
Kungliga Tekniska Högskolan
CSC
DD143X – Bachelor essay in computer science
Group examiner: Alexander Baltatzis

F# and Go compared to Java
With code implementations, benchmarking

 tests and a survey study

Marcus Åberg Johan Lindeberg
0707 32 85 58 0736 70 18 78
Attundavägen 21a Ulvsbergsvägen 8a
168 58 Bromma 146 45 Stockholm
891028-0158 880112-0315
maraber@kth.se jlindebe@kth.se

maraber@kth.se
mailto:jlindebe@kth.se

2012-04-12

Marcus Åberg, Johan Lindeberg 1

Abstract
This report follows the Bachelor exam project followed through by two
Computer Science in Engineering at the Royal Institute of Technology.

The report presents the result from a study where a version of the breadth-
first search algorithm was implemented and benchmarked in the two

programming languages F# and Go. In addition to that the results from an
online survey was will be presented where other students studying
Computer Science in Engineering at other Universities in Sweden

answered questions regarding F# and Go.

2012-04-12

Marcus Åberg, Johan Lindeberg 2

F# and Go compared to Java
Bachelor exam report by Marcus Åberg and Johan Lindeberg

Table of Contents
F# and Go compared to Java ... 2

1 Introduction ... 4

2 Purpose .. 4

3 Background... 4

3.1 The Java programming language .. 4

3.2 The Go programming language ... 5

3.2.1 General information .. 5

3.2.1 The Go syntax ... 6

3.3 The F# programming language .. 8

3.3.1 The F# syntax .. 8

3.4 Code readability ..10

3.5 Benchmarking ...10

4 Method ...11

4.1 Code implementation ... 11

4.2 The benchmarking process .. 11

4.3 The survey ... 12

5 Results ...12

5.1 Implemented code ... 12

5.2 Benchmark results ... 12

5.3 Survey results ... 14

6 Discussion ...17

6.1 Survey .. 17

6.2 BFS... 18

7 Conclusion ...18

7.1 F# .. 18

7.2 Go ... 18

8 Bibliography ...19

8.1 Source reference ..19

Appendix 1 ..20

1.1 Implemented code in F#.. 20

1.2 Implemented code in Go ... 23

2012-04-12

Marcus Åberg, Johan Lindeberg 3

1.3 Implemented code in Java .. 26

1.4 The survey form ... 29

1.5 Master of Science in Engineering programs .. 43

2012-04-12

Marcus Åberg, Johan Lindeberg 4

1 Introduction

This report will handle a study of the two programming languages F# and Go. The reason
these languages were chosen is their potential to become strong competitors of today’s most
popular way of programming.

F# was created by Microsoft as an improvement of the old programming language ML. By
implementing the language into the Visual Studio environment it was given a world of
possibilities, with resources such as a big library of predefined functions, a debugger and a
code editor. As for Go which is a very new language (version 1 was recently released (March
28, 20121)) has not yet been given time to establish itself in the programming world. Though
as for Google being one of the largest companies in the world and the creators of Go, one
gets the notion that Go could become a very successful programming language if Google
puts the effort into it.

After giving relevant background information about the two programming languages, a well-
known algorithm that is called breadth-first search (BFS) will be implemented in the
languages. In addition, the BFS will be implemented in Java, which will be used as
background for the comparison that will be made between these languages.

2 Purpose

The main goals with this project are to find out about the differences and possible selling
points of the F# and Go programming languages. This includes code readability, how hard it
would be to learn these languages with previous knowledge of Java as well as some small-
scale benchmarking. Java has been chosen since most of the Computer Science and
Engineering (Civilingenjör i Datateknik) programs in Sweden include this language as a part
of their course plan2.

3 Background

This chapter informs the reader about the three different languages. Only a brief description
will be given of Java, as the reader is presumed to have some previous knowledge of this
language. In the Go and F# topics important syntax differences will be explained, and
examples provided to give a better overview of these languages.

3.1 The Java programming language

Java is an object-oriented programming language which was released in 1995 by Sun
Microsystems. It promised a “Write once, run anywhere”3 policy, with the intent to let the

1
 Gerrand, Andrew. Go version 1 released. 2012-03-28. http://blog.golang.org/2012/03/go-version-1-is-

released.html (Accessed 2012-04-05)
2
 Appendix 1.3

3
 Computer Weekly. Write once, run anywhere? May 2002. http://www.computerweekly.com/feature/Write-

once-run-anywhere (Accessed 2012-04-01)

http://blog.golang.org/2012/03/go-version-1-is-released.html
http://blog.golang.org/2012/03/go-version-1-is-released.html
http://www.computerweekly.com/feature/Write-once-run-anywhere
http://www.computerweekly.com/feature/Write-once-run-anywhere

2012-04-12

Marcus Åberg, Johan Lindeberg 5

same code run over a variety of different platforms. This is achieved through the Java Virtual
Machine (JVM), a program which runs between the Java program and the Operating System.
JVM interprets the Java code to call the appropriate current Operating System commands.

Java quickly gained popularity, especially as web browsers incorporated the ability to run
Java applets within web pages. Java has since then been one of the most popular
programming languages, as seen in the below graph (Java in green).

Figure 3.14: TIOBE Programming community Index. Lists the popularity of different
programming languages according to their definition5.

3.2 The Go programming language

3.2.1 General information

Go is an open source, general-purpose, compiled and concurrent programming language
developed mainly by Google employees6. The development of the language started in

4
 Paul Jensen. TIOBE Programming Community index for April 2012. 2012-04-08.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (Accessed 2012-04-09)
5
 Paul Jensen. TIOBE Programming Community Index Definition. 2012-04-08.

http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm (Accessed 2012-04-09)
6
 Golang.org. The Go Programming Language Specification. 2012-03-17. http://golang.org/ref/spec (Accessed

2012-04-01)

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm
http://golang.org/ref/spec

2012-04-12

Marcus Åberg, Johan Lindeberg 6

September 2007 by Rob Pike, Robert Griesemer and Ken Thompson. Since it’s an open
source project a lot of people have contributed over the years - with code, documentations
and ideas. In November 2009 the language was officially announced, and implementations
made available for Linux, Mac OS X and Windows (although the Windows implementation
had not yet been optimized). As of March 28, 2012 Go version 1 (or Go 1 for short) was
released, the first version of Go available in supported binary distributions across multiple
platforms7. With this release a set of core libraries were defined to provide a stable
foundation for creating reliable programs.

