
Lexical Acquisition Made by Machine

A simulation of how a machine learns the meaning of words

Jesper Alvelid
Svandammsvägen 43

126 35 Hägersten
0762117797

jalvelid@kth.se

Fredrik Frantzén
Hampvägen 46
178 35 Ekerö
0737545165
ffra@kth.se

Degree Project in Computer Science, First Level, DD143X
CSC, Royal Institute of Technology

Supervisor: Michael Minock
Examiner: Mårten Björkman

2012-04-12

Abstract
Learning the meaning of words is a complicated task with many prob-
lems. In this study an algorithm to map words to meanings was de-
veloped regarding the three problems: handling of sentences (not only
singular words), distinguishing the correct of multiple events in a scene
and building a lexicon with no entries at the beginning. The aim of this
study was to implement an algorithm that would replicate the results
of a previous study. The results acquired confirmed the work previously
done, the same percentage of word meanings (100%) were learned with
equal conditions. To further develop the algorithm problems with words
that are spelled identically but mean different things and contexts where
events are not describing the utterances said need to be solved. This
would make the algorithm more applicable in real world situations.

Sammanfattning
Att lära sig betydelsen av ord är en väldigt komplicerad uppgift med
många problem som behöver lösas. I denna studie utvecklades en al-
gorithm som parar ihop ord med betydelser med avseende på de tre
problemen: att kunna hantera meningar (inte bara enstaka ord), att
kunna välja ut den rätta händelsen i ett sammanhang samt att kunna
lära sig ord utan att tidigare ha kännedom om några ord. Målet med
studien var att implementera en algoritm som skulle kunna replikera
resultaten i en tidigare rapport på ämnet. De erhållna resultaten fast-
ställde de i ett tidigare arbete, samma andel av betydelser av ord (100%)
lärdes in under samma förhållanden. För att ytterligare utveckla algor-
itmen måste två ytterligare problem lösas: ord som stavas likadant men
har olika betydelser och sammanhang där händelserna inte beskriver
vad som sades i sammanhanget. Detta skulle göra algoritmen mer an-
vändbar i tillämpningar inom ämnet.

Contents

1 Preliminaries 1
1.1 Word definitions . 1
1.2 Sentences and symbols . 1
1.3 Statement of collaboration . 1

2 Introduction 3
2.1 Language learning . 3
2.2 Purpose . 4
2.3 Overview of the report . 4

3 Background 7
3.1 Problems with lexical acquisition . 7
3.2 Siskind’s results . 8
3.3 Principles of exclusion . 8

4 Approach 11

5 Implementation 13
5.1 Structure of input . 13
5.2 Utterance generator . 14
5.3 The algorithm . 16
5.4 Possible and necessary symbols . 17
5.5 Principles . 18

5.5.1 Principle 1: Hypothesis coinciding with known words 18
5.5.2 Principle 2: Cross-sentence learning 18
5.5.3 Principle 3: Meaning only possible for one word 19
5.5.4 Principle 4: Meaning of words not overlapping 20

5.6 Output from the algorithm . 20

6 Results 23
6.1 Tests . 23
6.2 Tests without corruption . 25

7 Discussion 27

7.1 Problems with the implementation 27
7.2 Homonymy and noise . 28
7.3 Implementing other senses . 28
7.4 Applications . 28

8 Conclusion 31

9 Bibliography 33

Chapter 1

Preliminaries

1.1 Word definitions

Bootstrapping: To create something which from the beginning is empty.
Corpus size: The number of utterances in input.
False negative: A word where the correct meaning is falsely excluded.
False positive: A word where a false meaning is concluded to be the correct one.
Homonymy: A word which has several diverging meanings.
Hypothesis: A grouping of symbols into a possible meaning for a whole sentence.
Lexical acquisition: The process of learning the meaning of a word.
Necessary symbol: Symbols that are partly-known to be a meaning of a word,
every word has its own list of necessary symbols.
Noise: Symbols that describe what is happening in a scene, but not what is
explained by the corresponding sentence.
Possible symbol: Symbols that could be the meaning of a word, every word has
its own list of possible symbols.
Referential uncertainty: The amount of events occurring (hypotheses) whenever
an utterance is heard.
Symbol: Describes the meaning of a word.

