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Abstract

This study explores the German songs of the Essen Folksong Collection and provides sta-

tistical �ndings from them. The aim has been to study aspects of a contextual nature such as

relationships between time domain and pitch domain and the melodic contour at the phrase

level. With statistical examinations of melodies a better understanding of several aspects in the

music has been achieved and the results are relevant to several �elds of music science, such as

music cognition and algorithmic composition. The contextual nature of music has been shown

by examining ten di�erent aspects. Among the most interesting �ndings are:

A clear relationship between pitch salience and metrical salience. Notes at salient metrical

positions are more likely to have a high pitch salience. A clear relationship between interval

size and note length. Large intervals often occur between longer notes and small intervals

are more often found between shorter notes. That melodic stairs of one pitch step are more

common in a rising formation than in a falling formation. That contour repetition is almost

always accompanied by rhythmic repetition at the phrase level. That earlier �ndings for convex

phrase arches is mostly a phenomena of an upward movement in the �rst phrase of a song and

a downward movement in the last phrase of a song.
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1 Introduction

1.1 What are the bene�ts of statistical analysis in music?

Why can a statistical approach to music, an art form often linked to emotion, be of any use?

There seem to be statistical relationships in music wherever you look, and it has been proposed

that probable movements in music may be perceived by the listener as pleasurable (Huron, 2006).

With a statistical understanding of probabilities in music better predictions about future events

can be achieved and statistical results can be used in several �elds of music science. Psychological

aspects such as expectation and memory can be better understood. As an example sound sequences

can be stored in short-term memory for approximately 30 seconds if not repeated (Ahlbäck, 2004;

Huron, 2006; Encyclopedia Britannica, 2009) and with an analysis of musical phrase repetition

or phrase length this can be directly linked to the structure of music. A statistical analysis can

also foster the development in algorithmic composition (computer composition of music). Many

composition techniques are based on statistical data to model probabilities (Farbood & Schoner,

2001; Nierhaus, 2009; Tanaka et al, 2010) and this data can be used in Markov models, or other

generative implementations. Another important �eld is music information retrieval (Temperley,

2006). Retrieval of music information, in particular from audio, will become more accurate with an

understanding of statistical probabilities in music. This as the retrieved information will have noise

in the form of incorrectly retrieved data and a statistical understanding will aid in removing this

noise. Statistics can both con�rm relationships within music, and help to provide insights to why

these relationships do exist. Let us look at an example to get acquainted with statistical analysis

in music and its bene�ts.

It has been well known that melodies tend to move down after large leaps upwards in pitch, a phe-

nomena called gap �lls (Levitin, 2006) or skip reversals (Huron, 2006). To con�rm this statistically

is fairly easy. The �rst step is to scan a large set of songs, a database with data in a format that

is accessible. Every interval between two succeeding pitches is evaluated and for the intervals that

are positive and larger than a certain threshold (as an example a rise of 6 semitones) the notes

following that interval are analyzed. If they are on average falling, we have con�rmed the theory.

However we will not have explained why this is occurring. Is it an expression of style? Or is it

perhaps a consequence of the instrument performing the music?

Huron (2006) has analyzed this and his conclusions are that the rule of skip reversal was in fact

formulated wrong to begin with. It is not so that large leaps upwards in pitch are automatically

followed by a falling pitch. Instead the phenomena can be completely explained by regression to the

mean. That is, melodies always tend to move towards the mean pitch where the mean is de�ned by
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the earlier notes of the same melody. When the melody is falling after a large leap it is merely an

e�ect of regression to the mean and the statistical evidence Huron has put forward is the following:

If a large leap upwards occurs at the lower register of a melody, so that the note which the leap will

land on is positioned below the mean pitch of that same melody, it is statistically more probable

with a continued upward motion. However, as most large leaps upwards naturally land above the

mean pitch this e�ects cannot be discovered merely by looking at big leaps, disregarding mean

pitch. As a conclusion, the phenomena of skip reversal could only be explained when the context

in which they occur was taken into consideration. That music is contextual and that the context

must always be considered when describing music is an essential thesis in this study.