Go is object-oriented, as you can declare structs and make methods for these. Inheritance
however is not supported, so there is no type hierarchy. Actually, there are no classes or
subclasses at all8, and one could argue this is a big part of object-oriented programming.

Go is intended for program structure, not maximum performance. “And finally, the emphasis
in Go is on concurrent programming rather than parallel programming” Russ Cox states9. By
this Cox means that Go is focused on structuring your program in a way so that it can cope
with having to do many things at once, but still let you write a simple, well-structured
program.

3.2.1 The Go syntax

3.2.1.1 Types, variable declarations and interfaces

Types in Go are often inferred, not declared. Inside a Go function you can omit the type
declaration when initializing a variable, and Go will automatically pull the type off of the
initializer. This goes in line with the way interfaces are used in Go. Objects in Go satisfies an
interface just by implementing the methods that the interface defines. Explicitly declaring that
the object is intended to satisfy an interface is not needed.

A regular variable declaration creates a variable and binds an identifier to the variable, as in
Java. If no value is given to the variable during declaration it is initialized to its zero value

var i int

var i int = 0

Both these lines of code initialize i as an int with the value zero.

After

type T struct { i int; f float64; next *T }

t := new(T)

The following holds:

7
 Gerrand, Andrew. Go version 1 released. 2012-03-28. http://blog.golang.org/2012/03/go-version-1-is-

released.html (Accessed 2012-04-05)
8
 Pike, Rob and Cox, Russ. Google I/O 2010 – Go programming (Video). 2010-05-19.

http://www.google.com/events/io/2010/sessions/go-programming.html (Accessed 2012-04-02)
9
 Pike, Rob and Cox, Russ. Google I/O 2010 – Go programming (Video). 2010-05-19.

http://www.google.com/events/io/2010/sessions/go-programming.html (Accessed 2012-04-02)

http://blog.golang.org/2012/03/go-version-1-is-released.html
http://blog.golang.org/2012/03/go-version-1-is-released.html
http://blog.golang.org/2012/03/go-version-1-is-released.html
http://www.google.com/events/io/2010/sessions/go-programming.html
http://www.google.com/events/io/2010/sessions/go-programming.html

2012-04-12

Marcus Åberg, Johan Lindeberg 7

t.i == 0

t.f == 0.0
t.next == nil

As you can see, all the variables in t are initialized to their respective zero-values.

Go also introduces “Short variable declarations”, which may only appear inside functions.
Unlike regular variable declarations, this type of declaration requires a value to be specified.
The variable is initialized to the type of the assigned value.

i := 0
f := func() int { return 7 }

aString := “hello”

var i int = 0, var f int = 7, var aString string = “hello”

An interface type specifies a set of methods. Any type T which implements these methods
are said to implement the interface. As stated earlier, no explicit declaration of this is needed.

type Lock interface {
Lock()
Unlock()

}

//The following two lines are method declarations

//which will be explained in 3.2.1.2

func (p T) Lock() { … }

func (p T) Unlock() { … }

With these few lines of code the type T will implement the interface Lock, since T have the
methods Lock() and Unlock() defined.

3.2.1.2 Functions and methods

A function declaration binds an identifier (the function name) to a function. First comes the
func keyword, followed by the name of the function and input variables within brackets. After
this the return type is stated, followed by the function body within curly brackets. A function
may omit the body, this means that the function has been implemented externally, such as
an assembly routine.

func nameOfFunction(variable1 int, variable2 int) int {

 return variable1+variable2
}

func assemblyRoutine(x int) // body omitted, implemented externally

nameOfFunction takes two int variables, variable1 and variable 2 and returns an int.
assemblyRoutine has no curly brackets, which is a sign that the function has been
implemented externally

A method in Go is a function with a receiver. The reciever must be of type T or *T, where T is
a type name.

2012-04-12

Marcus Åberg, Johan Lindeberg 8

func (x *T) addOne() {

 x.value += 1;

}

This shows how a method is created. x is the reciever, and has the type *T.

If we now create a struct of type T with a value variable the addOne() function declared
above can easily be called using the selector operation, as seen below.

type T struct {

 value int
}

func (x *T) addOne() {

 x.value += 1;

}

var z T //declares the variable z of type T. z.value is initialized to 0, as

no //value is given
z.addOne() //calls the method addOne, which increases z.value by one

3.3 The F# programming language

3.3.1 General information
F# is a hybridized programming language, crossbred from the best types in the programming
world, object oriented and functional programming, implemented into the .NET environment.
The language originates from the functional programming language ML10, which influenced
several other programming languages, such as Standard ML, Haskell, C++, Caml and
several others. As F# is an enhanced dialect of ML, it enables a user to copy ML written code
straight into F#, and it will compile and run without any problems. Though that feature may
only work one way, as many modern F# programmers uses functions from the .NET library
that is not implemented in ML. Also, the implementation of F# into Visual Studio’s .NET
framework allows F# to function freely with the other languages implemented into Visual
Studio such as C/C++, C# and Visual Basic11. The implementation also allows F# developers
to access a very large library and set of tools provided when using Visual Studio, which is
great as the library contains a huge amount of data structures and functions.

3.3.1 The F# syntax

3.3.1.1 White space based syntax

F# has a white space based syntax. It means that its syntax is based on new line,
indentations and spaces. Compared to Java, where curly braces are required for the code
within the body of each new function, code within an F# function that is limited to one row is

10

 The SML/NJ Fellowship. Standard ML of New Jersey. 2004. http://smlnj.sourceforge.net/ (Accessed 2012-03-
16)
11

 Microsoft Research. F# at Microsoft Research. Date not available. http://research.microsoft.com/en-
us/um/cambridge/projects/fsharp/ (Accessed 2012-03-16)

http://smlnj.sourceforge.net/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

2012-04-12

Marcus Åberg, Johan Lindeberg 9

simply places on the right side of the equal sign. If the code within the body of the function is
longer than one row, or for a more readable code a new line and an indentation is equal as
how to define the body of a function. Another case is when the function has several
commands of code to execute. Each command in the body has to be put on a new row or
separated with a comma as the compiler interprets each line of code until it reaches a
comma within a body as an execution command. See the examples following in Code
example 3.3.1.1.1 and Code example 3.3.1.1.2.