1.2 Sentences and symbols

Throughout this text many examples will be given of sentences run through the
algorithm and symbols representing the meanings of the words. To make it easy
for the reader natural language sentences will always be seen in italics and symbols
will always be seen inside curly brackets { }.

1.3 Statement of collaboration

In this study both code writing and report writing has been done as a collaborative
work meaning that both authors have written in every section and the coding has

1

CHAPTER 1. PRELIMINARIES

been done together.

2

Chapter 2

Introduction

Most people learn their first complex language in the early stages of their life. Their
influences are people around them like their parents, grandparents and other people
related to their family. Some even might learn multiple languages if they have
multilingual influences. Very small children are not able to learn languages the
same way adults do when abroad or students do in school, because older people
have already learned a first language. A child cannot read and has no experiences
from other languages when they learn their first language. So how do children learn
without experience?

2.1 Language learning

One theory is that a child pairs what was said with what it feels in that instance.
This would mean that when a child sees a ball bouncing on the floor and hears her
mother say "The ball is bouncing!" the child assumes what was said is related to
anything of what she memorized at that moment. The child was maybe not looking
at the ball, but instead saw dad walk in from the kitchen. Not only sight but hearing
a fly buzz or feeling the cold wooden floor could be the child’s impression of the
situation. The human body is a complex machine with many different methods of
perception, so there is no doubt that pairing words with the world is a complex
problem.

Another interesting similarity is when a grown-up travels abroad. The unavoid-
able task is to learn the language of the visited country. Although most people would
have had an introduction to the new language beforehand and might be actively
studying it, much of the active learning will be from the exposure of conversations
with other people. Some languages, like Spanish and Italian, are highly related and
will therefore be learned faster by many people, and some are that much different it
is hard to recognize any words at all. Although, if a child is able to learn a language
only by exposure of conversations then so should also adults unless this ability is
lost on the way to adulthood.

3

CHAPTER 2. INTRODUCTION

2.2 Purpose

Jeffrey Mark Siskind (Ph.D. in Computer Science) built a system and developed an
algorithm [1] that tests the learning acquisition task young children are faced with.
The system is very slimmed down from factors of the process as it only covers the
sensory ability sight and not for example touch or taste. This paper is in essence a
replication of the problem Siskind treated.

In this study an exploration of what possibilities there are for machine learning
of the meaning of words, simply called lexical acquisition, was conducted. The
aim was to implement an algorithm which given a natural language sentence and a
list of events occurring (hypotheses with symbols such as {GO}), could decide the
meaning of each word in the sentence, i.e. which symbols should be linked to each
word.

The main purpose of the thesis was to see if a replication of Siskind’s results
could be acquired.

2.3 Overview of the report

This report begins with a presentation of the different problems that need to be
solved in order to receive a mapping of meanings to words as well as how the
algorithm developed [1] works which was closely followed in this study.

As the aim of this study was to replicate Siskind’s results, a system that works
similarly had to be developed. Some interesting factors, though not acknowledged
in this study’s implementation, will be presented here to later be discussed in the
discussion section.

In the approach section it is described what was needed to take into account in
order to implement the system and the algorithm. Additionally, it shortly shows
how the algorithm will be tested and how the natural language sentences will be
created.

In the implementation section, it is explained in detail how the principles of
learning the meaning of words were implemented, which are the parts of the al-
gorithm, and how they work on an example. Also in this section it is shown how
the generator constructs the sentences along with their hypotheses, which become
the input to the algorithm, how the input is structured and how the algorithm
handles the input until the words meanings are concluded.

