Steganography

The art of hiding a message in plain sight

Linus Enroth Hansson Amelia Andersson
Pliggvagen 47 Studentbacken 21
126 39 Hagersten 115 57 Stockholm
070-4309360 070-4827285
linuseh@kth.se ameliaa@kth.se

DD143X Degree Project in Computer Science
KTH CSC

Supervisor: Johan Boye

Abstract

Information is sent back and forth between millions of people
every hour, but you never know who might be listening. Mail-
clients use encoding to protect the privacy of their users, but is
it enough to ensure complete secrecy? We can never be
completely sure that the information we store, send or receive
hasn't been intercepted or altered.

This report will begin with a background of secret
correspondences throughout history, it will then focus on the
methods and implementations available today. Among the
methods we find Context-Free Mimicry, the steganographic
approach used to construct the implementation described in
the latter part of this report. A presentation of the user
experiment conducted to evaluate this implementation is also
found in this report.

Sammanfattning

Mangder av information skickas fram och tillbaka mellan
manniskor varje timma, men man vet aldrig vem som lyssnar.
Mejlklienter anvander sig av kryptering for att skydda sina
anvandares privatliv, men ar det tillrackligt for att garantera
ogenomtranglig sakerhet? Vi kan aldrig vara riktigt sdkra pa att
informationen vi lagrar, skickar eller tar emot inte har blivit
tillgangliga for utomstaende, avlyssnade eller andrade.

Denna rapport boérjar med att ge en bakgrund kring olika
historiska metoder for hemliga korrespondenser, for att sedan
ga vidare till metoder och implementationer som ar tillgangliga
idag. Bland dessa gar att finna Context-Free Mimicry, den
steganografiska metoden som anvandes till att konstruera den
implementation som var del av detta projekt.
Implementationen beskrivs i slutet av rapporten, tillsammans
med det utvarderande anvandarexperiment som utfoérdes.

ii

Statement of collaboration

During the scope of this project the authors of this essay have
divided the work between them in a fairly equal way.

A. Andersson was in charge of the construction of the grammar
and L. Hansson was in charge of the implementation. When it
comes to writing the report, the authors have had
responsibility over some chapters and a couple of chapters
have been written by both authors. During the whole writing
process, proofreading has been done by both the authors as
well as external people.

iii

Table of contents

1. BACKZIOUN.....cciiimssssnsssssssmsssssssssssssssssssssssss s ssssssssss s ssssssssssssssssssssasasassssnsnsns 1
0 4 U0 0T LT 0 o) o P 1
0 00 4 010} = PPN 1

1.2.1 CACSAT CIPRCT couoeverieriirissirissirisssisisssssssisisssesisssssasssssasssssssssssssssssssssassssssssssasssssssssssansess 1
1.2.2 VIGENETE CIPRET c..coorereririsirissirisssirississssisisssesisssssisssssssssssssesisssssssssssassssssssssassssssssssansess 2
1.2.3 RAII FENCE CIPRCT .c.overirveiriseirissiirississssisisssesisssesisssssssssssssesssssssssssssssssssssssssssssssssssansess 3
1.3 SEEGANOGTAPNY ..cvuercrirrirs s 3
1.4 Problem definition ... 4

2 Linguistic steganography ... 5

200 0 (=1 o 1o 1o PP 5
2.1.1 Lexical StEGANOGTAPRY ..covuvererierrsierssirissirissserisssesisssssssssisssessssssssssssssssssssssssssssssssanss 5
2.1.2 CONLEXE-fTEE MIMUCTY .oorvrvreiriseerisssirississsserisssesisssesisssssssssssssesssssssssssssassssssssssssssssssssanss 5
2.1.3 ONEOLOGICAL ..covoveseririirririssirisssirsssisssisssssisisssesisssssissssssssssssesssssssasssssssssssssssssssasssssanss 6

2.2 Current implementations ... s 7
2.2.1 Tyrannosaurus Lex (WINStEIN)curermierimissmsessmsesssssssssssssssssssesssssssssssssanss 7
2.2.2 MIMICTY (WAYNEL) ceurtrrireirissserisnsersssersssssssisisssesisssssisssssssssssssesssssssssssssassssssssssssssssssssssanss 8
2.2.3 NICETEXT (CRAPDMAN).ccovuirvrsirirserissserisssssssissssesisssesisssessssssssssesssssssssssssssssssssssansess 10

2.3 Discussion of Methods ... 10

3. IMplementation...... s ————————————— 11

4. User eXperiment. ... 14
0 (=4 4 T T P 14
L] L PP 15

LT D R 0L T) 16
5.1 Remarks on Implementation...... s 16
5.2 Remarks on User Experiment Method ... 16
5.3 Remarks 0N ReSULL ... sssssssssssssssses 17

6. REfEIeNCES. ...t s 18

AppendixX A, GFANMIMNAT ..o s ssssasass 19

Appendix B, Example from our implementation..........couunmsmnmnmmmsssesssessssssnans 21

Appendix C, List Of POEMS......ccconmnnmmmmsmnmsmsssssssssssssssssssssssssssssssssssssssas 22

iv

1. Background

1.1 Introduction

The concept of concealing written information isn't, as we shall see shortly, a new
one. Some methods that go back to ancient times are still used today. Despite this,
the idea is all but outdated. Privacy is a subject that is very much debated in today's
society, particularly in association with the technology that has been made available
over the past couple of years. The Internet has been shown to be a whole new world
in its own right and the boundaries of that world are constantly being redefined and
altered, making it hard for users to keep track of what an online service legally can
do and what it cannot. If a text or a picture is published on the Internet or stored
without reasonable protection it can easily be copied once, twice or even thousands
of times within a matter of seconds. Methods of protecting sensitive information is
therefor a very current subject and one that should be explored.