Code example 3.3.1.1.1
 Allowed: Not allowed(as there is no comma to

 separate the commands:

let executeThisAndThat ()= let executeThisAndThat() =

 executeThis() executeThis() executeThat()

executeThat()

Code example 3.3.1.1.2

A function with multiple bodies expressed with if clauses:

let checkIfTeenager x =

if x >= 13

then if x <= 19

then true

3.3.1.2 Type inference

A few other things that is interesting to point out is the type inference12 shown in Code
example 3.3.1.1.1 and how it affects the syntax. One does not have to declare of what type a
variable is unless the compiler cannot decide of which type the variable derives from. This
also means that the programmer does not have to declare a return type as the compiler
recognizes a return clause and its return type. In Code example 3.3.1.1.2 the type of input
parameter “x” is not declared but the compiler assumes it is a variable of type integer as a
boolean comparison is made between x and an integer.

3.3.1.3 Loops and boolean expressions

Another example shown in Code example 3.3.1.3.1 is the omitted parenthesis wrapping the
boolean expression. F# does not use parenthesis around boolean expressions and neither
around the for-loops clauses.

Code example 3.3.1.3.1

for..to: for..downto:

for i = 1 to 10 for i = 10 downto 1

do System.Console.Write(i) do System.Console.Write(i)

The syntax of the for-loops clauses is different from other languages loops. Except for F#’s

equality of the “for each”-loop, F# tells the user to define an interval rather than a boolean

12

 Microsoft Developer Network. Type Inference (F#). Date not available. http://msdn.microsoft.com/en-
us/library/dd233180.aspx (Accessed 2012-03-18)

http://msdn.microsoft.com/en-us/library/dd233180.aspx
http://msdn.microsoft.com/en-us/library/dd233180.aspx

2012-04-12

Marcus Åberg, Johan Lindeberg 10

expression to calculate the amount of loops to execute13. This is shown in the two loop

examples in Code example 3.3.1.3.1

3.3.1.4 Lambda expressions

Lambda expressions are powerful operations mainly used on lists and collections. They can

be used as substitutes for functions, saving time since lambda expressions dissolves the

need for declaring functions as they can be used anywhere fit. In Code example 3.3.1.4.1 an

example is shown of how the lambda expression can be used for a more efficient way of

coding.

Code example 3.3.1.4.1

Without lambda expression:

let square x = x*x

let squares = List.map square [1..10]

Using lambda expression:

let squares = List.map (fun x -> x*x) [1..10]

3.4 Code readability

The expression “code readability” will be used often when discussing the results of the
survey. When referring to the expression in this report, it will simply be a question of “is one
able to read and interpret the basics of the code?”. To understand the intention of code
segments such as function parameters and return values, variables and their types, and
classes with their properties. These qualities can be hard to comprehend for someone who
has not studied or used the language previously. The reader would then have to guess the
intuitive intention of the code based on his or hers former programming experiences in an
attempt to establish code readability.

3.5 Benchmarking

There are several ways of conducting a benchmark. In this project the benchmark process
will focus on taking time. How the time taking process works is that a snapshot of the system
clock, referred to as clock 1, is taken when the benchmarking begins. Then another snapshot
is taken when the benchmarking ends, referred to as clock 2. The time taken is then the
result of clock 2 - clock 1, delivered in nano seconds.

Taking time when programming is very common, and in most languages there is already a
defined class that can access the system, making it very simple to measure time when
executing code.

13

 Microsoft Developer Network. Loops: for…in Expression. Date not available. http://msdn.microsoft.com/en-
us/library/dd233227.aspx (Accessed 2012-03-18)

http://msdn.microsoft.com/en-us/library/dd233227.aspx
http://msdn.microsoft.com/en-us/library/dd233227.aspx

2012-04-12

Marcus Åberg, Johan Lindeberg 11

4 Method

4.1 Code implementation

The code writing process followed the same pattern in all of the languages. First off, a small
algorithm was implemented to make some values for the nodes in our graph. This algorithm
will be referred to as “Make list” in the future.

After this a way to represent the nodes was required. In Java and F# this took the form of a
class, while in Go (which does not support classes) it was represented as a struct.

To create the graph on which the BFS later was performed on, a “Make graph” function was
implemented. “Make graph” takes values computed in the “Make list” function to create a
graph (a list of node elements) for the BFS to run on.

The BFS itself was implemented according to a common BFS pseudo code14. This
implementation of BFS uses a queue structure for unvisited nodes, and as Go had no
package routine for a Queue structure, an open source Go implementation of Queue was
used15.

4.2 The benchmarking process

When the group had implemented the algorithms separately into the different languages a
stopwatch benchmarking was executed. The stopwatch benchmarking process was
conducted by using a number of implementations of the stopwatch class found in the
languages libraries. Each stopwatch was programmed to time a specified algorithm in a
series of executions. This process was performed by creating a loop for each algorithm,
calling it a specified number of times. The result was then divided by the value used in the
loops in order to establish an average execution time for each call to the algorithm. In this
study the value 10.000 were used to define the number of times to loop.

The study was conducted on two separated computers whose technical details are found in
Figure 4.1, whereas the results of the benchmarking process are found in 5.2 Benchmark
results.

Computer CPU CPU Bus speed DRAM Frequency

Computer 1
Intel i7 950 @

3,8GHz
200 MHz

6Gb DDR3 RAM @
800Mhz

Computer 2
AMD Phenom II

Quad core 940 @
3,0GHz

200 Mhz
6Gb DDR2 RAM @

333Mhz

Figure 4.1: the technical details of the computers benchmarked on.

14

 Not available. Wikipedia. 2012-04-12. http://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
(Accessed 2012-04-12)
15

 Not available. Rosettacode. 2012-02-08. http://rosettacode.org/wiki/Queue/Definition#Go (Accessed 2012-
04-12)

http://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
http://rosettacode.org/wiki/Queue/Definition#Go

2012-04-12

Marcus Åberg, Johan Lindeberg 12

4.3 The survey

From the experience gained when implementing the BFS in F# and Go a number of
questions regarding syntax readability was decided upon. These questions were put into a
multiple choice survey and sent out to the Computer Science departments of all the major
universities in Sweden conducting Master of Science in Engineering programs. For each
question a number of answers were given to choose from, were only one answer was
correct.

A survey taker has to specify which University he or she is currently studying at, what year
they are registered in, if they have had any previous experience with functional programming
and if they have had any previous experience with Go or F#. Except from this information,
the survey is totally anonymous. It was constructed using a survey tool which is offered when
using Google Documents online and is found in Appendix section 1.5 Master of Science in
Engineering programs.