The result section shows how effective the method used was and if the algorithm
actually learned the correct meaning of the words, and to which extent. The initial
tests show whether the implementation is able to acquire a lexicon and the results
of another test show what difference it makes to exclude some problematic words.

The discussion section mainly focuses on factors that are of importance in the
real world when learning languages and how these factors could be integrated in the
algorithm to make it more efficient. Homonymy and noise is also to a great extent
discussed here and what difference it would make to implement it.

4

2.3. OVERVIEW OF THE REPORT

Finally a comparison between the results acquired and Siskind’s is made to
conclude any similarities and the conclusions which can be drawn from the results
and the discussion is pointed out.

5

Chapter 3

Background

3.1 Problems with lexical acquisition

The implementation in this study uses a stripped down approach of the lexical
acquisition task a normal child encounters, though to learn the meaning of words is
still a complicated task. To parse the meaning of a sentence, and break it down into
the meaning of individual words from just a scene is quite difficult. Because given
a sentence there is not an easy way to figure out what the meaning of a single word
is. Any word in a sentence is a candidate of describing anything in the particular
context, particularly at the beginning when not a single word is known.

Thereby, for lexical acquisition to work on a machine, specification of how to
map meanings to words and of which problems exist is of high importance. The
different critical problems needed to be acknowledged and solved by the algorithm
are:

• Handling of sentences

• Distinguish the correct event of multiple events in a scene (referential uncer-
tainty)

• Build a lexicon from having an empty lexicon (bootstrapping)

Siskind developed two algorithms in his study. The first solves the three problems
described above and the aim of this study was to implement an algorithm handling
these problems.

However, Siskind also constructed another algorithm which handles two addi-
tional problems which makes the lexical acquisition task even more complicated,
these are:

• Ignore instances where the events in the scene are not related to what is being
said (noise)

• Handle words with multiple meanings (homonymy)

7

CHAPTER 3. BACKGROUND

3.2 Siskind’s results

Siskind found that there was a correlation between the amount of unique words used
in the simulation and the corpus size: the more unique words in the simulation, the
larger corpus was needed to build a lexicon where 95% of the words had converged,
but the corpus size grew linearly to the amount of unique words. Increasing the
number of events in the scene (referential uncertainty) or the number of objects in
the scene did not affect the corpus size significantly.

When excluding noise and homonymy from the test the number of false positives,
e.g. words to which the algorithm concludes a false meaning, was always zero, which
means it learned all words correctly. As the noise rate or homonymy occurrences
increased, the number of false positives grew and an exponentially larger corpus
was needed.

3.3 Principles of exclusion

Applying the principles of learning the meaning of words is to a large extent a case
of excluding possible meanings. Because when introduced to a new word it can
have so many possible meanings, in fact all possible meanings for the sentence the
word occurred in are possible meanings for the word itself. To conclude the correct
meaning of the word the only way to go is to accordingly exclude meanings which
cannot be the explanation of the word.

Solving of the lexical acquisition problem is done by specifying and following
principles of which the implementation in this study has four. Hereafter follows
explanations of them, including them written in logical expressions.

The symbols used, which will be thoroughly explained in the implementation
chapter, are the following: s = word, S = sentence, m = main hypothesis constructed
from the sentence, M = all hypotheses to a sentence, P(s) = possible symbols list
for s, N(s) = necessary symbols list for s, F(m) = set of word symbols in m, F1(m)
= all symbols existing only once in m

• Hypotheses coinciding with known words - The first principle (by Sis-
kind called constraining hypotheses with partial knowledge [1]): discard every
hypothesis to an utterance where one or more words are partly known but do
not coincide with the hypothesis.