In hiding information, there are two approaches one can take. The first, and surely
more popular one, is called cryptology. The second approach is called
steganography, which is the approach this report will focus on and base an
implementation upon. The next part of this chapter will provide an introduction to
these two approaches to prepare the reader for the problem definition of the
project this report is based on.

1.2 Cryptology

In the early days of written communication, most people were illiterate, making
advanced ciphers relatively unnecessary. Listed below are three examples of ciphers
using two different techniques to encrypt a message. Two of them use substitution
and the last one uses transposition.

Common for all these are that the receiver has to know what keyword or method
was used to encrypt the message in order to be able to decrypt it. Also, all
ciphertexts are gibberish, if someone else intercepts the message he or she will
know that something has been done to the text. If the intention of the interceptor is
to steal information he or she would most likely try to crack the code right away.

1.2.1 Caesar cipher

One of the most widely spread encoding techniques is the Caesar cipher, which is a
kind of substitution cipher. When encrypting a message each plaintext letter is
replaced with another letter a fixed number of steps further down the alphabet. In
order to decrypt the message, one does exactly the same thing but in reverse,
namely replace the letter with the letter the same amount of steps up the
alphabet.[1]

A small example of a message encoded with a Caesar cipher of shift 3:

Plaintext: the quick brown fox jumps over the lazy dog
Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GR]

1.2.2 Vigenére cipher

A Vigenére cipher is an encoding method using a series of Caesar ciphers. To encrypt
a message you need a matrix which consists of the alphabet written 26 times in
different rows where each row is shifted one step from previous row, see image 1.
Along with this one must have a keyword which is repeated until it has the same
length as the message to encrypt, see the example below. To encrypt a message
using the Vigenére cipher one matches each keyword letter / message letter pair
with a specific cell in the matrix. The keyword letter specifies what row to look at
and the message letter specifies what column to look at. [3]

ABCDEFGHIJKLMNOPQRSTUVWXYZ
AIABCDEFGHIJKLMNOPQRSTUVWXYZ
BBCDEFGHIJKLMNOPQRSTUVWXYZA
CICDEFGHIJKLMNOPQRSTUVWXY ZAB
DDEFGHIJKLMNOPQRSTUVWXYZABC
E[EFGHIJKLMNOPQRSTUVWXYZABCD
FIFGHIJKLMNOPQRSTUVWXYZABCDE
GIGHIJKLMNOPQRSTUVWXYZABCDETF
HHEHIJKLMNOPQRSTUVWXYZABCDETFG
IIJKLMNOPQRSTUVWXYZABCDEFGH
JITKLMNOPQRSTUVWXYZABCDEFGHTI
K[KLMNOPQRSTUVWXYZABCDEFGHTI J
LILMNOPQRSTUVWXYZABCDEFGHTI JK
MMNOPQRSTUVWXYZABCDEFGHTI JKL
N[INOPQRSTUVWXYZABCDEFGHI JKLM
OOPQRSTUVWXYZABCDEFGHIJKLMN
PPQRSTUVWXYZABCDEFGHIJKLMNDO
QQRSTUVWXYZABCDEFGHIJKLMNOP
RRSTUVWXYZABCDEFGHIJKLMNOPAQ
SISTUVWXYZABCDEFGHIJKLMNOPGQR
TITUVWXYZABCDEFGHIJKLMNOPGQRS
UUVWXYZABCDEFGHIJKLMNOPQRST
VIVWXYZABCDEFGHIJKLMNOPQRSTU
WWXYZABCDEFGHIJKLMNOPQRSTTUYV
XIXYZABCDEFGHIJKLMNOPQRSTUVW
Y[YZABCDEFGHIJKLMNOPQRSTUVWX
Z|ZABCDEFGHIJKLMNOPQRSTUVWXY
Image 1: The Vigenére Matrix

The same example as above but encoded with Vigenére cipher using the keyword
“keyword”:

Plaintext: the quick brown fox jumps over the lazy dog

Keyword: key wordk eywor dke yword keyw ord keyw ord
Ciphertext: DLC MIZFU FPKKE IYB FIDSC STAF KKO PYVM URQ

1.2.3 Rail Fence Cipher

The Rail Fence Cipher is a kind of transposition cipher, where the ciphertext is a
permutation of the plaintext. In a transposition cipher the positions of the
characters (or groups of characters) are shifted according to a regular system, which
creates a permutation of the plaintext. [17]

In order to encrypt a message using the Rail Fence Cipher one has to decide how
many rows to use. The plaintext is then written downwards as many rows as
decided, and when the bottom is reached one simply starts from the top again. Now
the rearrangement of the characters are complete and the encoded message is read
from left to right as usual.