5 Results

5.1 Implemented code
All code implemented in F# is found in the Appendix at section 1.1 Implemented code in F#,
while all code implemented in Go is found in the Appendix at section 1.2 Implemented code
in Go and all code implemented in Java is found in the Appendix at section 1.3 Implemented
code in Java

5.2 Benchmark results

Table 5.2.1: Computer 1 test results

Computer 1, time
in ms

Make list Create graph Run BFS Everything

F# 28,87 41,86 1,50 72,23

Go 0,05 0,179 0,753 0,982

Java 0,006 0,144 0,175 0,325

2012-04-12

Marcus Åberg, Johan Lindeberg 13

Chart 5.2.1: Computer 1 test results

Computer 2, tim
e in ms

Make list Create graph Run BFS Everything

F# 54,57918572 76,56771481 4,17422756 135,32212809

Go 0,038 0,266 0,852 1,156

Java 0,021 0,551 0,806 1,378

Table 5.2.2: Computer 2 test results

Chart 5.2.1: Computer 2 test results

0

10

20

30

40

50

60

70

80

Make list Create graph Run BFS Everything

F#

Go

Java

0

20

40

60

80

100

120

140

Make list Create graph Run BFS Everything

F#

Go

Java

2012-04-12

Marcus Åberg, Johan Lindeberg 14

5.3 Survey results

F# Right answer

[1..10] 61

[x*x]-lista 56

F# map 38

Node, mutable 42

Change Nodes value to 1 9

Array.map(x, y) 49

Match, head-tail 30

List.map List.sum 36

Table 5.3.1: results from F# questions.

Chart 5.3.1: results from F# questions.

Go Right answer

:= operator 43

Functions, parameters 47

Method 38

Structs 28

Array, functions 43

Go map function 51

:=, pointer, value 36

Table 5.3.2: results from Go questions.

0

10

20

30

40

50

60

70

Right answer

[1..10]

[x*x]-lista

F# map

Node, mutable

Change Nodes value to 1

Array.map(x, y)

Match, head-tail

List.map List.sum

2012-04-12

Marcus Åberg, Johan Lindeberg 15

Chart 5.3.1: results from Go questions.

Picture 5.3.1: previous experiences

0

10

20

30

40

50

60

Right answer

:= operator

Functions, parameters

Method

Structs

Array, functions

Go map function

:=, pointer, value

2012-04-12

Marcus Åberg, Johan Lindeberg 16

Picture 5.3.2: able to read F# and Go code in the future?

2012-04-12

Marcus Åberg, Johan Lindeberg 17

Picture 5.3.3: how hard would it be to learn F# and Go?

6 Discussion

6.1 Survey

The code examples for the questions in the survey was taken from various places such as
from our BFS implementations and tutorials provided by Microsoft and Google for the
different languages. As is, the questions may be of varying complexity - although an attempt
was made trying to keep them at the same level. For this reason the results gathered from
the survey can only be acknowledged as a general pointer to how easily F# and Go code is
to read, and not an absolute truth. However, the survey participants were also asked if they
think they would be able to read more code in F# and Go, and how hard they think it would
be for them to learn the languages after taking the survey. This is a good starting point in the
attempt to try and establish how complex it actually is to read and write code in these two
languages.

No one in the survey had any previous knowledge of F#, yet, 25% of the participants stated
that they think they would be able to read more code written in F#. On the other hand only
10% stated the same about Go where actually two answered that they had previous
knowledge of Go.

The overall result of the “How hard would it be for you to learn F#” question was quite non-
giving. As much as 43% stayed neutral to the question which suggests that most participants
grasped at least the basics of the syntax as they did not answer “no” or “probably not”. Same

2012-04-12

Marcus Åberg, Johan Lindeberg 18

thing goes for Go where 39% stated that they were neutral to the question, although a much
higher per cent thought it would probably be easy to learn Go rather than F#.

The only part in the Go-section of the survey where more participants stated the wrong
answer rather than the right was regarding structs and inferred type declarations. This is a
very distinct part of the Go language, and was an easy task for us to learn.

6.2 BFS

The short amount of time for this project did not let us fully learn and comprehend the way of
programming in the new languages. Because of this, the implementations of the BFS in F#
and Go are most likely not optimal, while the implementation in Java has a higher chance to
be so. Especially F# that has a very different approach to programming than what Java
students are used to and this is probably the main reason why the F# implementation ran
slower than in Java and Go. Since Java has been around for over a decade and gone
through a lot of work, the compiler probably optimizes even poorly written code quite well.
Even though F# and Go has companies such as Microsoft and Google working on them, they
are still relatively new languages and therefore have not yet had the chance to evolve in the
same matter as Java.

7 Conclusion

As both F# and Go are backed up by two of the leading software companies in today's
industry, they certainly have a possibility to become competitors of today's big programming
languages.

Most participants gave the right answer for the code examples given in the survey and both
languages seems quite understandable for students currently studying Computer Science
and Engineering.

7.1 F#

As we state in the discussion, the poor performance result of the F# benchmark is probably
due to our inexperience with functional programming. However, this shows that F# is quite
hard to learn with mostly a background of Java programming. Although it might be hard to
learn, reading the code seems quite easy as stated earlier. Only 21% of the participants
stated that they would probably not, or would not, be able to read more code written in F#.
Most of the participants in the survey had no opinion about how hard the language would be
to learn.

7.2 Go

Go as a language is more closely related to our previous programming experience, and

therefore writing the BFS was a much easier task in Go compared to F#. This also shows in

the results of the benchmarking, as Go and Java performed quite equally. The results of the

survey tends towards Go being “Probably easy” to learn and overall, the participants stated

mostly the right answers to the questions given. Our opinion falls the same way, and Go

code is quite enjoyable to read.