M ← {m ∈M | ∪s∈SN(s) ⊆ F (m) ∧ F (m) ⊆ ∪s∈SP (s)}

• Cross-sentence learning - The second principle (by Siskind called cross-
situational interference [1]) describes that by comparing possible meanings of
a word that exists in multiple sentences, often only one meaning is possible
for the word in all sentences and must therefore be the correct one. This is
probably the most important principle as it quite easily can determine the
correct meaning of a word with just a few sentences.

for s ∈ SdoP (s)← P (s) ∩ ∪m∈MF (m)

8

3.3. PRINCIPLES OF EXCLUSION

• Meaning only possible for one word - The third principle (by Siskind
called covering constraints [1]) states that if a symbol can be excluded as a
possible symbol for all but one word in a sentence, it must be the meaning,
or part, of that word.

for s ∈ SdoN(s)← N(s) ∪ [(∩m∈MF (m)) \ ∪s′∈S,s 6=s′P (s′)]

• Meaning of words not overlapping - The last principle (by Siskind called
the principle of exclusivity [1]) works in a sense similar to the third principle.
When a symbol is known to be part of the meaning of a word, it can be
excluded as the meaning of all other words in the sentence to prevent over-
lapping.

for s ∈ SdoP (s)← P (s) \ [(∩m∈MF1(m)) ∩ ∪s′∈S,s 6=s′N(s′)]

9

Chapter 4

Approach

The goal of this study was to replicate Siskind’s results, therefore a program with an
algorithm similar to his for mapping meanings to words needed to be developed. In
addition, an utterance generator that maps utterances to combinations of meanings,
hypotheses, was needed. The algorithm includes the first four of Siskind’s rules [1],
which were reformatted into the principles described in section 3.3.

The principles used in the algorithm that needed to be implemented were clearly
specified by Siskind in both text and by the means of logical expressions. As such
they were relatively easy to break down into pieces thus possible to implement step
by step.

To test the principles we needed a large file with utterances paired with hypo-
theses. Generation of utterances therefore had to be done dynamically and because
of that a format based on the Backus-Naur Form [3] was developed. The format
is built up by different rules for expressions, like "Subject verb object". Words are
grouped with similar ones enabling them to be randomly chosen from the group to
then be inserted into the expressions. Whenever a meaningful word is selected to
be included, the corresponding symbols are paired with the expression.

11

Chapter 5

Implementation

The implementation in this study consists of two parts, the utterance generator
and the algorithm. The utterance generator’s purpose is to generate natural lan-
guage sentences with related hypotheses and the algorithm’s, in turn, to parse the
input and conclude the meaning of words. Both the utterance generator and the
algorithm were implemented in the programming language java and can be run on
any standard PC even from many years back.

5.1 Structure of input

The input to the algorithm had to be constructed in a way that was easy to interpret
and accordingly be able to use the rules on. The sentences describing the scene are
simply put in text strings, which then in the algorithm are split into individual
words.

However, the most important part of the structure of the input is the mean-
ings, called symbols individually and called hypotheses when grouped into possible
meanings of whole sentences. One example is the sentence John goes to school
which meaning can be represented by the hypothesis {GO, John, TO, school} in
which {GO} and {John} are symbols. In this case {GO, TO} is the meaning of
goes where {TO} signifies just as to in natural language in the case of go to, that
something is moving towards something else. The symbol {TO} however has only
this meaning unlike the word to, and does not vary depending on the context. Some
words might not be paired with any symbol and to is one of them, as to does not
have a meaning by itself.

Many symbols can be used to describe the meaning of a word, for example
{GIVE, TO} could have been used instead of {CAUSE, GO, TO} to describe give.
But to keep the amount of symbols to a minimum and to test the algorithm, the
decision was made to use symbols that can be reused in other meanings e.g. {GO}
symbolizing movement and {TO} symbolizing direction.

13

CHAPTER 5. IMPLEMENTATION

5.2 Utterance generator

The first significant part of the implementation is the utterance generator. In order
to produce sentences of natural language, the generator needed to be extensively
developed. The utterance generator developed in this study breaks down the build-
ing of a sentence into words and expressions and is through that, with a large set of
rules defined in its input file (a sample is given below in listing 5.1), able to generate
natural and varying sentences.