1.2 Aims

The aim of this study is to reveal statistical relationships that have not been studied before. Simply

put the main theory is that music is contextual. The idea is that melodies are always of a contextual

nature and that simple relationships such as the distribution of intervals do not provide the true

probabilities for the next pitch of the melody. Instead a broader context must be analyzed. The

context is provided by the earlier parts of the melody and can be of the following nature:

• Where in the melodic range of the melody is the current pitch positioned?

• What is the direction of the earlier pitches?

To make use of the answers to these questions we must know how they a�ect probabilities in music.

This is where this study will be useful as questions of the following nature are answered:

• What are common melodic ranges?

• How does the earlier direction of the pitch a�ect probabilities for the next note pitch?

• How does metrical position a�ect pitch probabilities?

Ten di�erent aspects of this nature have been examined and these aspects are presented below in

Section 1.3 Outline of the study.

4



1.3 Outline of the study

This study explores the German songs of the Essen Folksong Collection (Scha�rath, 1995) and

provides statistical �ndings from them. The total number of songs is 5370 and in the statistical

examinations di�erent subsets of these songs are used. Ten di�erent aspects have been examined

(see Appendix 1 for concepts and terminology):

1. Ambitus - The range of the melody as the distance between the highest and the lowest note.

2. Pitch & Meter - The distribution of pitches, compared across di�erent meters.

3. Metrical Salience & Pitch - How the salience of the metrical positions a�ect the distribu-

tion of pitches.

4. Intervals & Note Length - The relationship between note length and interval size.

5. Double Notes - The distribution of repeated occurrences of two pitches with the same tone

height, for di�erent starting positions in the measure.

6. Stairs - The distribution of note sequences, with intervals of one pitch step, with continuous

direction, examined for di�erent note lengths.

7. Contour - The direction of the melody examined across the pitch domain.

8. Repetition - In which ways musical phrases repeat each other.

9. Phrase Arch - The contour of the melody examined at a phrase level.

10. Tonal Resolution - The pitch distribution at the tonal resolution in the end of each song.

1.4 Background to the studied aspects

Provided below is a brief background to the ten studied aspects.

1. Ambitus, 2. Pitch & Meter, 3. Metrical Salience & Pitch

A thorough analysis of Danish folk songs has been done by Holm (1984) where he studied interval

sizes and their distribution, the highest and lowest notes of the music as well as the melodic

range (ambitus). Parncutt (1994a & 1994b) has studied listeners' perception of metrical accent for
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repeating patterns giving credence to the notion of metrical salience based on rhythm. Generally

speaking the �rst position in the meter is the most salient and subdivisions are less salient. On

a similar theme, rhythmic organization of a melody may be perceptually more salient than the

note pattern according to Dowling (1993), and according to Monahan (1993), listeners will group

melodies (performed without accompaniment) based on the rhythmic pattern.

4. Intervals & Note Length, 5. Double Notes, 6. Stairs, 7. Contour

Vos & Troost (1989) have studied the distribution of intervals in Western music and found that

small intervals more often descend and that large intervals more often ascend. Tonality has been

studied by Krumhansl & Kessler (1982 as cited in Huron, 2006) who let listeners rate the goodness

of �t, related to major and minor keys, for di�erent pitches. Notice that the key needed to be

established beforehand, an element of uncertainty. By analyzing the Essen Folksong Collection,

Eerola & Toiviainen (2004) have found a somewhat di�erent distribution. The importance of

contour reversals was illustrated by Watkins & Dyson (1985) by playing songs with a few notes

altered each time. When altered notes occurred at contour reversals listeners were more likely to

notice them. It has also been shown by Dowling (1978) that contour is important in our perception

of melodies.

8. Repetition, 9. Phrase Arch, 10. Tonal Resolution

That listeners perceive repetition of contour has been noticed by West, Howell & Cross (1985). The

repetitive nature of music has been pointed out by other researchers as well, amongst them Huron

(2006). Huron has also examined the phrase contour of the songs in the Essen Folksong Collection,

and found an on average convex contour, sometimes referred to as the melodic arch. On a similar

theme Craig Sapp showed the author (2011) the most common �rst three notes and the most

common last three notes from the Tirol Folk Songs (a subset of the Essen Folksong Collection).