2012-04-12

Marcus Åberg, Johan Lindeberg 19

8 Bibliography

8.1 Source reference

1. Gerrand, Andrew. Go version 1 released. 2012-03-28.

http://blog.golang.org/2012/03/go-version-1-is-released.html (Accessed 2012-04-05)
2. Appendix REGERGREUGERUGWEUFUUQWE
3. Computer Weekly. Write once, run anywhere? May 2002.

http://www.computerweekly.com/feature/Write-once-run-anywhere (Accessed 2012-
04-01)

4. Paul Jensen. TIOBE Programming Community index for April 2012. 2012-04-08.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (Accessed 2012-04-
09)

5. Tiobe Software. TIOBE Programming Community Index Definition. Date not available.
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm (Accessed
2012-04-09)

6. Golang.org. The Go Programming Language Specification. 2012-03-17.
http://golang.org/ref/spec (Accessed 2012-04-01)

7. Gerrand, Andrew. Go version 1 released. 2012-03-28.
http://blog.golang.org/2012/03/go-version-1-is-released.html (Accessed 2012-04-05)

8. Pike, Rob and Cox, Russ. Google I/O 2010 – Go programming (Video). 2010-05-19.
http://www.google.com/events/io/2010/sessions/go-programming.html (Accessed
2012-04-02)

9. Pike, Rob and Cox, Russ. Google I/O 2010 – Go programming (Video). 2010-05-19.
http://www.google.com/events/io/2010/sessions/go-programming.html (Accessed
2012-04-02)

10. The SML/NJ Fellowship. Standard ML of New Jersey. 2004.
http://smlnj.sourceforge.net/ (Accessed 2012-03-16)

11. Microsoft Research. F# at Microsoft Research. Date not available.
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/ (Accessed 2012-
03-16)

12. Microsoft Developer Network. Type Inference (F#). Date not available.
http://msdn.microsoft.com/en-us/library/dd233180.aspx (Accessed 2012-03-18)

13. Microsoft Developer Network. Loops: for…in Expression. Date not available.
http://msdn.microsoft.com/en-us/library/dd233227.aspx (Accessed 2012-03-18)

14. Not available. Wikipedia. 2012-04-12. http://en.wikipedia.org/wiki/Breadth-
first_search#Pseudocode (Accessed 2012-04-12)

15. Not available. Rosettacode. 2012-02-08.
http://rosettacode.org/wiki/Queue/Definition#Go (Accessed 2012-04-12)

http://blog.golang.org/2012/03/go-version-1-is-released.html
http://www.computerweekly.com/feature/Write-once-run-anywhere
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm
http://golang.org/ref/spec
http://blog.golang.org/2012/03/go-version-1-is-released.html
http://www.google.com/events/io/2010/sessions/go-programming.html
http://www.google.com/events/io/2010/sessions/go-programming.html
http://smlnj.sourceforge.net/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://msdn.microsoft.com/en-us/library/dd233180.aspx
http://msdn.microsoft.com/en-us/library/dd233227.aspx
http://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
http://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
http://rosettacode.org/wiki/Queue/Definition#Go

2012-04-12

Marcus Åberg, Johan Lindeberg 20

Appendix 1

1.1 Implemented code in F#

module VerticeClass

open System;

type Vertice (value: int, adjVerticePointers:int array) =
 //Where "adjVerticePointers" has the index value of the number "value" was made
from.
 //In other words, "value", has the value of the number located at index i when
creating the Vertice objects from list "List"
 new (value) = Vertice(value)
 new (value, adjVerticePointers) = Vertice(value, adjVerticePointers)

 member this.value = value
 member this.adjVerticePointers:int array = adjVerticePointers

 override this.ToString() =
 if adjVerticePointers.Length = 0 then (string)value
 else (string)value + " " + (string)adjVerticePointers.[0] + " " +
 (string)adjVerticePointers.[1]

module NumberGenerator

open System;

//Creates numbers 1,2,4,7,11,16... n times
let rec helpToPopulateArray n count number (myArray:int array) =
 if count < n then helpToPopulateArray n (count+1) (number+count) (Array.append myArray
[|number+count|])
 else myArray

let populateArray n = helpToPopulateArray n 1 1 [|1|]

2012-04-12

Marcus Åberg, Johan Lindeberg 21

module Main

open System;
open System.Diagnostics;
open System.Collections.Generic;
open VerticeClass;
open NumberGenerator;

let number = 10000
let listOfNumbers:int array = populateArray number
let endVertice = 48595012 //Vertice nr 9858
let VerticeQueue = new Queue<(Vertice)>()

//Help method for MakeVerticeList
let rec ConnectEndVertices (listOfNumbers:int array) indexCount (verticeList: Vertice
array) =
 if (indexCount < listOfNumbers.Length)
 then ConnectEndVertices (listOfNumbers:int array) (indexCount + 1) (Array.append
verticeList [|Vertice(listOfNumbers.[indexCount], [||])|])
 else verticeList

//indexCount remembers on which index in listOfNumbers to get the value
//treeLevel tells us at which level we are in the tree, verticeList is the result of the
function
//Call MakeVerticeList with 0, 1, 1, []
let rec MakeVerticeList indexCount currentTreeLevel numbersLeftBeforeLevelChange
(verticeList:Vertice array) =
 if indexCount < (listOfNumbers.Length - currentTreeLevel - 1)
 then if numbersLeftBeforeLevelChange = 0
 then MakeVerticeList indexCount (currentTreeLevel + 1) (currentTreeLevel + 1)
(verticeList:Vertice array)
 //Still have numbers to cover on this level
 else MakeVerticeList (indexCount + 1) currentTreeLevel
(numbersLeftBeforeLevelChange - 1)
 (Array.append verticeList [|Vertice(listOfNumbers.[indexCount],
[|listOfNumbers.[(indexCount + currentTreeLevel)]; listOfNumbers.[(indexCount +
currentTreeLevel + 1)]|])|])
 else ConnectEndVertices (listOfNumbers:int array) indexCount (verticeList: Vertice
array)

let verticeList = MakeVerticeList 0 1 1 [||]

//Queues all vertices in the interval startVertice to startVertice+treeLevel
let helpToQueueVertices indexFrom treeLevel =
 for i = indexFrom to treeLevel do
 VerticeQueue.Enqueue(Array.get verticeList i)

let helpToQueueVertices2 indexFrom indexTo =
 for i = indexFrom to indexTo do
 VerticeQueue.Enqueue(Array.get verticeList i)

2012-04-12

Marcus Åberg, Johan Lindeberg 22

helpToQueueVertices 0 0 //Enqueue the first vertice before starting the BFS
let rec doTheBFS indexFrom indexTo treeLevel verticesLeftInGraph =
 if verticeList.Length > indexTo
 then while VerticeQueue.Count > 0 do
 if VerticeQueue.Dequeue().value = endVertice then
System.Console.WriteLine("I found your vertice!")