Listing 5.1. The input with rules to the utterance generator.

/∗ de f ined verb s at the top in d i f f e r e n t t en s e s ∗/
GO = goes went
EAT = eat s ate

U { I Vf }
Vf {

V[0]
V[1]

}
V[0 , 1] {

GO to I | GO TO
EAT F FOOD | EAT

}
I {

PERSON
F ANIMAL

}
PERSON {

Carl | Carl
Susan | Susan

}
ANIMAL {

cat | cat
}
FOOD {

banana | banana
apple | apple

}
F {

the
a

}
/∗ p o s s i b l e sen tences wi th t h i s format
" Susan went to the ca t " or " Carl ea t s a banana " ∗/

14

5.2. UTTERANCE GENERATOR

Firstly the generator builds an utterance by fetching a random instance belong-
ing to the utterance start clause ("Subject verb"). If "branch" symbols occur in that
instance, the generator will fetch a random instance from that branch to include
in the utterance. Simultaneously the generator fetches symbols paired with the
selected instance in the branch, which later comes together as a hypothesis.

After the first hypothesis has been created (which most likely is the only cor-
rect one) the generator continues generating utterances (as many as the referential
uncertainty number) but discards the utterance and only adds the new hypothesis
as a hypothesis to the first utterance. This is then repeated to create a rather large
corpus of utterances with related hypothesis. An example of the output of the ut-
terance generator, which is then used as input to the algorithm, is shown in figure
5.2.

Following is an example of how a tree of "branches" develops when an utterance
is generated. Construction of different utterances is possible here, for example
John gives a cat a ball or John gave the cat a ball, which is then paired with {John,
CAUSE, GO, TO, cat, spherical-toy}, as a main hypothesis. This as John is coupled
with {John}, give a ... a ... with {CAUSE, GO, TO}, cat with {cat} and ball with
{spherical-toy} as seen in figure 5.1. Additional hypothesis can then be added by
constructing a new utterance John gives the cat a jelly-rat, discard the utterance and
keep the hypothesis {John, CAUSE, GO, TO, cat, jellyrat}. The more hypotheses
the higher the referential uncertainty.

Figure 5.1. A small example of how a sentence is constructed. Boxes in red are the
ones chosen, the rest were possibilities. F and O are examples of "branch" symbols.

15

CHAPTER 5. IMPLEMENTATION

Figure 5.2. The output file from the utterance generator can look like this with the
natural language sentence first, and following inside curly brackets its hypotheses.

5.3 The algorithm

The other important part of the implementation is the algorithm. It is constructed
of the four principles mentioned earlier and hereafter explained in detail how the
implementation uses them on an example to conclude the meaning of the words.

The algorithm takes as input the output from the utterance generator. Then it
goes through the input, sentence by sentence one at a time, looking for new words
and words which meaning has not been concluded. If there exists such words in
the current sentence, the principles are run on the sentence and the new words are
added to the wordlist. When possible and necessary symbols for a word coincide,
the word is added to the dictionary. Below in listing 5.2 follows pseudocode of the
algorithm:

16

5.4. POSSIBLE AND NECESSARY SYMBOLS

Listing 5.2. Pseudocode of the algorithm.

Algoritm input /∗ input i s a l i s t o f t u p l e s con ta in ing a
sentence and a l i s t o f hypo theses as in f i g u r e 5.2 ∗/

{
w o r d l i s t = NULL /∗ has type : (word , N(word) ,

P(word) , Concluded (word)) ∗/

for each tup l e in input
// t u p l e = (sentence , hypo theses [])

{
i f (s entence has new words)
{

add these words to the w o r d l i s t with an
empty N(word) and Concluded (word)

add a l l symbols in a l l hypotheses ,
r e l a t i n g to the sentence , to P(word)