The most common three-note ending he found was scale notes 3-2-1 and the most common start

was 1-2-3 followed by 3-4-5. The author has examined (Elowsson, 2012) the most common three

note patterns in 80 000 songs from Theme�nder (2011). For the upward motion 1-2-3, 7.5 % of all

occurrences were found in the �rst three notes but for the downward motion 3-2-1 only 1.9 % of all

occurrences were found in the �rst three notes.

6



2 Preparations

The starting point was to convert the songs of the Essen Folksong Collection to the MIDI-format.

The songs were originally in a format called Kern and they were converted with Humdrum (Huron,

1995) in combination with commands from the Humdrum extras extension. In this study all songs

have been converted to C major or A minor, which as an example for C major means that pitch

height C represents the tonic, D represents the second etc.

The MIDI-toolbox (Eerola & Toiviainen, 2004) was used to turn the MIDI-�les into a proper format

in Matlab (2012). Easy-accessible Matlab-�les were created for the most common meters and the

number of songs is shown in Table 1.

2/4 3/4 4/4 6/8 Total

Number of songs in Major 1047 921 1295 574 3837

Number of songs in Minor 69 66 138 81 354

Table 1: Matlab �les were created for the following meters.

All songs in Table 1 were extracted with and without the human edited phrase slurs of the Essen

Folksong Collection. Phrase slurs and measure lines were �rst converted to MIDI-notes to provide

the possibility to move them to Matlab with the MIDI-toolbox. They were used in Matlab to align

the MIDI �les correctly with the meter and to mark up the phrase starts, and then they were

removed.
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3 Examinations

The songs were examined with simple Matlab commands. This is an example of a short Matlab

code to calculate the average length of the notes as depending on the size of the interval.

for i n t e r v a l = −12:1:12 %For each I n t e r v a l

l en = 0 ;

cou = 0 ;

for j j = 1 : l ength (nm2) %For each song

song = nm2{ j j } ;

for i i = 1 : ( l ength ( song )−1) %For each note

i f ( song ( i i , 4 ) == song ( i i +1 ,4) + i n t e r v a l ) %I f c o r r e c t i n t e r v a l

l en = len + ( song ( i i ,2)+ song ( i i +1 ,2) ) ; %Add length

cou = cou + 1 ; %Add count

end

end

end

pitchLen ( i n t e r v a l +13) = len /( cou ∗2 ) ; %Calcu la te r a t i o

end

p lo t ( pitchLen ) %Plot f i n d i n g s

The examinations of the ten di�erent aspects presented in Section 1.3 are described in Section 3.1-

3.10. Notice that for a good coherence in the report considerations, results and a brief discussion

will be presented for each aspect separately.

3.1 Ambitus

The �rst examined aspect is the range between the lowest and the highest pitch (ambitus) in the

songs. First the number of semitones between the highest and the lowest pitch was extracted from

the songs. To be able to display the results as a number of scale tones as well, a separation into

scale tones was accomplished by the scheme in Table 2. As an example the ambitus in scale tones

became 6, if the ambitus counted in semitones was 10 or 11.

Scale tone 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Semi-tone 1 3 5 7 8 10 12 13 15 17 19 20 22 24

Semi-tone 2 4 6 9 11 14 16 18 21 23

Table 2: Separation into scale tones from semitones.
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The results are summarized in the four diagrams of Figure 1. The two diagrams in the top displays

the distribution of the songs as scale steps. The diagram in the top left is for the songs in major

mode and the diagram in the top right is for the songs in minor mode. A 7th degree �tting has been

applied to better visualize the results. The two diagrams in the bottom display the distribution of

the songs as semitones. The diagram in the bottom left is for the songs in major mode and the

diagram in the bottom right is for the songs in minor mode.
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Figure 1: Ambitus in major (left) and minor (right), both displayed as scale tones (top) and
semitones (bottom).

It is evident that an ambitus of 7 or 8 scale tones is the most common in major mode (top left

diagram of Figure 1) and that an ambitus of 7 scale tones is the most common in minor mode (top

right diagram of Figure 1). The �ndings are in line with earlier �ndings from Danish folk songs

(Holm, 1984). Also notice from the semitone diagrams (bottom diagrams of Figure 1) that the

ambitus for songs in minor is smoother than the ambitus for songs in major. Perhaps this is due

to the characteristics of the minor scale where in A minor the notes F, F#, G and G# all occur

frequently (Krumhansl & Kessler, 1982 as cited in Huron, 2006; Eerola & Toiviainen, 2004). The
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tendency for a lower ambitus for the songs in minor mode is somewhat interesting and could be

further examined. Perhaps a relationship to the length of the examined melody could be found as

well, as it is likely that longer songs have a higher ambitus.