For instance, the plaintext from above, using three rows, can be encoded like this:

Plaintext: the quick brown fox jumps over the lazy dog

Rail Fence:

t..q..¢c. . r..n..x..m€w..o0..r..e..z..o.

Ciphertext: tgcrn xmore zohuk ofjpv tlyge ibwou sehad (ciphertext divided into
blocks of five to help avoid errors).

1.3 Steganography

In contrast to cryptography, steganography does not reveal its wish to be kept
secret from sender to receiver. While cryptography is solely concerned with
concealing the contents of a message, steganography is concerned with concealing
the existence of the message altogether.

One of the first known books in the field was Steganographiee by Johannes
Trithemius, written c.1499, but already by the 16th and 17th centuries there had
arisen a large literature on steganography. Gaspar Schott explained in his book
Schola Steganographica(1665) how to hide messages in music scores where each
note could correspond to a letter in the alphabet. This, in theory, could enable two
musicians to have a conversation with each other using nothing but their
instruments.

Another still widely used and simple method within the field of steganography is the
acrostic. An acrostic is a form of writing in which some recurring feature spells out a
message. The recurring feature could for example be the first letter of a paragraph
or the first syllable of the page. The writers Lewis Carroll and Edgar Allen Poe both
wrote poems that were acrostics.[5]

Elizabeth it is in vain you say

“Love not” — thou sayest it in so sweet a way:

In vain those words from thee or L. E. L.
Zantippe’s talents had enforced so well:

Ah! if that language from thy heart arise,
Breathe it less gently forth — and veil thine eyes.
Endymion, recollect, when Luna tried

To cure his love — was cured of all beside —

His folly — pride — and passion — for he died.

- An Acrostic by Edgar Allan Poe [11]
In the example above, the first letter in each row constitutes the word ELIZABETH.

An example of more modern steganographic methods is audio steganography.
When using steganography in audio files one can alter the binary sequence of the
audio file to conceal the message one wishes to send. Another method used today is
to conceal messages in digital images by altering the least significant bits in all color
components.[16]

1.4 Problem definition

The aim of this project is to complete a study of different methods of hiding secret
text in a cover text. The project will be divided into two parts. The first part includes
an introduction to the different approaches to lexical steganography. Here the
methods are described, compared to each other and discussed. Some current
implementations to lexical steganography will also be introduced.

The second part of the project will be based on an attempted implementation by the
authors. Our goal will be to create a cover text that does not raise suspicion if
intercepted by a human. A wuser test will be conducted to evaluate the
implementation, in different contexts and with different inputs. The user test will be
presented and discussed in this report along with a description of the
implementation.

2 Linguistic steganography

2.1 Methods

Acrostics, explained in section 1.3, is one example of hiding information in text. But,
due to its repeatability, it is just as easily detected and cracked as it is created. Using
the text's language — i.e., its choice of words, its sentence structure or its meaning
as a tool for hiding text is far more challenging in both directions. This method of
encrypting text is called linguistic steganography. One can approach this method in
three ways, each one explained below.

2.1.1 Lexical steganography

The lexical approach to a steganographic implementation focuses on avoiding
suspicion on the interpretation of each word in a text. This approach exploits
synonymy. Words in natural language are linked together by the lexical relation of
synonymy. The word nice can for example be replaced with fine, great, decent or
wonderful, without significantly changing the sentence; I live in a nice house.

In lexical steganography a set of words that can be used interchangeably is called a
synonymy set. These sets can be encoded in different ways. One way of encoding a
synonymy set is of course to translate the order of the word into a bit string. The
first word nice represents the string '01'. The second word fine represents the string
'10' and so on. Using this code one can transmit a secret message through altering
just a few words in a text. The substitution of words should be evenly distributed
throughout the text to lower the risk of suspicion.[4]

The main problem with working with synonyms is of course multiple meanings of
words. For example, too in the phrase I’m happy for you too does not have the same
meaning as in I’m too short to ride. In the first phrase, too could be a synonym for
also whereas replacing too with also in the second phrase would not work.

Another problem is the writer’s personal choice of words and style of the text, which
could vary greatly. If the steganogram is a formal letter, for example, the sudden
appearance of a familiar or slang word in the text would be considered suspicious.

2.1.2 Context-free mimicry

Context-free mimicry, on the other hand, wants to ensure that the interpretation of
a set of words does not raise suspicion, in the aspects of grammar and sentence
structure. This translates to an essentially syntactic approach. To get the syntax of a
sentence one can turn to a Context Free Grammar (CFG) as a model. CFG is a formal

grammar in which there are nonterminal symbols and terminal symbols. The
nonterminal symbols represent one of the terminal symbols. This relationship can
be illustrated as follows:

Vow
where V is a nonterminal symbol and w is either a set of terminal symbols,

nonterminal symbols, or empty. [6] To illustrate CFG further in the field of language
we have the following simple example:

S>A N Vv
A-a the
N = baby cat dog

V = is sleeping is eating is dying

As we can see, the string S is made up of three sets of words in this order: an article,
a noun and an action. Here the A denotes the article, N denotes the noun and V
denotes the verb. From this we can get several different combinations of sentences,
e.g. a cat is eating, the baby is dying.