 if (Array.IndexOf(listOfNumbers, endVertice)) <= indexTo
 then doTheBFS indexFrom verticeList.Length treeLevel
verticesLeftInGraph
 else helpToQueueVertices (indexFrom + treeLevel) ((indexFrom +
treeLevel + treeLevel))
 doTheBFS (indexFrom + treeLevel) (indexFrom + treeLevel +
treeLevel) (treeLevel + 1) (number - treeLevel)

let MakeListStopwatch = new Stopwatch()
let MakeGraphStopwatch = new Stopwatch()
let DoBFSStopwatch = new Stopwatch()

MakeListStopwatch.Start()
let doListOfNumbersAThousandTimes =
 for i = 1 to 10000 do
 populateArray number
MakeListStopwatch.Stop()

MakeGraphStopwatch.Start()
let doVerticeListAThousandTimes =
 for i = 1 to 10000 do
 MakeVerticeList 0 1 1 [||]
MakeGraphStopwatch.Stop()

DoBFSStopwatch.Start()
let doBFSAThousandTimes =
 for i = 1 to 10000 do
 doTheBFS 0 0 1 number
DoBFSStopwatch.Stop()

System.Console.Write("The time of doListOfNumbersAThousandTimes took: ")
System.Console.WriteLine((string)(MakeListStopwatch.Elapsed) + " ")
System.Console.Write("The time of doVerticeListAThousandTimes took: ")
System.Console.WriteLine((string)MakeGraphStopwatch.Elapsed + " ")
System.Console.Write("The time of doBFSHunderedAThousandTimess took: ")
System.Console.WriteLine((string)DoBFSStopwatch.Elapsed + " ")

2012-04-12

Marcus Åberg, Johan Lindeberg 23

1.2 Implemented code in Go

package main

 import (

 "fmt"

 "time"

)

type Node struct {

 value int64

 adjNodes [2]int

 visited bool

}

type Queue struct {

 b []Node

 head, tail int

}

//how many times to run the test

const AmountOfRuns = 100

func main() {

 //How many times the test is run

 //time variables

 var everythingTime time.Duration

 var listTime time.Duration

 var graphTime time.Duration

 var bfsTime time.Duration

 //test-loop

 for i:=0; i<AmountOfRuns; i++ {

 e1 := time.Now()

 //create some values for the graph

 l1 := time.Now()

 list := makeList(10000)

 l2 := time.Now()

 //build the graph with the values from list

 g1 := time.Now()

 graph := makeGraph(list)

 g2 := time.Now()

 b1 := time.Now()

 q := new(Queue)

 bfs(graph,q,49995001)

 b2 := time.Now()

 e2 := time.Now()

 everythingTime += e2.Sub(e1)

 listTime += l2.Sub(l1)

 graphTime += g2.Sub(g1)

 bfsTime += b2.Sub(b1)

 }

 //debug

 /*

 list := makeList(10000)

2012-04-12

Marcus Åberg, Johan Lindeberg 24

 fmt.Println(list)

 graph := makeGraph(list)

 for i:=0;i < len(graph);i++ {

 fmt.Print(i+1)

 fmt.Print(": ")

 fmt.Println(graph[i])

 }

 */

 fmt.Println("Everything took: ", everythingTime/AmountOfRuns)

 fmt.Println("Making list took: ", listTime/AmountOfRuns)

 fmt.Println("Making graph took: ", graphTime/AmountOfRuns)

 fmt.Println("Doing bfs took: ", bfsTime/AmountOfRuns)

}

func bfs (graph []Node, q *Queue, searchValue int64) bool {

 currentNode := graph[0]

 var notEmpty bool = true

 q.Push(currentNode)

 for ;notEmpty == true; {

 currentNode, notEmpty = q.Pop()

 if searchValue == currentNode.value {

 return true

 }

 for j:=0;j<len(currentNode.adjNodes);j++ {

 if !graph[currentNode.adjNodes[j]].visited {

 graph[currentNode.adjNodes[j]].visited = true

 q.Push(graph[currentNode.adjNodes[j]-1])

 }

 }

 }

 return false

}

//Returns an array of Nodes with the values from list

func makeGraph (list []int64) []Node {

 g := make([]Node, len(list)*2)

 g[0].value = 1

 g[0].adjNodes[0] = 2

 g[0].adjNodes[1] = 3

 j := 3

 for i:=1;i<len(list);i++ {

 g[i].value = list[i]

 j++

 g[i].adjNodes[0] = j

 j++

 g[i].adjNodes[1] = j;

 }

 return g

}

//Returns a list of values of size x

func makeList(x int64) []int64 {

 var number int64 = 1

 var count int64 = 1

 list := make([]int64, x)

 list[0] = 1

2012-04-12

Marcus Åberg, Johan Lindeberg 25

 for ; count != x ; {

 list[count] = (number + count)

 number += count

 count++

 }

 return list

}

// Queue from http://rosettacode.org/wiki/Queue/Definition#Go

// the zero object is a valid queue ready to be used.

// int queue

// items are pushed at tail, popped at head.

// tail = -1 means queue is full

func (q *Queue) Push(x Node) {

 switch {

 // buffer full. reallocate.

 case q.tail < 0:

 next := len(q.b)

 bigger := make([]Node, 2*next)

 copy(bigger[copy(bigger, q.b[q.head:]):], q.b[:q.head])

 bigger[next] = x

 q.b, q.head, q.tail = bigger, 0, next+1

 // zero object. make initial allocation.

 case len(q.b) == 0:

 q.b, q.head, q.tail = make([]Node, 10), 0 ,1

 q.b[0] = x

 // normal case

 default:

 q.b[q.tail] = x

 q.tail++

 if q.tail == len(q.b) {

 q.tail = 0

 }

 if q.tail == q.head {

 q.tail = -1

 }

 }

}

func (q *Queue) Pop() (Node, bool) {

 if q.head == q.tail {

 z := Node{}

 return z, false

 }

 r := q.b[q.head]

 if q.tail == -1 {

 q.tail = q.head

 }

 q.head++

 if q.head == len(q.b) {

 q.head = 0

 }

 return r, true

}

func (q *Queue) Empty() bool {

 return q.head == q.tail

}

2012-04-12

Marcus Åberg, Johan Lindeberg 26

1.3 Implemented code in Java

Node.java

public class Node {

 long value;

 int[] neighbours;

 boolean visited;