3.2 Pitch & Meter

The number of notes of each pitch (scale tones) as a relation to the total number of notes of each

meter was examined for the songs in major mode. The idea was that some meters would perhaps

have di�erent pitch distributions than others. The result can be seen in Figure 2. Besides the four

meters (4/4, 2/4, 3/4 and 6/8) an average is also displayed (leftmost bar for each pitch)
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Figure 2: The distribution of pitches across di�erent meters for melodies in major.

The distribution is very similar between the di�erent meters. In conclusion no signi�cance di�erence

in the pitch distribution across di�erent meters was found (Figure 2).

3.3 Metrical Salience & Pitch

The relationship between strong metrical positions and pitch salience was examined. The idea

was that the pitches of higher salience (prominence) would more often occur at stronger metrical

positions and that pitches of lower salience would more often occur at weaker metrical positions.

To be able to demonstrate such a relationship the salience of the pitches as well as the strength of
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the metrical positions had to be graded in some way. The pitches (within the diatonic scale) were

graded according to three di�erent criteria where a lower number means more salient.

• Salience from the circle of �fths: {C = 1, G = 2, D = 3, A = 4, E = 5, B = 6, F = 7}

• Proximity to the tonic chord combined with distance to the dominant chord. First notes

belonging to the respective chords were sorted. G which belongs to both chords was given a

medium score (4). Lastly F was considered closer to the dominant as it belongs to the seventh

chord (G7) and A was considered closer to the tonic as it belongs to the sixth chord (C6).

The resulting grading was: {C = 1, E = 2, A = 3, G = 4, F = 5, D = 6, B = 7}

• The total number of notes divided by the number of occurrences of each scale tone within

each examined meter (see Figure 2 for this distribution).

The metrical positions were sorted into four groups based on metrical salience (Parncutt 1994a;

Parncutt 1994b) as described in Table 1. Lower means more salient so group 1 is the most salient.

Salience group 4/4 meter 2/4 meter 3/4 meter 6/8 meter

1 {1,3} {1} {1} {1,4}

2 {2,4} {2} {2,3} {3,6}

3 {1.5,2.5,3.5,4.5} {1.5,2.5} {1.5,2.5,3.5} {2,5}

4 {16th notes} {16th notes} {16th notes} {16th notes}

Table 3: Metrical positions (numbered as beats) sorted into groups based on metrical salience,
where group 1 is the most salient etc.

The relationship between pitch and metrical salience was computed as the average score of the

graded pitches in each metrical salience group. That is, the average score of the pitches (according

to the three di�erent grading criteria) that were positioned on the strongest metrical position was

computed as a total score for that metrical position. The average score of the pitches (according to

the three di�erent grading criteria) that were positioned on the second strongest metrical position

was computed as a total score for that metrical position etc. The results can be seen in Figure

3. Notice that the score gets higher the weaker the metrical positions are. This means that there

is a relationship between metrical salience and pitch salience. The results were similar over all

examined meters, salient scale tones are positioned more often at metrically salient positions. The

relationship is signi�cant for all three examined gradings of the pitches. That is, the relationship

exists independently of if you regard pitch salience as something that can be derived by the Circle

of Fifths, a Tonic/Dominant scheme or Weighted by how common the pitches are.
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Figure 3: The relationship between metrical salience and pitch salience as an average of all examined
meters.

To get an overview of how the relative pitch distribution changes across the measure a distribution

for 4/4 meter is displayed as well in Table 4. A positive score means that the pitch is relatively

more common at that position as compared to the other pitches. A negative score means that the

pitch is relatively less common at that position as compared to the other pitches.

