
238
239 ; ; WRITTEN FOR STATIC ONLY
240 ; ; TODO: r e w r i t e when s t u f f changes . . .

39

241 ; ; This c u r r e n t l y assumes a c e r t a i n layout of v a r i a b l e s l a i d out by
emit−lambda−body .

242 ; ; Note how we j u s t reuse the o ld s t a t e l o c a t i o n s s ince a t a i l − c a l l l e t ’ s us
discard the o ld s t a t e f o r t h i s frame e n t i r e l y

243 ; ; However : Before we s t a r t s e t t i n g the l o c a l v a r i a b l e s we have pushed a l l the
r e s u l t s to the s t ack .

244 ; ; I f we didn ’ t a l l s o r t s of s i d e − e f f e c t mayhem might occur f o r example f o r
245 ; ; (nlambda foo (a b) (i f (> a 100) a (foo (+ a 2) (∗ a b)))) a i s used twice in

the argument l i s t
246 (defun e m i t − s e l f − r e c u r s i v e − t a i l − c a l l (args e)
247 (l e t r e c ((funargs−push (lambda (l s t e asm)
248 (i f (end ? l s t)
249 asm
250 (funargs−push (cdr l s t)
251 e
252 (concat asm
253 (emit−expr (car l s t) e n i l)))

)))
254 (funargs−pop (lambda (cn tr o f f s e t asm)
255 (i f (z e ro ? cn tr)
256 asm
257 (funargs−pop (1− cn tr)
258 o f f s e t
259 (concat asm
260 " a s t o r e " (+ (1− cn tr) o f f s e t)

n l))))))
261 (concat " ; ; s e l f − r e c u r s i v e t a i l − c a l l a rgs : " args n l
262 (funargs−push args e " ")
263 (funargs−pop (length args) +r e s e r v e d − r e g s − s p l i t+ " ")
264 " goto L s e l f t a i l " n l)))
265
266 (defun emit−quote (a e)
267 (unless (and (eq? (car a) ’ quote)
268 (= (length a) 2))
269 (error (concat " Something ’ s wrong with your quote : " a)))
270 (unless (and (type ? ’ string %l i t e r a l − i n i t %) ; compile−lambda does i n i t i a l i z e

th ese to " " ,
271 (type ? ’ string %l i t e r a l − v a r s %)) ; so they should always be s t r i n g s

when we end up here
272 (error (concat " S p e c i a l v a r i a b l e s %l i t e r a l − v a r s %: " (pr in1−to−str ing %

l i t e r a l − v a r s %)
273 " and %l i t e r a l − i n i t %: " (pr in1−to−str ing %l i t e r a l − i n i t %)
274 " not p r o p e r l y i n i t i a l i z e d ")))
275 (l e t ((s t a t i c − v a r (get−static−var−name))
276 (classname (getf e ’ c lassname)))
277 (s e t q %l i t e r a l − v a r s% (concat %l i t e r a l − v a r s%
278 " . f i e l d p r i v a t e s t a t i c f i n a l " s t a t i c − v a r "

LLispObject ; " n l))
279 (s e t q %l i t e r a l − i n i t% (concat %l i t e r a l − i n i t%
280 (emit−obj (second a) e)
281 " p u t s t a t i c " classname " / " s t a t i c − v a r "

LLispObject ; "))
282 (concat " g e t s t a t i c " classname " / " s t a t i c − v a r " LLispObject ; " n l)))
283
284 (defun emit−java−double (a)
285 (cond ((NaN? a)
286 ; ; KLUDGE: workaround using d i v i s i o n by zero (r e s u l t i n g in NaN) since
287 ; ; jasmin seems to have troub le , or at l e a s t i s l a c k i n g any documention ,
288 ; ; how to load a NaN double as a constant
289 (concat " ; ; jasmin l a c k s a l l s o r t o f documentation on how to push a NaN

double . D i v i s i o n by z ero works as a work−around . " n l
290 " dconst_0 " n l
291 " dconst_0 " n l
292 " ddiv " n l))
293 ((and (i n f i n i t e ? a) (not (neg ? a)))
294 ; ; KLUDGE: same th ing but f o r p o s i t i v e i n f i n i t y
295 (concat " ; ; hackaround f o r p o s i t i v e i n f i n i t y " n l
296 " ldc2_w 1 . 0 d " n l
297 " dconst_0 " n l
298 " ddiv " n l))
299 ((and (i n f i n i t e ? a) (neg ? a))
300 ; ; KLUDGE: same th ing but f o r negat ive i n f i n i t y
301 (concat " ; ; hackaround f o r n e g a t i v e i n f i n i t y " n l
302 " ldc2_w −1.0d " n l