 //A node in the graph. Initializes two edges to neighbouring nodes

 //a value for the node and sets visited to false

 public Node(long value, int left, int right) {

 this.value = value;

 this.neighbours = new int[2];

 this.neighbours[0] = left;

 this.neighbours[1] = right;

 this.visited = false;

 }

}

testBfs.java

import java.util.LinkedList;

import java.util.Queue;

public class testBfs {

 //number of runs for the benchmark

 public static final int NUMBER_OF_RUNS = 100;

 //size of the graph

 public static final int SIZE = 10000;

 public static void main(String[] args) {

 long listT = 0;

 long graphT = 0;

 long bfsT = 0;

 //the benchmark loop, times the different parts of the program

 //with System.nanoTime()

 for (int i=0; i<NUMBER_OF_RUNS; i++) {

 long l0 = System.nanoTime();

 int[] list = makeList(SIZE);

 long l1 = System.nanoTime();

 long g0 = System.nanoTime();

 Node[] graph = makeGraph(list);

 long g1 = System.nanoTime();

 long b0 = System.nanoTime();

 boolean search = bfs(graph, list[SIZE - 1]);

 long b1 = System.nanoTime();

 listT += (l1-l0);

 graphT += (g1-g0);

2012-04-12

Marcus Åberg, Johan Lindeberg 27

 bfsT += (b1-b0);

 }

 System.out.println("Make list: " + listT/NUMBER_OF_RUNS);

 System.out.println("Make graph: " + graphT/NUMBER_OF_RUNS);

 System.out.println("Do bfs: " + bfsT/NUMBER_OF_RUNS);

 System.out.println("Everything: " +

(listT+graphT+bfsT)/NUMBER_OF_RUNS);

 }

 //The breadth first search algorithm

 public static boolean bfs(Node[] graph, int searchValue) {

 LinkedList<Node> q = new LinkedList();

 Node currentNode = graph[0];

 q.add(currentNode);

 boolean notEmpty = true;

 while(notEmpty==true) {

 currentNode = q.remove();

 if (searchValue == currentNode.value) {

 //System.out.println(currentNode.value);

 return true;

 }

 if (graph[currentNode.neighbours[0] - 1].visited == false) {

 graph[currentNode.neighbours[0] - 1].visited = true;

 q.add(graph[currentNode.neighbours[0] - 1]);

 }

 if (graph[currentNode.neighbours[1] - 1].visited == false) {

 graph[currentNode.neighbours[1] - 1].visited = true;

 q.add(graph[currentNode.neighbours[1] - 1]);

 }

 }

 return false;

 }

 //Creates a list with values for the graph

 public static int[] makeList(int x) {

 int number = 1;

 int count = 1;

 int[] list = new int[x];

 for (;count!=x;) {

 list[count] = (number+count);

 number += count;

 count++;

 }

 return list;

 }

 //Initializes the graph

 public static Node[] makeGraph(int[] list) {

 Node[] graph = new Node[list.length*2];

2012-04-12

Marcus Åberg, Johan Lindeberg 28

 Node base = new Node(1,2,3);

 graph[0] = base;

 int j = 3;

 for (int i=1;i<list.length; i++) {

 graph[i] = new Node(list[i], j, j+1);

 j+=2;

 }

 for (int i=list.length; i<list.length*2; i++) {

 graph[i] = new Node(0,0,0);

 }

 return graph;

 }

}

2012-04-12

Marcus Åberg, Johan Lindeberg 29

1.4 The survey form

Survey F# and Go
At some point you will be given the answer to a previous question,
please do not go back in the form to change an answer.

At which university/college are you studying at?

 Blekinge Tekniska Högskola

 Chalmers Tekniska Högskola

 Karlstad Universitet

 Kungliga Tekniska Högskolan

 Linköpings Tekniska Universitet

 Luleå Tekniska Universitet

 Lunds Tekniska Universitet

 Mittuniversitetet

 Umeå Högskola

 Uppsala Universitet

In which year are you currently registered in?

 Year 1

 Year 2

 Year 3

 Year 4

 Year 5

Do you have any previous experience with functional programming (like Haskell for
example)?

 Yes

 No

 Some

 Very little

Do you have any previous experience with Go or F#?

 Yes, Go

 Yes, F#

 Yes, both

 No

2012-04-12

Marcus Åberg, Johan Lindeberg 30

Survey F# and Go
F# code readability
Here follows a couple of F# example code. Just check the option that you think is the right one,

and if you do not know just check the bottom option of the question.

Consider the code below. What do you think it does?

[1..10]

 Creates a list of some sort containing the elements [1, empty, empty,...,10]

 Creates a list of some sort containing the elements [1,2,3,...,10]

 Creates a list of some sort containing the elements [1,10]

 Not sure

Consider the code below. What do you think it does?
[for x in 0..10 -> x*x]

 Creates a list in which each index contains a function

 Creates a list in which each index contains the return value of the function x*x

 Creates a list that contains the values [0*0, empty, empty,..., 10*10]

 Creates a list that contains the values [0*0, 10*10]

 Not sure

Consider the code below. What do you think it does?
Array.map(x y)

 Creates a map, with x and y coordinates , of the size given by x and y

 Creates an array containing the elements of x plus the elements of y

 Creates an array containing the elements according to the pattern

[x[0],y[0],x[1],y[1],...x[n],y[n]]

 Takes a function x and applies it on every element in y

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 31

Survey F# and Go
F# code readability
Here follows an example of an F# class. Just check the option that you think is the right one, and

if you do not know just check the bottom option of the question.

type Node(value, visited) =

 let mutable internalValue= value

 new (value) member this.value =

 with get() = internalValue

 and set(value) = internalValue <- value

Consider the code in the header of this page. Which row is the constructor of the class?

 type Node(value, visited) =

 let mutable internalValue= value

 new (value)

 with get() = internalValue

 and set(value) = internalValue <- value

 Not sure

Consider the code in the header of this page. One can create a new object of the Node
class by writing for example "let rootNode = new Node(0, false)", but what would someone
have to write in order to change the Nodes value to 1?

 let rootNode = Node(1, false)

 rootNode.value = 1

 rootNode.internalValue = 1

 rootNode.value <- 1

 rootNode.internalValue <- 1

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 32

Survey F# and Go
F# code readability
Here follows an example of F# code. Just check the option that you think is the right one, and if

you do not know just check the bottom option of the question.

let testArray = [|1;2;3;4;5|]

let square x = x*x

Array.map(square testArray)

Consider the code in the header of the page. What do you think the code "Array.map(x y)"

does?