Beat/Pitch C D E F G A B

1 0.31 -0.13 0.08 -0.26 0.00.. -0.04 -0.34

1.5 -0.28 0.23 -0.21 0.45 -0.07 0.08 0.25

2 -0.10 0.07 0.10 -0.01 -0.03 0.01 -0.08

2.5 -0.24 0.17 0.01 0.42 -0.29 0.24 0.17

3 0.02 0.08 0.05 -0.12 0.01 -0.08 -0.13

3.5 -0.14 -0.05 -0.30 0.44 0.08 0.12 0.26

4 -0.02 -0.06 -0.17 -0.10 0.23 -0.02 0.11

4.5 -0.32 -0.03 0.05 0.47 -0.17 0.03 0.60

16th notes -0.10 0.20 -0.06 0.21 -0.27 -0.02 0.55

Table 4: Relative distribution of scale tones at metrical positions in 4/4 meter and major mode.

We �nd that salient pitches (C, E, G) are overrepresented and that scale tones of low salience (B,

F) are underrepresented on salient metrical positions (beat 1 and 3). For the less salient positions

(16th notes) the opposite is true. We also �nd that notes belonging to the dominant chord but not

the tonic chord (B and D) are more common towards the end of the measure whereas C is most

common at the �rst position in the measure.
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3.4 Intervals & Note Length

The average note length was examined for di�erent intervals, ranging from a falling interval of one

octave to a rising interval of one octave. The songs in 4/4 meter in major mode were used in this

examination and the code is displayed in the beginning of Section 3. In this examination a quarter

note has the length 1, an 8th note (which is half the length of a quarter note) has the length of 0.5

etc. The average of the length of both notes in each interval was used. The theory was that there

would be a relationship between the size of the intervals and length of the notes. An important

aspect in visualizing the results was a cubic �tting. This as the results becomes very noisy for

unusual intervals. The results can be seen in Figure 4. Interval size is represented by a number.

Falling intervals have negative numbers (as an example a falling minor third is represented by -3).
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Figure 4: The average note lengths for di�erent intervals. Note length is the average note length of
the two notes that constitute the interval.

There is a clear relationship. The intervals are generally larger between longer notes and smaller

between shorter notes (notice the concave pattern with short note lengths for small intervals).

3.5 Double Notes

The aim was to show how patterns of repeated �double notes� with the same pitch and note length

are distributed over the measure. An example of a song built around two notes of the same pitch

followed by two new notes of the same pitch etc. is �Twinkle, Twinkle, Little Star�. The idea was
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that formations of these double notes would be more inclined to start at certain positions in the

measure than others. The examinations were done for quarter notes and 8th notes and melodies

in 4/4 meter in major were used. In �gure 5 we see the results for quarter notes. Notice that the

stronger metrical position {1,3} take precedence over {2,4}, and that there are no occurrences at

{1.5,2.5,3.5,4.5}.
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Figure 5: The number of double notes (two repeated pitches followed by two new repeated pitches
etc.) for quarter notes with start position for the whole formation displayed across the measure.

For 8th notes no further examinations were done beyond 4 notes (2 twin pitches) as so few examples

was found and the statistical data became uncertain. The results can be seen in Figure 6.
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Figure 6: The number of double notes (two repeated pitches followed by two new repeated pitches
etc.) for 8th notes with start position for the whole formation displayed across the measure.
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For the 8th notes the results are harder to interpret. There are fewer matches overall and there

seems to be a repeating pattern for the �rst four 8th notes and the last four 8th notes of the measure.

One possible interpretation is that double note formations have a tendency to begin on metrically

salient positions also for 8th notes. They may start an 8th note before but not an 8th note after the

metrically salient position to include that position early on in the double note formation.

3.6 Stairs

The idea was to �nd formations of notes with similar length that occur as falling or rising stairs.

This means that the intervals would rise one scale step or fall one scale step for each note. As

di�erent note lengths were examined the context of note length as a�ecting the tendency for stair-

formations could be analyzed. To make the results generally applicable the total number of repeated

notes of the di�erent note lengths is used and the �ndings for the di�erent note length becomes

a ratio between the number of found stairs and the number of total occurrences. A comparison

between rising and falling stairs is also interesting and therefore results are plotted for falling and

rising stairs, as well as for the sum of the two. The examined songs were in major and had a 4/4

meter. The result can be seen in Figure 7. Notice that rising stairs (R) are more common than

falling stairs (F ) and that stair formations are generally more common for shorter note durations.