40 CHAPTER 5. APPENDIX A

303 " dconst_0 " n l
304 " ddiv " n l))
305 (t
306 ; ; t h a t d i s important , otherwise we are loading a f l o a t (not double)
307 ; ; constant and introducing rounding errors
308 (concat " ldc2_w " a " d " n l))))
309
310 (defun emit−java−long (a)
311 (concat " ldc2_w " a nl))
312
313 ; ; Emits code to regenerate an o b j e c t as i t i s (quoted s t u f f s use
314 ; ; t h i s)
315 ; ; TODO: ∗ what about procedures and the l i k e , whi le not having a
316 ; ; l i t e r a l r e p r e s e n t a t i o n one might send crazy s h i t to the
317 ; ; compiler . . . ?
318 ; ; ∗ What about uninterned symbols ? (Does i t r e a l l y make a d i f f e r e n c e ?) Very

t r i c k y s h i t t h i s :/
319 (defun emit−obj (obj e)
320 (cond ((eq? obj n i l) (emit−nil))
321 ((type ? ’ fixnum obj)
322 (concat " new LispFixnum " nl
323 " dup " n l
324 (emit−java−long a)
325 " i n v o k e n o n v i r t u a l LispFixnum.< i n i t >(J)V" n l))
326 ((type ? ’ flonum obj)
327 (concat " new LispFlonum " nl
328 " dup " n l
329 (emit−java−double obj)
330 " i n v o k e n o n v i r t u a l LispFlonum.< i n i t >(D)V" nl))
331 ((type ? ’ bignum obj)
332 (concat " ldc_w " d b l f n u t t obj d b l f n u t t n l
333 " i n v o k e s t a t i c LispBignum . parse (Ljava . lang . S t r i n g ;) LLispBignum ; "

n l))
334 ((type ? ’ string obj)
335 (concat " new L i s p S t r i n g " n l
336 " dup " n l
337 " ldc_w " d b l f n u t t obj d b l f n u t t n l
338 " i n v o k e n o n v i r t u a l L i s p S t r i n g .< i n i t >(Ljava . lang . S t r i n g ;)V" n l))
339 ((type ? ’ array obj)
340 (concat " new LispArray " n l
341 " dup " n l
342 (n l e t roop ((c ntr (length obj))
343 (asm (concat " ldc_w " (length obj) n l
344 " anewarray LispObject " n l)))
345 (i f (ze ro ? cnt r)
346 asm
347 (roop (1− cn tr)
348 (concat asm
349 " dup " n l
350 " ldc_w " (1− cn tr) n l
351 (emit−obj (aref obj (1− cn tr)) e)
352 " a a s t o r e " n l))))
353 " i n v o k e n o n v i r t u a l LispArray .< i n i t >([LLispObject ;)V" n l))
354 ((type ? ’ symbol obj)
355 (concat " ldc_w " d b l f n u t t obj d b l f n u t t n l
356 " i n v o k e s t a t i c Symbol . i n t e r n (Ljava . lang . S t r i n g ;) LSymbol ; " n l))
357 ((type ? ’ char obj)
358 (concat " new LispChar " n l
359 " dup " n l
360 " bipush " (char−>i n t e g e r obj) n l
361 " i n v o k e n o n v i r t u a l LispChar .< i n i t >(C)V" nl))
362 ((type ? ’ cons obj)
363 (concat " new Cons " n l
364 " dup " n l
365 (emit−obj (car obj) e)
366 (emit−obj (cdr obj) e)
367 " i n v o k e n o n v i r t u a l Cons.< i n i t >(LLispObject ; LLispObject ;)V" n l))
368 (t (error (concat " Couldn ’ t match type f o r : " a)))))
369
370 (defun emit−return−se l f (obj e)
371 (cond ((type ? ’ symbol obj) (emit−var iab le− re f e rence obj e))
372 ((atom? obj) (emit−obj obj e))
373 (t (error " Arghmewhats? "))))
374