One way to exploit this is to let every word the sender chooses for each of the steps
represent a part of a bitstring. In the above example a, baby and is sleeping would
be represented by zeros and the full sentence would be represented by the bit string
‘000'. If a sender and receiver decide on a model of sentence structure(s) all they
need to decode the text is the grammar and the text. [4]

2.1.3 Ontological

While context-free mimicry has no regard whatsoever for semantics, the ontological
approach is all about retaining the meaning of the text throughout the process, or
rather making sure each set of words are composed in such a way that their
interpretation does not raise suspicion. Instead of replacing single words this
technique replaces phrases with equivalent meaning. One can consider the
following sentences to have equivalent meanings:

» Isakis listening to music.
e The music is being listened to by Isak
e Isak lyssnar pa musik

As in the result of the mimicry example, the above sentences can be broken down
into different classes - there is an actor, an action and a noun. But in constructing
phrases with equal meanings one has to ask the following questions:

¢ What is the grammatical mood of the set of words? Are they an expression
of fact, desire, command, etc.?

¢ What constraints do we have in the aspect of transitivity? What relationship
do we have between the words? Is Isak just listening or is he listening to
something?

* What mood do we want to use? Active or passive?

Going through these questions we can make different choices of phrase structure
without affecting our intended meaning. The phrase Isak is listening to music can
very well through the use of a passive mood instead of an active mood be changed
into The music is being listened to by Isak, or, regarding the transitivity, be broken
down into two separate phrases: Isak is listening. The music is being listened to. [4]

2.2 Current implementations

There exist some implementations today working with each of these three
approaches. There is the Tyrannosaurus Lex implementation, which substitutes
synonyms in a similar way to the example given in section 2.1.1.

There are also implementations of mimicry systems, the most notable of these
created by Peter Wayner who has published a book on the subject. A sample of
these implementations can be found on the book's website [7]. The sample uses a
grammar mimicking spam.

2.2.1 Tyrannosaurus Lex (Winstein)

The Tyrannosaurus Lex system is an open-source synonym substitution system
designed by Keith Winstein. It relies on a synonym lexicon offering interchangeable
sets of words. When encoding, a word is looked up in the lexicon and if a set of
synonyms exists the set of words are interpreted as mixed radix digits. Consider the
following example, taken from [4]:

In this simple example, the lexicon contained the following synonym sets:
{bastioned(0), fortified(1)} {furthermore(0), moreover(1)} {elector(0), voter(1)} and
{iii(0), three(1)}, and used these to hide the bitstring (“1101”).

“‘Nisky E-Vote System to Expand”
Wired News (01,26/04); Zetter,
Kim |[...]

She promises that the warkplace
computers people use to vote on
SERVE will be with
firewalls and other intrusion coun-
termeasures, and adds that election
officials will recommend that home
users mstall antivirus software on
their PCsand run virus checss pricr
to clection day.

Rubin countars that antiviras soft-
ware cau only identily koown
viruses, and thus s ineffective
aganst naew e-voting malware;
furthermere'” | attacks cculd go
undetected because SERVE lacks
ver-fiability.

Rubin and the |threem other re-
searchers who furnished the report
werz part of a 10-member expert
panel enhisted by the Federal Voting
Assistance Program (FVAP) to as-
sess SERVE. Paquette reports that
of the six remaining FVAP panel
members, five recommended that
the SERVE trizl proceed, and one
made no comment. |...|

(a) original text

“Iisky E-Vote System to Expand”
Wired News (01/23/04); Zetter,
Kim ...

She promises that the workplace
compiters people use to vote on
SERVE will be with
firswalls and other intrusion coun-
termeasures, and adds that election
officizls will recommend that home
users nstall antivirus software on
their PCs and ~un virus checks prior
to clection day.

Rubin counters that antivirus soft-
ware can only Wdeolify koown
viruses, and thus is ineffsctive
against new e-voling maware;
|morex:>ver“: I attacks could go un-

detected hecausz SERVE lacks

elector O | verifiahiliov

Rubin and thz |threem| other re-

searchers who furnished the report
were part of a 10-member expert
panel enlistad by the Federal Votmg
Assistance Program (FVAP) to as-
sess SERVE. Paquette reports that
of the six remaining FVAP panel
members, five recommended that
the SERVE trial proceed, and cne
made nc comment. |...|

(b) steganozram

Image 2: To the left we have the original text, to the right we
have the covertext hiding the bitstring 1101 using synomynsets