3 R 4 R 5 R 3 F 4 F 5 F 3 B 4 B 5 B
0

0.1

0.2

0.3

0.4

0.5

Type

R
el

at
iv

e 
D

is
tr

ib
ut

io
n

 

 

2nd note
Quarter note
8th note
16th note

Figure 7: Relative distribution for stairs of varying length, with varying note lengths. R = Rising,
F = Falling, B = Both, {3,4,5} = Number of notes in the formation.

Stairs are more common for faster note lengths if the total number of repeated notes of the di�erent
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note lengths are taken into consideration. As quarter notes and 8th notes were the most common,

the statistical �ndings for these two are the most reliable. Here we �nd that for all nine types, the

8th note stair is more common than the quarter note stair if the relative frequency of occurrence

of repeated 8th notes and quarter notes is taken into consideration. We also �nd that for all nine

types where the 16th notes are represented they are more common than the quarter note stairs.

Stair formations tend to occur more often as rising than falling. This is especially interesting as

it is the opposite of what have been found to be true for intervals in general, that small intervals

more often descend than ascend (Vos & Troost, 1989). There seems to be something special with

stairs that makes them more common as rising1.

3.7 Contour

As it has been shown by Dowling (1978) that contour is important in our perception of melodies

di�erent aspects of contour in melodies were examined. To be able to display the results based on

position in the meter a decision was made to only use the most common metrical positions. As the

songs were in 4/4 meter (major) this meant 8 positions an 8th note apart from each other. Contour

was examined for contour reversals, direction and good continuation.

3.7.1 Contour Reversals

As contour reversals seem to be perceptually important (Watkins & Dyson, 1985) these were ex-

amined separately. Each time the contour of the melody changed direction (from falling to rising

or rising to falling) the pitch at which the direction changed (the lowest/highest pitch) was noticed.

The result, a distribution of contour reversals, can be seen in Figure 8. The results are displayed

for each semitone where 1 represents C, 2 represents C#, 3 represents D etc. Notice that for the

two notes in C major that are non-pentatonic, 6 and 12 (F and B), there are large di�erences in

the tendency to be minimum and maximum pitch at contour reversals. Pitch 12 (B) occurs 7 times

more often as a minimum pitch than a maximum pitch and pitch 6 (F) occurs almost 5 times as

often as a maximum pitch than as a minimum pitch. Why does this happen? Both of these ex-

tremes are found for notes that are non-pentatonic. The answer may then be that non-pentatonic

pitches often function as contour reversals towards the scale tone that is one semitone away, but

almost never functions as contour reversals towards the scale tone that is two semitones away.

1Perhaps stairs can be perceived as moving more clearly towards a speci�c goal for a rising contour than a falling

contour, making rising stairs more useful to the composer.
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Figure 8: The distribution of contour reversals.

Another interesting result is that a succession of three notes in a row far from the tonic in C major

6, 8 and 10 (F, G and A) are all maximum pitches. A succession of four notes in a row close to

the tonic 12, 1, 3 and 5 (B, C, D and E) are all minimum pitches. Why does this happen? Here a

conclusive answer is harder to give. Perhaps the disharmony of pitch 10 and 12 (A and B) with the

tonic chord constitutes a melodic barrier, making movements away from the barrier more probable.

3.7.2 Direction

In a similar way as contour reversals the direction of the melody was also examined. For each note

it was examined if the direction of the melody from that note was falling, rising or steady. The

result can be seen in Figure 9.
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Figure 9: The distribution for the subsequent direction from di�erent pitches.
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The tendency that could be observed for contour reversal is once again apparent. Pitch 12 (B) tends

to move upwards and pitch 6 (F) tends to move downwards. A similar explanation (non-pentatonic

notes moving one semitone) may be applied here as well. Overall the �ndings for direction are less

clear than the �ndings for contour reversal. Interesting is also the tendency for 8 (G) to be steady.

One explanation may be that G belongs to the two most common chords I (tonic chord) and V

(dominant chord). G can therefore occur repeatedly and still belong to the chord. The higher

tendency for 10 (A) to fall may be explained by the movement to the steady G and the movement

away from the earlier proposed barrier that A and B forms.