41

375
376
377 ; ; TODO: when/ i f removing m u l t i p l e a l i s t s f o r d i f f e r e n t s o r t s of environments :

REWRITE
378 ; ; THIS IS REALLY A HUGE KLUDGE
379 (defun get−var iable−property (var property e)
380 (or (get−s tat ic−var iab le−property var property e)
381 (ge t − l e x i c a l − va r ia b le − pr oper ty var property e)
382 (get−dynamic−variable−property var property e)))
383
384 (defun get−s tat ic−var iab le−property (var property e)
385 (getf (cddr (assq var (getf e ’ stat ic−environment))) property))
386
387 (defun ge t − l e x i c a l − va r ia b le − pr oper ty (var property e)
388 (getf (cddr (assq var (getf e ’ dynamic−environment))) property))
389
390 (defun get−dynamic−variable−property (var property e)
391 (getf (cddr (assq var (getf e ’ l ex ica l−environment))) property))
392
393
394 ; ; ; ; Variable l i s t s look l i k e ((a <storage− location > . <extra−proper t ies−p l i s t >) (

b . . .) . . .)
395 ; ; ; ; e . g ((a 1) (f i b 0 s e l f t))
396 (defun g e t − s t a t i c − v a r i a b l e (var e)
397 (l e t ((stat ic−environment (getf e ’ stat ic−environment)))
398 (cadr (assq var stat ic−environment))))
399
400 (defun g e t − l e x i c a l − v a r i a b l e (var e)
401 (l e t ((l ex ica l−environment (getf e ’ l ex ica l−environment)))
402 (cadr (assq var lex ica l−environment))))
403
404 (defun get−dynamic−variable (var e)
405 (l e t ((dynamic−environment (getf e ’ dynamic−environment)))
406 (cadr (assq var dynamic−environment))))
407
408 (defun emit−var iab le− re f e rence (a e)
409 (l e t ((stat ic−var−place (g e t − s t a t i c − v a r i a b l e a e))
410 (l ex ica l −var−place (g e t − l e x i c a l − v a r i a b l e a e))
411 (dynamic−var−place (get−dynamic−variable a e)))
412 (cond (stat ic−var−place (concat " aload " stat ic−var−place n l))
413 (l ex ica l −var −place (concat " n o l e x i c a l y e t " n l))
414 (dynamic−var−place (concat " nodynamicyet " n l))
415 (t (error (concat " Var iab le : " a " doesn ’ t seem to e x i s t anywhere . ")))))

)
416
417 (defun emit−ar ithmetic (a e)
418 (unless (= (length a) 3)
419 (error (concat "You can ’ t a r i t h m e t i c with wrong amount o f args : " a)))
420 (concat (emit−expr (second a) e n i l)
421 " c h e c k c a s t LispNumber " n l
422 (emit−expr (third a) e n i l)
423 " c h e c k c a s t LispNumber " n l
424 " i n v o k e v i r t u a l LispNumber . "
425 (case (car a) (+ " add ") (− " sub ") (∗ " mul ") (/ " div "))
426 " (LLispNumber ;) LLispNumber ; " n l))
427
428 (defun emit− integer−binop (a e)
429 (unless (= (length a) 3)
430 (error (concat "You can ’ t integer−binop with wrong amount o f args : " a)))
431 (concat (emit−expr (second a) e n i l)
432 " c h e c k c a s t L i s p I n t e g e r " n l
433 (emit−expr (third a) e n i l)
434 " c h e c k c a s t L i s p I n t e g e r " n l
435 " i n v o k e v i r t u a l L i s p I n t e g e r . "
436 (case (car a) (mod "mod") (ash " ash "))
437 " (L L i s p I n t e g e r ;) L L i s p I n t e g e r ; " n l))
438
439
440 ; ; Used , i n t e r n a l i s h , to emit dere ferencing the v a r i a b l e t (c u r r e n t l y s p e c i a l

hardcoded , put in own funct ion f o r modularity
441 (defun emit−t (e)
442 (l e t ((classname (getf e ’ c lassname)))
443 (concat " g e t s t a t i c " classname " / t LLispObject ; " n l))) ; TODO: in the f u t u r e

t r y to emit a v a r i a b l e re ference to t here ins tead of t h i s hardcoded

42 CHAPTER 5. APPENDIX A

mishmash
444
445 ; ; Used to emit the sequence to convert a java boolean to a more l i s p i s h boolean .