 Creates a map, with x and y coordinates , of the size given by x and y

 Creates an array containing the elements of x plus the elements of y

 Creates an array containing the elements according to the pattern

[x[0],y[0],x[1],y[1],...x[n],y[n]]

 Takes a function x and applies it on every element in y

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 33

Survey F# and Go
F# code readability
Here follows an example of F# code. Just check the option that you think is the right one, and if

you do not know just check the bottom option of the question.

let rec SomeFunction x =

 match x with

 | [] -> 0

 | y::ys -> y + SomeFunction ys

Consider the code in the header of the page. What do you think the function does if x contains a

value?

 It takes a word and returns the first letter

 It takes an integer and creates a list of size x

 It removes all zeroes from the list

 Takes a list x and returns the sum of the elements in x

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 34

Survey F# and Go
F# code readability
Here follows an example of F# code. Just check the option that you think is the right one, and if

you do not know just check the bottom option of the question.

let rec SomeFunction x =

 match x with

 | [] -> 0

 | y::ys -> y + SomeFunction ys

Consider the code in the header of the page. What do you think the function does if x

contains a value?

 It takes a word and returns the first letter

 It takes an integer and creates a list of size x

 It removes all zeroes from the list

 Takes a list x and returns the sum of the elements in x

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 35

Survey F# and Go
F# code redability
Here follows an example of F# code. Just check the option that you think is the right one, and if

you do not know just check the bottom option of the question.

let test n = [1..n]

 |> List.map Square

 |> List.sum

Consider the code in the header of the page. What do you think the function does?

 It sums the result and then squares the sum

 It squares each element and then sums the squares

 It returns an integer containing the value of the sum function and a list containing the

squares of each element

 It says that only the functions “square” and “sum” are applicable on the list

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 36

Survey F# and Go
Go code readability
Here follows a couple of examples of Go code. Just check the option that you think is the right

one, and if you do not know just check the bottom option of the question.

Consider the code below. Which answer is correct?

list := makeList(100)

 list is initialized to the same type as the returned value from makeList(100), and holds the

returned value.

 list has been initalized earlier, and holds the returned value of makeList(100)

 Not sure

Consider the code below. Which answer is correct?

func someFunction(graph []Node) bool

 someFunction takes some variable of type []Node and returns nothing

 someFunction takes a specific variable named graph and returns a bool

 someFunction takes some variable of type []Node and returns a bool

 someFunction takes a variable of type bool and returns a variable graph of type []Node

 Not sure

Consider the code below. On what struct / type is the method performed, what variables
does it take and what is the return type?

func (q *Queue) Push(x Node) bool {code omitted}

 Performed on struct / type: bool, Input variable: x, Return type *Queue

 Performed on struct / type: *Queue, Input variable: bool, Return type: Node

 Performed on struct / type: Node, Input variable: x, Return type: bool

 Performed on struct / type: Node, Input variable: q, Return type: bool

 Performed on struct / type: *Queue, Input variable: x, Return type: bool

 Performed on struct / type: bool, Input variable: q, Return type: Node

Consider the code below. What values does r hold after execution?

type Vertex struct { X, Y int } r = Vertex{X: 1}

 {1,0}

2012-04-12

Marcus Åberg, Johan Lindeberg 37

 {0,1}

 Uncertain

2012-04-12

Marcus Åberg, Johan Lindeberg 38

Survey F# and Go
Go code readability
Here follows an example of Go code. Just check the option that you think is the right one, and if

you do not know just check the bottom option of the question. fmt.Println() is a standard package

function to print text.

x:= []int{0,1,2,3,4,5,6,7,8,9}

 for i:=0; i<10; i++ {

 x[i] = x[i]*x[i]

 }

 fmt.Println(x[0:5])

Consider the code in the header of the page. What do you think is displayed after

execution?

 {0,1,4,9,16,25,36,49,64,81}

 {0,1,4,9,16,25}

 {5,6,7,8,9}

 {0:5}

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 39

Survey F# and Go
Go code readability
Here follows an example of Go code. What do you think is printed out on screen after execution?

m = make(map[string]Vertex)

 m["Bell Labs"] = Vertex{

 40.68433, 74.39967

 }

 fmt.Println(m["Bell Labs"])

Go map. What is printed out after execution?

 {40.68433 74.39967}

 Bell labs {40.68433 74.39967}

 Bell labs

 {40.68433 74.39967} Bell labs

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 40

Survey F# and Go
Go code readability
Here follows an example of Go code. What do you think is printed out on screen after execution?

p := Vertex{1, 2}

 q := &p

 q.X = 1e9

 fmt.Println(p)

What is printed out after execution?

 {0 2}

 {1000000000 0}

 {1000000000 2}

 {1,2}

 Not sure

2012-04-12

Marcus Åberg, Johan Lindeberg 41

Survey F# and Go
What did you think about F# and Go?
This is the last page and we would very much like to know what you thought about the two

programming languages based on the example code that you have seen

Now that a few code examples has presented for F#, do you think that you would be able

to read more code written in F#?

 Yes

 Most likely

 Maybe

 Proably not

 No

Now that a few code examples has presented for Go, do you think that you would be able
to read more code written in Go?

 Yes

 Most likely

 Maybe

 Probably not

 No

Now that a few code examples has presented for F#, how hard do you think it would be for
you to learn F#

 Hard

 Probably hard

 Not hard but not easy either

 Probably easy

 Easy

Now that a few code examples has presented for Go, how hard do you think it would be for
you to learn Go?

 Hard

 Probably hard

 Not hard but not easy either

 Probably easy

2012-04-12

Marcus Åberg, Johan Lindeberg 42

 Easy

2012-04-12

Marcus Åberg, Johan Lindeberg 43

1.5 Master of Science in Engineering programs

College/University Studies Java Program if other than Master of Science in Engineering

Blekinge Tekniska Högskola No

Chalmers Tekniska Högskola Yes

Karlstad Universitet Yes

Kungliga Tekniska Högskolan Yes

Linköpings Tekniska Universitet Yes

Luleå Tekniska Universitetet Yes

Lunds Tekniska Högskola Yes

Mittuniversitetet Yes

Umeå Högskola Yes Civilingenjörsprogrammet i Teknisk datavetenskap

Uppsala Universitet Yes Civilingenjörsprogrammet i Informationsteknologi