3.7.3 Good Continuation

If a new direction of the melody had been established (falling to rising or rising to falling) by an

interval of one pitch step, it was examined if the melody continued to move in that direction, one

pitch step at the time. The result is displayed as a ratio where higher than one means a higher

probability to continue in the same direction and lower than one means a higher probability that

the melody changes direction than continues in the same direction. The result is displayed in Figure

10. A quadratic �tting was applied to better visualize the results. The dotted line represents an

equal probability. As can be seen, new intervals of one pitch step tend to continue in the same

direction but as 3-5 notes have passed in the same direction the probabilities are instead higher for

a change of direction.
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Figure 10: The probabilities for intervals to continue in the same direction after x number of
intervals of one pitch step in that direction.
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The probability to continue in the same direction when a new direction has just been established

were high both for rising and falling contours (Figure 10 display the average result for both con-

tours). They however di�ered between the 4th and the 6th note. Perhaps the fact that rising stairs

are more common than falling stairs (Figure 7) o�ers an explanation here. The higher scores for

rising contour between the 4th and the 6th note would in that case be a result of a predisposition

to these rising stair lengths. Overall the �ndings can be summarized in the following way:

If a new direction has been established by an interval of one pitch step, new intervals of one pitch

step tends to continue in the same direction. As 3-5 notes have passed in the same direction the

probabilities are instead higher for a change of direction.

The decrease in probability as more notes are added in the same direction can probably be con-

nected to the ambitus (Figure 1, Section 3.1). The melody can only continue in the same direction

for a certain number of notes before the melodic range is reached. For each note added in the

same direction the probabilities to reach the melodic range increases. As was pointed out in the

introduction, with the role of regression towards the mean pitch (Section 1.1), di�erent aspects of

the melody must be taken into consideration. This is a similar case where regression to the mean

can also be applied in a meaningful way.

3.8 Repetition

The phrase information in the Essen Folksong Collection opens the possibility for interesting ex-

aminations. Each phrase start and each phrase end is notated in the songs and this was used to

examine how phrases repeat each other. The phrases were examined for repetition in the time

domain and in the pitch domain. When examining repetitions between phrases it had to be decided

what actually constituted a repetition. In the time domain the phrase was said to be a repetition if

the notes of the phrases started at the same position in the measure and had the same length as the

notes of an earlier phrase in the song. In the pitch domain, contour was examined and the phrase

was said to be a repetition if each interval of the phrase had the same contour. The examined songs

were in major and had a 4/4 meter. The most important result is summarized in Figure 11. The

probability (between 0 and 1) for phrase repetition represents how likely it is for any given phrase

of a song to be a repetition of an earlier phrase. This means that if one phrase repeats another in

a song of two phrases it is counted as 0.5, representing a 50 % probability for a randomly chosen

phrase to be a repetition. For a song of three phrases where they all repeat each other the result

would be 0.67. Notice that rhythm repetition (R) is twice as common as contour repetition (C ).

Notice also (by comparing R&C with C ) that repetition of both rhythm and contour (R&C ) is

almost as common as only contour repetition (C ).
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Figure 11: Probabilities for phrase repetition.

We �nd that about 40 % of any randomly chosen phrase in the data was a rhythmical repetition

of an earlier phrase. For repeated contour the probability was close to 20 %. Almost all contour

repetitions (C ) are rhythm repetitions as well (R&C ). The results can be interpreted in the following

way: If we have a repetition, one of two cases, which have about the same probability is likely be

true. Either it is a rhythmical repetition or it is a repetition of both rhythm and contour. That

contour is so rarely repeated on its own is interesting as it in a way contradicts the notion that

listeners can perceive repeated contour independently (West et al, 1985). However it has been

repeatedly claimed (Dowling, 1993; Monahan, 1993) that the rhythmic organization is perceptually

more important.

3.9 Phrase Arch

Huron (2006) has done some interesting examinations of phrase contour. The �ndings were a rising

contour in the beginning of the phrase and a falling contour in the end of the phrase as described

in the background section (Section 1.4). In the examinations presented below Huron's conclusions

have been tested by tracking how the phrase contour changes over the course of the song. The �rst

and the last phrase were examined separately as it was expected that these phrases would produce

the most interesting results. Another change in the examination technique as compared to Huron

was done to produce more generally applicable results. The phrases were not separated based on

their length. Instead, the �rst �ve notes and the last �ve notes were examined separately for all

phrases. If a phrase had less than �ve notes the missing notes were disregarded. The songs were in

major and had a 4/4 meter. Figure 12 is the result for the beginning of the phrases. It can be seen
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that the contour on average rises about 0.4 semitones if all phrases are taken into consideration

(solid blue line). If we however disregard the �rst phrase there is no rising contour (dotted green

line). This is because the rising contour in the beginning of the phrases was a statistical e�ect of a

strong rising contour in the beginning of the �rst phrase (dashed red line). The contour in the �rst

phrase rises approximately 2.5 semitones.
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Figure 12: The average contour for the start of each phrase.