Used in mostly " i n t e r n a l i s h " ways .
446 (defun emit−boolean−to− l isp (e)
447 (l e t ((l a b e l (get− l abe l))
448 (l a b e l − a f t e r (get− l abe l)))
449 (concat " i f e q " l a b e l n l
450 ; ; (emit−return−self 123 n i l) ; TODO: change me to emit t l a t e r
451 (emit−t e)
452 " goto " l a b e l − a f t e r n l
453 l a b e l " : " n l
454 (emit−nil)
455 l a b e l − a f t e r " : " n l)))
456
457 (defun emit−= (a e)
458 (unless (= (length a) 3)
459 (error (concat "You can ’ t = with wrong amount o f args : " a)))
460 (concat (emit−expr (second a) e n i l)
461 ; ; " checkcast LispNumber " nl
462 (emit−expr (third a) e n i l)
463 ; ; " checkcast LispNumber " nl
464 " i n v o k e v i r t u a l java / lang / Object . e q u a l s (Ljava / lang / Object ;) Z" n l
465 (emit−boolean−to− l isp e)))
466
467 (defun emit−neg ? (a e)
468 (unless (= (length a) 2)
469 (error (concat "You can ’ t neg ? with wrong amount o f args : " a)))
470 (concat (emit−expr (second a) e n i l)
471 " c h e c k c a s t LispNumber " n l
472 " i n v o k e v i r t u a l LispNumber . negP () Z" n l
473 (emit−boolean−to− l isp e)))
474
475 (defun emit−eq ? (a e)
476 (unless (= (length a) 3)
477 (error (concat "You can ’ t eq ? with wrong amount o f args : " a)))
478 (l e t ((label−ne (get− l abe l))
479 (l a b e l − a f t e r (get− l abe l)))
480 (concat (emit−expr (second a) e n i l)
481 (emit−expr (third a) e n i l)
482 " if_acmpne " label−ne nl
483 (emit−t e)
484 " goto " l a b e l − a f t e r n l
485 label−ne " : " n l
486 " aconst_nul l " n l
487 l a b e l − a f t e r " : " n l)))
488
489 (defun emit−eql ? (a e)
490 (error " e q l ? not implemented "))
491
492 ; ; TODO: ∗ two−argument vers ion of p r i n t
493 ; ; ∗ implement without temp v a r i a b l e i f p o s s i b l e . Having
494 ; ; temp−variables might grow t r i c k i e r when some method
495 ; ; implementations do away with the need to (always)
496 ; ; deconstruct an array
497 (defun emit−print (a e)
498 (l e t ((l a b e l − n i l (get− l abe l))
499 (l a b e l − a f t e r (get− l abe l)))
500 (concat " ; ; " a n l
501 " g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ; " n l
502 (emit−expr (cadr a) e n i l)
503 " dup " n l
504 " astore_2 ; s t o r e in the temp v a r i a b l e " n l
505 " dup " n l
506 " i f n u l l " l a b e l − n i l n l
507 " i n v o k e v i r t u a l java / lang / Object . t o S t r i n g () Ljava / lang / S t r i n g ; " n l
508 " goto " l a b e l − a f t e r n l
509 l a b e l − n i l " : " n l
510 " pop " n l
511 " ldc_w " d b l f n u t t " n i l " d b l f n u t t n l
512 l a b e l − a f t e r " : " n l
513 " i n v o k e v i r t u a l java / i o / PrintStream . p r i n t l n (Ljava / lang / S t r i n g ;)V" n l
514 " aload_2 ; we r e t u r n what we got " n l)))
515