}

remove hypotheses accord ing to p r i n c i p l e 1

for each remaining hypothes i s
{

apply p r i n c i p l e 2
apply p r i n c i p l e 3
apply p r i n c i p l e 4
i f (N(word) == P(word)) //word l earned

add c o l l e c t i o n o f symbols in N(word)
to Concluded (word)

}
}

}

5.4 Possible and necessary symbols

The implementation of the principles is built up by removing and filling lists paired
with the words. Every word is paired with two lists: the necessary symbols list
and the possible symbols list, representing the sets N and P respectively seen in
the logical expressions of the principles in section 3.3. The possible symbols list
contains all symbols that cannot be excluded as a meaning for the word. The
necessary symbols list contains only the symbols that the algorithm has found to
partly be the meaning of the word. When the necessary symbols list contains the

17

CHAPTER 5. IMPLEMENTATION

same symbols as the possible symbols list it is concluded which symbols are to be
paired with the word and therefore the meaning of the word have been learned.

5.5 Principles

5.5.1 Principle 1: Hypothesis coinciding with known words

Example: John walks very fast.

Hypotheses:
(a) {WALK, John, FAST}
(b) {GO, John, TO, school}
(c) {WALK, school, TO, John, GO}

After the algorithm has processed a number of utterances, the lists for the words in
the example might look something like table 5.1.

Word Necessary symbols Possible symbols
John {John} {John, Mary, GO}
walks {WALK} {WALK, TO}
very {} {TO, John}
fast {} {FAST, TO}

Table 5.1. After principle 1

If a hypothesis excludes any necessary symbol that is known to be in the sentence,
the hypothesis will be discarded as it is obviously not a valid hypothesis to the
sentence. The necessary symbols {John} and {WALK} are both in (a) and (c)
which means it fulfilled the first criterion to be a valid hypothesis. Hypothesis (b)
is missing the symbol {WALK} and should therefore be discarded.

The second criterion that needs to be fulfilled is that all the symbols in the
hypothesis need to be included in the combined list of possible symbols. Symbols
not in any of the possible symbols lists are known to not be part of the meaning
of the sentence. All symbols in (a) are found in the union of the possible symbols
lists, (c) however contains the symbol school which cannot be found in the possible
symbols list which leaves us with only one valid hypothesis.

5.5.2 Principle 2: Cross-sentence learning

When one or more hypotheses have passed the first principle, what is being done
is removal of the possible symbols for each word that are not contained in the
combined list of symbols of the hypotheses. This means that the possible symbols

18

5.5. PRINCIPLES

of a word, that was gathered from other sentences, which does not match with the
hypothesis for the latest sentence will be removed, and only the symbols that all
sentences had in common will be kept.

Word Necessary symbols Possible symbols
John {John} {John}
walks {WALK} {WALK}
very {} {John}
fast {} {FAST}

Table 5.2. After principle 2

After applying the second principle with (a), table 5.1 is updated to table 5.2.
Comparing table 5.1 and 5.2 shows that the symbols {Mary} and {GO} are removed
from the possible symbols list for John. The same is applied to the rest of the words
which removes {TO} from their lists.

5.5.3 Principle 3: Meaning only possible for one word

A symbol that is apparent in all hypotheses and only appears in one of the words’
possible symbols lists, is part of the meaning of that word and will be be moved to
the necessary symbols list.

Word Necessary symbols Possible symbols
John {John} {John}
walks {WALK} {WALK}
very {} {John}
fast {FAST} {FAST}

Table 5.3. After principle 3

In this case the symbol {FAST} only occurred in the possible symbols list of the
word fast and is therefore moved into the necessary symbols list of that word. The
symbol {John} appears for the word John and very so the symbol {John} is not
necessarily the meaning of very. {WALK} appears only for the word walks in this
sentence and must be the meaning of that word (the algorithm already had that
figured out from a previous run in this case).

19

CHAPTER 5. IMPLEMENTATION

5.5.4 Principle 4: Meaning of words not overlapping

For each word in the sentence, the symbols which only appear once in every hypo-
thesis and also are necessary symbols in any of the other words of the utterance are
removed from the possible symbols lists.