The result for the end of the phrases can be seen in Figure 13. The contour on average falls about

0.65 semitones if all phrases are taken into consideration (solid blue line). If we however disregard

the last phrase there is a smaller rising contour (dotted green line). This is because the falling

contour in the end of the phrases partly was a statistical e�ect of a strong falling contour in the

last phrase (dashed red line). The contour of the last phrase falls approximately 2 semitones.
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Figure 13: The average contour for the end of each phrase.
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This is one of the most interesting �ndings of the study. Earlier �ndings for a rising contour in the

beginning of the phrase (Huron, 2006) may instead turn out to be a rising contour in the beginning

of the song. What seemed to be a falling contour in the end of the phrases may instead turn out

to be a falling contour in the end of each song.

3.10 Tonal Resolution

The end of each song at which the melody resolves at the tonic is interesting to examine. The

examination is done in the pitch domain for a few of the last notes in major and 4/4 meter. If the

melody did not end at the tonic that song was disregarded. The number of occurrences of each of

the scale tones were counted as the melody approached the tonic in the end. The result can be seen

in Figure 14 where a darker square means a higher number of occurrences. Notice that a falling

motion is common in the end of the songs, visualized by the thicker arrow. A rising motion towards

C also occurs (thinner arrow) but is not as common.
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4 Conclusions

Melodies have been examined with the aim to �nd contextual relationships. The relationship

between pitch and time has been examined and it has been shown that they relate to each other in

several ways. Salience in one domain tends to be followed by salience in the other, and longer notes

tend to be accompanied by larger intervals. The frequency of occurrence of certain formations such

as stairs or double notes also depends on note length. Phrases have been examined as well and here

pitch and time also relate to each other, as contour repetition is almost always accompanied by

rhythmic repetition. It can be concluded that to get a good understanding in the pitch domain the

time domain must also be taken into consideration. In a similar way, to get a good understanding

in the time domain the pitch domain must also be taken into consideration.

Contextual relationships have been found in other areas as well. There seems to be a di�erence

between the pentatonic notes of the scale and the non-pentatonic notes concerning contour. It has

also been shown that to get a good understanding of phrase contour the position of the phrase in

the song must be taken into consideration. A strong upward movement in the �rst phrase and a

strong downward movement in the last phrase have been found. Besides showing the contextual

nature of music some of the �ndings are interesting on their own. Among the most interesting

�ndings are:

• A clear relationship between pitch salience and metrical salience.

• A clear relationship between interval size and note length.

• That stairs are more common in a rising formation than in a falling formation.

• Findings that the melody tends to continue in the same direction when a new direction with

small intervals has recently been established.

• That contour repetition is almost always accompanied by rhythmic repetition at the phrase

level.

• That earlier �ndings for convex phrase arches seem to mostly be a phenomena of an upward

movement in the �rst phrase of a song and a downward movement in the last phrase of a

song.
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Appendix 1

The following concepts are important to understand:

• Note length - The length of a note. A note with a length of half the measure is called a half

note, a note with a length of a quarter of the measure is called a quarter note etc.

• Measure - Consists of a repeated pattern of beats.

• Meter - The perceived number of beats and the note length of each beat in the measure.

• Phrase - A musical sentence consisting of several notes.

• Pitch - Note height, a logarithmic interpretation of the fundamental frequency.

• Interval - The distance between to subsequent pitches.

• Tonic - The �rst scale degree which means that a song in C major has C as the tonic. The

tonic is perceived as a resolution and most songs end on the tonic. The tonic chord is perceived

in a similar way.

• Dominant - The �fth scale degree which means that a song in C major has G as the dominant.

The dominant is perceived as unstable and the dominant chord is perceived in a similar way.
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