43

516 (defun emit−set (a e)
517 (error " s e t not implemented "))
518
519 (defun emit−nil ()
520 (concat " aconst_nul l " n l))
521
522 (defun emit−car−cdr (a e)
523 (unless (= (length a) 2)
524 (error "You can ’ t " (car a) " with wrong amount o f args : " a))
525 (l e t ((l a b e l − n i l (get− l abe l)))
526 (concat (emit−expr (cadr a) e n i l)
527 " dup " n l
528 " i f n u l l " l a b e l − n i l n l
529 " c h e c k c a s t Cons " n l
530 " g e t f i e l d Cons/ " (car a) " LLispObject ; " n l
531 l a b e l − n i l " : " n l)))
532
533 (defun emit−cons (a e)
534 (unless (= (length a) 3)
535 (error "You can ’ t cons with wrong amount o f args : " a))
536 (concat " new Cons " n l
537 " dup " n l
538 (emit−expr (second a) e n i l)
539 (emit−expr (third a) e n i l)
540 " i n v o k e n o n v i r t u a l Cons.< i n i t >(LLispObject ; LLispObject ;)V" n l))
541
542 (defun emit−expr (a e t a i l)
543 (i f (l i s t ? a)
544 (case (car a)
545 ; ; To be a b l e to pass these , where appropriate (e . g : not i f) , as arguments

the b o o t s t r a p code needs to d e f i n e f u n c t i o n s t h a t use thes e b u i l t i n s .
e . g : (defun + (a b) (+ a b))

546 ; ; (running−compiled? (emit−return−self 1337 n i l)) ; TODO: change me to
emit t l a t e r

547 (running−compiled ? (emit−t e))
548 (set (emit−set a e))
549 (eq? (emit−eq ? a e))
550 (eql ? (emit−eql ? a e))
551 ((or + − ∗ /) (emit−ar ithmetic a e))
552 (= (emit−= a e))
553 (neg ? (emit−neg ? a e))
554 ((or mod ash) (emit− integer−binop a e))
555 ((or car cdr) (emit−car−cdr a e))
556 (cons (emit−cons a e))
557 (i f (emit− i f a e t a i l))
558 (print (emit−print a e))
559 ((or lambda nlambda) (emit−lambda a e))
560 (quote (emit−quote a e))
561 (o t h e r w i s e (i f (car a) ; need to be c a r e f u l about n i l ? (

should t h i s t r u l y be here ? . . . w e l l i t i s due to the l i s t ? check (n i l
i s a l i s t))

562 (emit− funca l l a e t a i l)
563 (emit−nil))))
564 (emit−return−se l f a e)))
565
566
567 (defun emit−lambda (a e)
568 (l e t ((function−class−name (compile−lambda a
569 (l i s t ’ s tat ic−environment n i l
570 ’ l ex ica l−environment (getf e ’

l ex ica l−environment)
571 ’ dynamic−environment (getf e ’

dynamic−environment)))))
572 ; ; TODO: save t h i s in a p r i v a t e s t a t i c f i n a l f i e l d in the c l a s s ? (i f
573 ; ; p o s s i b l e of course s ince when I introduce c l o s u r e s there w i l l be cases
574 ; ; where i t may no longer be p o s s i b l e to do i t t h a t way)
575 (concat " new " function−class−name nl
576 " dup " n l
577 " i n v o k e n o n v i r t u a l " function−class−name " .< i n i t >()V" nl)))
578
579
580 ; ; OLD CRAP COMMENT?
581 ; ; TODO?: something e l s e than compile−lambda should output whatever amounts to
582 ; ; dere ferencing a funct ion a f t e r a c t u a l l y having compiled the funct ion and

44 CHAPTER 5. APPENDIX A

583 ; ; s tored i t in an appropriate g l o b a l var (otherwise we would g e t some strange
584 ; ; form of i n l i n e c a l l wherever a lambda i s)
585
586 (defun e m i t − c l a s s f i l e − p r o l o g u e (classname)
587 (concat " . c l a s s " classname "
588 . super Procedure
589
590 . f i e l d p r i v a t e s t a t i c f i n a l t LLispObject ;
591 " %l i t e r a l − v a r s% "
592
593 . method s t a t i c <c l i n i t >()V
594 . l i m i t l o c a l s 255
595 . l i m i t s tack 255
596
597 ldc_w " d b l f n u t t " t " d b l f n u t t "
598 i n v o k e s t a t i c Symbol . i n t e r n (Ljava / lang / S t r i n g ;) LSymbol ;
599 p u t s t a t i c " classname " / t LLispObject ;
600 " %l i t e r a l − i n i t% "
601 r e t u r n
602 . end method
603
604 . method p u b l i c <i n i t >()V
605 . l i m i t s tack 2
606 . l i m i t l o c a l s 1
607
608 aload_0
609 l d c " d b l f n u t t classname d b l f n u t t "
610 i n v o k e n o n v i r t u a l Procedure .< i n i t >(Ljava / lang / S t r i n g ;)V
611 r e t u r n
612 . end method
613
614 . method p u b l i c run ([LLispObject ;) LLispObject ;
615 . l i m i t s tack 255
616 . l i m i t l o c a l s 255
617 "))
618
619 (defun e m i t − c l a s s f i l e − e p i l o g u e (classname)
620 (concat " . end method " n l))
621
622 ; ; Compile a lambda/nlambda in environment e . Store jasmin source in classname . j (