2.2.2 Mimicry (Wayner)

Wayner’s system mimics the real structure of natural language. It relies on
probabilistic context-free grammar (PCFG), which is just like CFG (explained briefly in
section 2.1.2), only the structure of the sentence is based on probabilities. Let us
take a look at a more complex example than the one given in section 2.1.2, taken
from [4]. Consider the following production grammar:

S -> AB (0.25) 00
S->AC (0.25) 01
S->DC (0.25) 10
S->DB (0.25) 11

A -> Good Golly, (0.25) 00
A ->Whoa, (0.25) 01

A -> Wow, (0.25) 10

A ->Zounds, (0.25) 11

B ->loving E (0.5) 0

B -> a winter’s night E (0.25) 10
B -> friendship E (0.125) 110

B ->snuggling E (0.125) 111

C -> panthers F (0.25) 00

C -> pterodactyls F (0.25) 01
C -> Gila monsters F (0.25) 10
C->serpents F (0.25) 11

D ->Hmmm, (0.5) 0
D -> Well, (0.25) 10
D -> I'm not sure about that, but(0.25) 11

E -> is better than no hair at all.(0.25) 00

E ->is a word for kittens (0.25) 01

E -> is better than pickles for lunch.(0.25) 10
E -> shouldn’t be overestimated.(0.25) 11

F -> shouldn’t be left unattended with kittens (.25) 10
F ->aren’t such bad pets in the scheme of things (.5) 0
F -> are the meanest part of an end. (.25) 11

To encode the bitstring 11101011 using this grammar do the following:

1. Consider the four choices of production, the first two bits of the bitstring,
“11”, lead us directly to the fourth choice S -> DB.

2. We now have "101011" left with the instructions to expand D and B, starting
with D. The bits “10” leads us to D’s second choice - [“Well,”].

3. The bits left to encode are “1011”, and the phrase we have so far is “Well, ”
with the instruction to expand B. The “10” leads us to add [“a winter’s night”
+ E] to our phrase.

4. The phrase we now have is “Well, a winter’s night” with the bits “11” left to
encode and an instruction to expand E. The bits lead us to E’s fourth choice
[“shouldn’t be overestimated.”] which also terminates the sentence.

This results in the phrase “Well, a winter’s night shouldn’t be overestimated.”, which
could, in an irrelevant context, be considered ridiculous by humans but a computer
would find it hard to see anything suspicious about it. To fool humans one would
need very general, yet varied sentence structures.

2.2.3 NICETEXT (Chapman)

Chapman’s system NICETEXT is similar to Mimicry since it uses a purely symbolic
model of linguistic similarity. NICETEXT is also similar to Tyrannosaurus Lex since it
relies on interchangeability sets and that it does not rely on a given innocuous text.
One difference between Tyrannosaurus Lex and NICETEXT is that the
interchangeability sets have to have a cardinality which is a power of two in
NICETEXT.

NICETEXT combines these two techniques and creates, supposedly, innocuous text
using a style template originating from either a grammar or a sample text. Using the
grammar

S-->NP VP
NP -> Det N
NP ->N

VP ->V NP

where N is a list of nouns, V is a list of verbs and Det is a list of determiners, one can,
for instance, derive the sentence-model

Det NV Det N

as in “The cat chases the mouse”.

2.3 Discussion of methods

Considering our ambition to create an implementation with one of the three
approaches mentioned, we needed firstly to determine which of the three would
actually be feasible to implement well within the time given to complete this
project. The ontological approach seemed to us too complex to implement with a
satisfactory degree of functionality. One would have to make sure the
implementation preserves the meaning of each and every phrase when encoding,
meaning one would have to construct a grammar utilizing both synonyms and
grammatical moods. Relying on only synonyms, i.e. taking the lexical approach,
would be difficult enough. For the covertext to be convincing one would have to
have a large text to use for sparse encoding. At the same time one would have to
make sure all synonyms in each set would work in the contexts they would be
encoded into.

When constructing a smaller implementation, as we were obliged to in this case,
context-free mimicry is by far the easiest option. With a relatively small grammar,
one can create acceptable covertexts originating from plaintexts of different lengths.
One advantage with this method is that it is not dependent on an already existing
text, as in the lexical approach. The grammar gives all text necessary to create the
covertext.

10

3. Implementation

Although a decent implementation of the mimicry approach to linguistic
steganography is known to be effective in fooling computers, we wanted to create a
cover text that would be able to get past the scrutiny of the human eye as well.

As mentioned in the background of this report, different forms of poems have been
used throughout modern history to send secret messages. This makes sense as
poetry is a platform in which one can work and bend the rules of grammar and
common sense through the excuse of artistic freedom. We decided to recycle this
idea for our implementation and constructed the program which we in this report
will henceforth refer to as MimicVerse.

MimicVerse was constructed with the help of the Swedish poem “Asen” [8] written
by the Nobel prize winner Erik Axel Karlfeldt. “Asen” fits our idea of an
implementation well as almost each and every line could be separated into two
separated phrases that, at least in rhythm, were remarkably close to being
interchangeable with the others. From the poem, a grammar (see Appendix [A]) was
constructed that would enable MimicVerse to encode 10 bits (or two characters, see
further explanation below) for each line in the steganographic poem. The grammar
consists of several hashmaps, one for each list of words, where both the key and
value are strings. The key is equivalent to the binary sequence corresponding to the
value. When encrypting, MimicVerse divides the plaintext into pairs of characters
and translates each pair to one line of covertext.