i f suppl ied , o p t i o n a l argument)
623 (defun compile−lambda (a e . r s t)
624 (unless (and (type ? ’ l i s t a)
625 (or (eq? (car a) ’ lambda)
626 (eq? (car a) ’ nlambda)))
627 (error (concat " Are you r e a l l y sure you passed me a lambda : " a)))
628 (l e t ∗ ((classname (i f r s t (car r s t) (g e t − f u n c l a b e l)))
629 (env (l i s t ∗ ’ c lassname classname e))
630 (% l i t e r a l − v a r s% " ")
631 (% l i t e r a l − i n i t% " ")
632 (body (case (car a) ; s ince we e v a l u a t e the

body a l s o f o r the s i d e e f f e c t s to %l i t e r a l − v a r s%
633 (lambda (emit−lambda−body a env)) ; and %l i t e r a l − i n i t% we

have to e v a l u a t e t h i s b e f o r e emit−c lass f i l e−pro logue
634 (nlambda (emit−nlambda−body a env)))))
635 (with−open− f i le (stream (concat classname " . j ") out)
636 (w r i t e − s t r i n g (concat (e m i t − c l a s s f i l e − p r o l o g u e classname)
637 body
638 (e m i t − c l a s s f i l e − e p i l o g u e classname))
639 stream))
640 ; ; HERE: compile the f i l e j u s t emitted too
641 classname))
642
643 (defun emit−progn (a e t a i l) ; NOT TAIL RECURSIVE
644 (cond ((cdr a) (concat (emit−expr (car a) e n i l)
645 " pop " n l
646 (emit−progn (cdr a) e t a i l)))
647 (a (emit−expr (car a) e t a i l))
648 (t " ")))
649
650 ; ; (nlambda <name> (a b c) . <body>)
651 (defun emit−nlambda−body (a e)
652 (emit−lambda−body (cons ’ lambda (cddr a))
653 e

45

654 ; ; we know o u r s e l v e s by being r e g i s t e r 0 which i s " t h i s " in
Java . t h i s v a r i a b l e

655 ; ; has the s e l f property s e t to the parameter− l i s t o f the
funct ion . emit− funcal l

656 ; ; w i l l thus know i t can do s e l f − t a i l − c a l l − e l i m i n a t i o n and
a l s o how the

657 ; ; parameters are to be i n t e r p r e t e d (when to construct a l i s t
out of some of

658 ; ; them e t c . e t c .)
659 (acons (cadr a) (l i s t 0 ’ s e l f (third a)) n i l)))
660
661 (defun emit−lambda−body (a e . r s t)
662 (l e t r e c ((static−environment−augmentation (f i r s t r s t)) ; Optional argument t h a t

augments the generated s t a t i c environment i f present
663 (args (cadr a))
664 (body (cddr a))
665 (args−roop (lambda (l s t a l i s t asm c ntr o f f s e t) ; TODO: v a r i a b l e a r i t y

rest−parameter s t u f f
666 (i f l s t
667 (args−roop (cdr l s t)
668 (acons (car l s t) (l i s t (+ cntr o f f s e t) ’

s t a t i c t) a l i s t)
669 (concat asm
670 " aload_1 " n l
671 " ldc_w " cnt r n l
672 " aaload " n l
673 " a s t o r e " (+ cnt r o f f s e t) n l)
674 (1+ cn tr)
675 o f f s e t)
676 (cons asm a l i s t))))
677 (a r g s − r e s u l t (args−roop args ’ () " " 0 +r e s e r v e d − r e g s − s p l i t +)) ; +

reserved−regs−sp l i t+ i s the f i r s t r e g i s t e r t h a t i s general−purposey
enough

678 (asm (car a r g s − r e s u l t))
679 (a l i s t (cdr a r g s − r e s u l t))
680 (new−e (l i s t ’ c lassname (getf e ’ c lassname) ’ stat ic−environment (append

a l i s t static−environment−augmentation))))
681 (concat " ; ; " a n l
682 asm
683 " L s e l f t a i l : " n l ; l a b e l used f o r s e l f − t a i l − r e c u r s i v e

purposes
684 (emit−progn body new−e t) ; in a lambda the progn body i s always a

t a i l y − w a i l y
685 " areturn " n l
686 " ; ; endlambda " n l)))
687
688
689 ; ; An emit lambda f o r when a l l arguments are passed to the method
690 ; ; p l a i n . Might be good i f you want to kawa−style optimize when
691 ; ; there ’ s a smal ler than N number of args to a funct ion
692 ; ; (defun emit−lambda (a e . r s t)
693 ; ; (l e t r e c ((static−environment−augmentation (car r s t)) ; Optional argument t h a t

augments the generated s t a t i c environment i f present
694 ; ; (args (cadr a))
695 ; ; (body (cddr a))
696 ; ; (args−roop (lambda (l s t a l i s t cntr)
697 ; ; (i f l s t
698 ; ; (args−roop (cdr l s t)
699 ; ; (acons (car l s t) cntr a l i s t)
700 ; ; (1+ cntr))
701 ; ; a l i s t)))
702 ; ; (new−e (l i s t ’ classname (g e t f e ’ classname) ’ static−environment
703 ; ; (append (args−roop args ’ () 1) ; 0 i s the very s p e c i a l

" t h i s " argument , we don ’ t want to inc lude i t here
704 ; ; static−environment−augmentation))))
705 ; ; (concat " ; ; " a nl
706 ; ; (emit−progn body new−e t) ; in a lambda the progn body i s always

a t a i l y − w a i l y
707 ; ; " areturn " nl
708 ; ; " ; ; endlambda " nl)))
709
710 ; ; TODO: l e x i c a l i guess
711 ; ; Old emit lambda when i was preparing f o r JSR−based s t u f f (might come in handy

again when you t r y your hand at TCO)

46 CHAPTER 5. APPENDIX A

712 ; ; (defun emit−lambda (a e . r s t)
713 ; ; (l e t r e c ((static−environment−augmentation (car r s t)) ; Optional argument t h a t

augments the generated s t a t i c environment i f present
714 ; ; (args (cadr a))
715 ; ; (body (cddr a))
716 ; ; (args−roop (lambda (l s t asm a l i s t cntr)
717 ; ; (i f l s t
718 ; ; (args−roop (cdr l s t)
719 ; ; (concat " astore " cntr nl asm)
720 ; ; (acons (car l s t) cntr a l i s t)
721 ; ; (1+ cntr))
722 ; ; (cons asm a l i s t))))
723 ; ; (args−resu l t (args−roop args "" ’ () +reserved−regs−sp l i t+)) ; +

reserved−regs−sp l i t+ i s the f i r s t r e g i s t e r t h a t isn ’ t reserved
724 ; ; (asm (car args−resu l t))
725 ; ; (new−e (l i s t ’ classname (g e t f e ’ classname) ’ static−environment (

append (cdr args−resu l t) static−environment−augmentation))))
726 ; ; (concat " ; ; " a nl
727 ; ; " as tore 255 ; s t o r e return address in v a r i a b l e 255" nl
728 ; ; asm ; the argsy s t u f f
729 ; ; (emit−progn body new−e t) ; in a lambda the progn body i s always

a t a i l y − w a i l y
730 ; ; " r e t 255" nl
731 ; ; " ; ; endlambda " nl)))
732
733
734
735 (provide ’ compile)

	Contents
	Background
	Definitions
	Prior Work
	Preliminary Issues
	A (very) brief introduction on Lisp and dynamic programming languages
	Why JVM?
	Tail-call optimization
	Scoping
	Bootstrapping

	Problem statement
	Test cases

	Methods
	General
	Overview of compilation

	Functions and function application
	Literals
	Constants
	Complex constants

	Tail-call optimization implementation strategies
	Handling self-tail-calls
	Method-local subroutine approach
	Trampolines

	Scoping
	Static Scope
	Lexical Scope and Closures
	Dynamic Scope

	Results
	How much of the language was implemented?
	The future?
	Benchmarks

	References
	Appendices
	Appendix A