To encode and decode the entire Swedish alphabet plus space (30 different
characters) we needed five bits for each character. 10 bits per line would thus allow
two characters to be encoded into every line. In order to convert a plaintext into a
binary string, we used a predefined function containing 30 different binary
sequences, all of length 5. With 5 binary digits, 32 possible unique combinations can
be used. We only needed 30 combinations to cover the Swedish alphabet plus
space. Table 1 shows the corresponding binary sequence for each character.

In order for MimicVerse to work, we need an even number of characters when the
encoding begins. Since that is not always the case, we used the last two
combinations, namely '11110' and '11111', to make sure that we always have an
even number of characters in the plaintext. In the case where the plaintext is of
uneven length, we append '11111" to the binary string, and where the plaintext is of
even length we append '11110 11111' to the binary string. With this addition, we
create either a complete row or half a row in the end of the covertext that we have
control over. We know how the encoded message will end and we can take that into
account when we decrypt the message again. In the case of an even number of
characters in the plaintext, we append the line
“min barndomsvan, dar skall hon férsvinna”

11

Character | Binary Character | Binary
Sequence Sequence
space 00000 o] 01111
a 00001 p 10000
b 00010 q 10001
C 00011 r 10010
d 00100 s 10011
e 00101 t 10100
f 00110 u 10101
g 00111 v 10110
h 01000 w 10111
i 01001 X 11000
j 01010 y 11001
k 01011 z 11010
I 01100 a 11011
m 01101 a 11100
n 01110 0 11101

Table 1: All characters with their corresponding binary sequence.

The encoding works as follows:

™~

Read a plaintext from a file.

Convert the text to a binary sequence using the method above.

If the plaintext was of uneven length, append '11111' to the binary sequence.
If the plaintext was of even length, append '1111011111' to the binary
sequence.

Encrypt 10 binary digits, equivalent to two characters, at a time using the
grammar from Appendix A.

Remove a trailing carriage return and save covertext to file.

The decryption works as follows:

Read a covertext from a file.

Go through list A from the grammar and check if the covertext starts with
any of the strings stored there. If not, do the same with list B from the
grammar.

When a match is found, remove that string from the covertext, add the
corresponding key to the binary sequence and continue to either list C/D or
list E/F depending on which list the match is found in.

Go through the list | and find the matching line ending, remove it from
covertext and add the corresponding key to the binary sequence.

If the covertext is not empty, go back to step 2.

Convert the binary sequence to characters using the method described
above.

12

For example the Swedish word KOTTBULLAR would result in 5 lines of
steganographic verse plus the last line that we append where each pair of letters in
KOTTBULLAR would result in a line.

13

4. User experiment

The experiment consisted of encrypting a message between 20-120 characters and
letting a user try to guess which of four texts presented to him or her was the
covertext to that message. The three texts used as comparisons were either original
Swedish poems or poems written in another languages translated into Swedish
using Google Translate. See Appendix C for a complete list of all poems used in the
experiment.

The users were chosen at random, and were of different age and background,
though all fluent in Swedish. We only permitted one test per user, as our grammar is
very specific and would most likely have been recognized if a user had seen it
before.

The hypothesis was that our implementation would create good poems for inputs of
length 30 or less and acceptable poems for input of lengths between 31 and 64.
With input of greater length the belief was that the implementation would create a
poem with too much repetitiveness to be accepted by the users.

4.1 Method

Firstly, an input string of restricted length was acquired from the user and encoded
using the MimicVerse. The resulting text was printed and shown to the user along
with three other texts, which were chosen alternatively with the following two
models in mind:

Model 1: All poems were original and at least one of the poems were
translated using Google Translate. The translation were made either to
Swedish from another language or from Swedish to English and then back to
Swedish.

Model 2: All three poems were unmodified Swedish poems.

All poems used as comparisons to the MimicVerse texts were not modified in any
way apart from elimination of all blank rows so as to make them compact and more
easily comparable to the MimicVerse. The poems were translated using Google
Translate and taken as they were without modification (except the removal of blank
rows) before being presented to the user. They were, however, chosen with care to
give our implementation a fair chance. Rhyming Swedish poems, for instance, were
avoided as they would most likely prove too big a challenge. We made sure that the
poems were translated properly, without containing too many obviously
untranslated words. The poems were also chosen according to length, as we wanted
to test the implementation with different input lengths we wanted to have a variety
of lengths among the comparison poems to choose from.

The users were instructed to locate the cover text and if they did not chose
MimicVerse's text on their first attempt, to continue with the other poems until they

14

found the right one. By doing this we wanted to see if there were any difference
between the two models regarding the amount of guesses the users needed before
finding the cover text. Our hypothesis was that the users would be less easily fooled
when comparing the cover text to original Swedish poems.

4.2 Result

The results of the user experiment are presented in the tables below. The tables
depict how many of the users chose the MimicVerse-poem (the “correct answer”) as
their first choice and how many chose one of the other poems for different lengths
of the input.

Result from Model 1, comparing the cover text with translated poems.

Number of | Chose MimicVerse | Chose other | Total
characters

20-30 0 3 3
31-64 1 1 2

> 64 1 1 2

Table 2: The results using Model 1

Result from Model 2, comparing the cover text with unmodified Swedish poems.

Number of | Chose MimicVerse | Chose other | Total
characters

20-30 1 3 4
31-64 1 1 2

> 64 0 2 2

Table 3: The results using Model 2
Total result.

Number of | Chose MimicVerse | Chose other | Total
characters

20-30 1 6 7
31-64 2 2 4

> 64 1 3 4

Table 4: The total result from the user study.

As we can see, the MimicVerse implementation did very well for small inputs. The
short inputs gave a good result, only 1 out of 7 users found our cover text on their
first attempt. The result from Model 2 with input greater than 64 characters, does
not comply with our hypothesis since neither of the two users found the cover text.
The users did, in fact, find the cover text on their third and fourth try respectively.

15

5. Discussion

5.1 Remarks on Implementation

The aim of MimicVerse implementation and the user experiment was to investigate
if context-free mimicry is an effective method for hiding information from humans.
The implementation is by no means optimized to its full potential. The grammar was
small and its size increased the risk of repetitiveness for large inputs during testing.
Presenting the covertext in the form of a poem, however, made the repetitiveness
more acceptable. During our research we did not come across any modern method
hiding information in mock poetry, and we felt it was an ideal way to try to adapt a
method so commonly used in the past to the modern age.

The grammar was, as mentioned, taken from an already existing poem that suited
our idea of an implementation. One could just as well, and perhaps with better end
results, create a grammar from scratch. Using an existing poem to form a context-
free grammar was easy and convenient but is by no means encouraged for future
implementations as it poses a high safety risk. The users could easily have found the
original poem through an ordinary search engine and jumped to the conclusion that
what they were reading was a covertext. The creation of MimicVerse and the user
experiment was only meant to explore the possibility of constructing a covertext
looking like a poem, it was not meant to be bullet-proof.

5.2 Remarks on User Experiment Method

We instructed all users to locate the covertext and if failing to chose our text on
their first attempt, to continue with the other poems until they found the right one.
By doing this we sought to reach a conclusion regarding a difference between
presenting the covertext among authentic Swedish texts versus translated texts.
From the results we could see no such difference. Our hypothesis was that the
covertext would be more easily identified among native Swedish texts. Perhaps the
results would have been different had we had a greater library of poems to present
to our users as comparison-texts. For our study we used nine Swedish poems and
nine translated poems.

One comment we received in more than half of the user tests was that the user had
only guessed which of the texts presented could be the covertext, as he or she didn't
know what to look for. Many users thought all poems were coherent, the rows
seemed to fit together. But when the user studied all poems more carefully they
could, sometimes, see a more regular pattern in our text compared to the others.
From this we conclude that the covertext in most cases blended in nicely with the
comparison-texts at first glance.

As a whole, we felt we constructed an acceptable method for our user experiment.
Although all the texts presented to the user in the experiment except the covertexts

16

were consciously chosen by us to make it hard for the user, they were all genuine
and can easily be found on the Internet. The translated poems were relevant to the
study as web-translators are so frequently used in today’s society. If one wanted to
know the meaning of a poem written in a language one didn't understand one
would use an online translator.

5.3 Remarks on Result

The results of the user experiment should be viewed as small indicators of
MimicVerse's suspicion-rate depending on the size of the input. The study was small
and is definitely not a reliable source for retrieving good statistics. A larger study,
involving a significantly larger library of poems and number of users, is needed for
this.

17

6. References

[1]

[2]
3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]
[16]
[17]

S. Singh. The Black Chamber. http://www.simonsingh.net/
The_Black_Chamber/caesar.html. Viewed 2012-03-07

http://en.wikipedia.org/wiki/Atbash. Viewed 2012-03-07

R. Morelli. http://www.cs.trincoll.edu/~crypto/ historical/vigenere.html, 2010-
04-26. Viewed 2012-03-03-07

R. Bergmair. Towards Linguistic Steganography: A Systematic Investigation of
Approaches, Systems and Issues. http://richard.bergmair.eu/pub/towlingsteg-
rep-inoff-b5.pdf. Downloaded 2012-03-07

F. Petitcolas, R. Anderson & M. Kuhn. Information Hiding — A Survey.
http://gray-world.net/it/papers/petitcolas99information.pdf. Downloaded
2012-03-07

http://en.wikipedia.org/wiki/Context-free_grammar, 2012-02-27. Viewed
2012-03-07

P. Wayner. Mimicry Applet. http://wayner.org/texts/mimic/, 1997-08-20.
Viewed 2012-03-07

http://www.diktkonst.se. Viewed 2012-04-02

http://www.sv.dikt.org. Viewed 2012-04-02
http://reumatiker.se/tidningar/nr603/030630.pdf. Viewed 2012-04-02
http://www.poemhunter.com. Viewed 2012-04-03

http://www.metrolyrics.com/el-dia-feliz-que-esta-llegando-lyrics-silvio-
rodriguez.html. Viewed 2012-04-03

http://www.short-love-poems.net/spanish-love-poems.html. Viewed 2012-04-
03

http://www.frmusique.ru/texts/g/gainsbourg_serge/gainsbourg.htm.
Viewed 2012-04-03

http://svea.elte.hu/skandin/digilib/froding_ett.pdf. Downloaded 2012-04-03
http://en.wikipedia.org/wiki/Steganography. Viewed 2012-04-09

S. Singh. The Black Chamber. http://www.simonsingh.net/
The_Black_Chamber/railfencecipher.html. Viewed 2012-04-04

18

Appendix A, Grammar

S - ACI 00
S—->ADIO1
S - BEI'10
S—-> BFI11

A = "knappt sporjs har liv, ” 000
A = "det dr maj, ” 001

A - ”jag hastar ej, ” 010

A = "den flacka hed, ” 011

A = "jag vandrar sjungande, ” 100
A - "for alla fangna kanslor ” 101
A - "6demark, ” 110

A - "jag alskar stigarna, ” 111

B - “den nakna, ” 000

B = “ror sig en kvinnlig skepnad, ” 001

B = ”dar nejden syns, ” 010

B = ”dar ljung och timjan blomma, ” 011
B - "en skara far gnager, ” 100

B = ”dar stigen stupar, ” 101

B = "min barndomsvéan, ” 110

B = "en ensam fur tronar, ” 111

C - ”italln en kraka gungar” 00
C - "dar luft och dager floda” 01
C - ”jag vandrar Over asen” 10
C = "mitt hjarta vantar” 11

D = "dromsignal i biasen” 00

D = ”"genom dalens vallmor” 01

D - "maktigt jubel mig betager” 10
D - "en ljusrod sol sig tecknar” 11

E = ”du har min karlek vunnit” 00
E - ”véan att skada” 01

E - ”jag vill ej henne hinna” 10

E = ”den starke sangarn” 11

F = ”"som en hatt med breda skyggen” 00
F = "i mager mylla” 01

F = ”har bland dessa hojder” 10

F = ”dar skall hon forsvinna” 11

19

I > ”.\nJag ser, ” 000
I > ”.\n” 001

| = ”I\n” 010

| > ”:\n” 011

I = ”\n” 100

| > ”\n” 101

| = "\nSe! ” 110

I > ”"\nO, ” 111

20

Appendix B, Example from our implementation

Plaintext: The quick brown fox jumps over the lazy dog

Covertext:

En skara far gnager, van att skada.

Jag ser, for alla fangna kanslor i talln en kraka gungar.

Jag ser, ror sig en kvinnlig skepnad, jag vill ej henne hinna,
det ar maj, dromsignal i bidsen;

den flacka hed, dromsignal i bidsen.

Jag ser, jag hastar ej, jag vandrar 6ver asen!

Jag alskar stigarna, maktigt jubel mig betager

O, 6demark, dromsignal i bidsen.

Jag ser, 6demark, dar luft och dager floda

O, den nakna, som en hatt med breda skyggen.

Jag ser, jag hastar ej, maktigt jubel mig betager,

for alla fangna kanslor maktigt jubel mig betager.

Jag ser, dar ljung och timjan blomma, du har min karlek vunnit.
Jag ser, jag alskar stigarna, maktigt jubel mig betager

Se! for alla fangna kanslor jag vandrar 6ver asen!

Knappt sporjs har liv, jag vandrar 6ver asen

knappt sporjs har liv, dromsignal i bidsen,

knappt sporjs har liv, dar luft och dager floda

det ar maj, mitt hjarta vantar!

Ror sig en kvinnlig skepnad, som en hatt med breda skyggen.
Jag ser, jag vandrar sjungande, dar luft och dager floda

O, jag alskar stigarna, dar luft och dager floda

O, knappt sporjs har liv, mitt hjarta vantar

21

Appendix C, List of poems

Swedish poems
* Ett Gammalt Bergtroll, Gutav Fréding [15]
* Jagad [8]
e Kanske blir det en dikt anda, Géran Hansson [9]
* Nagonstans, Inga Juhlin [10]
* Olles forbund med makterna, Dan Andersson [8]
* Paris (hon som log och han som dog), Tomas Brink [8]
* Runt September, Géran Hansson [9]
* Var, Gustav Froding [8]

Translated poems
* AValentine, Lewis Carroll [11]
* Comme un boomerang, Serge Gainsbourg [14]
* Eldia qué esta llegando, Silvio Rodriguez [12]
* Jesuis venu te dire que je m'en vais, Serge Gainsbourg [14]
* Ladulce boca[13]
* LEDA, Rubén Dario [13]
* The sick rose, William blake [11]
* Fit the third (from Hunting of the Snark), Lewis Carroll [11]

22