The symbol {John} only appeared once in the hypothesis and was already known
to be the meaning of one of the words in the utterance. Thus the symbol {John}
can be removed from all other possible symbols lists. In this case from the word
very.

When a row looks like any of those in table 5.4, when the necessary symbols
set is equal to the possible symbols set, the algorithm will assign that set as the
meaning for the word.

Word Necessary symbols Possible symbols
John {John} {John}
walks {WALK} {WALK}
very {} {}
fast {FAST} {FAST}

Table 5.4. After principle 4

5.6 Output from the algorithm

After the algorithm have been run on all the input, the different lists have been
filled up with words and symbols. Here the output from the algorithm is shown
in figure 5.3 and 5.4. The figure shows the output when having 500 utterances as
input (figure 5.3) and 100 utterances as input (figure 5.4). A referential uncertainty
of 5 was used in both examples. npd The first column has the word, the second
necessary symbols for the words meaning, the third possible symbols for the words
meaning and lastly the fourth (if not empty) the concluded meaning of the word.

20

5.6. OUTPUT FROM THE ALGORITHM

Figure 5.3. A selection of the output from the algorithm, where all words have been
learned.

21

CHAPTER 5. IMPLEMENTATION

Figure 5.4. A selection of the output from the algorithm, where not all words
have been learned as there was too few sentences. For example can shoe still include
{John}, {CAUSE}, {GO}, {TO} and {shoe} in its meaning.

22

Chapter 6

Results

6.1 Tests

Tests were made with varied amount of utterances and varied amount of sets of
symbols for each utterance to find how they affected the learning task. There were
about 100 different words in total for the system to learn and about 50 different
symbols. About 250 utterances were needed to acquire the meanings of 80 words.
The rest of the words could not be acquired no matter the corpus size (see table
6.1 and illustrated in figure 6.1). Probably as a result of the lexicon being corrupt
because the words to, is and was in the utterances are homonymous. Another
possible cause is that some words only appears with the same set of words and
with about the same set of symbols e.g. John eats the banana, where the word
banana is said only when the symbols {EAT} and {banana} occur. Changing the
number of symbol sets paired with the utterances (referential uncertainty) did not
affect the learning task noticeably when using a corpus size of 250 (see table 6.2 and
illustrated in figure 6.2) which is proof that the principles of exclusion is working.

Corpus size 50 150 250 500
% of words acquired 50% 70% 80% 80%

Table 6.1. Showing average lexicon size acquired using a referential uncertainty of
1 when varying corpus size.

Referential uncertainty 1 5 10 20
% of words acquired 80% 80% 80% 80%

Table 6.2. Showing average lexicon size acquired using a corpus size of 250 when
varying the referential uncertainty.

23

CHAPTER 6. RESULTS

Figure 6.1. An illustration of table 6.1

Figure 6.2. An illustration of table 6.2

24

6.2. TESTS WITHOUT CORRUPTION

6.2 Tests without corruption

Further tests were conducted where input that could corrupt the lexicon was ex-
cluded (described in 6.1), as well as input where the algorithm could not determine
the meaning of words because two or more words appeared only together. When the
corpus size was large enough, around 250 utterances (see table 6.3 and illustrated in
figure 6.3), the meanings of all words were learned, which confirms Siskind’s results
[1] that without homonymy all words shall be learned.

Corpus size 50 150 250 500
% of words acquired 50% 85% 99% 100%

Table 6.3. Tests without corrupting input.

Figure 6.3. An illustration of table 6.3

25

Chapter 7

Discussion

7.1 Problems with the implementation

Because the implementation does not handle homonymy several of the words will
not receive meanings, for example the word is. In many instances the word would
be mapped to the symbol {BE} (i.e. John is a man) but in others it is just a
redundant word not mapped to any symbol (i.e. John is walking).

The words is, was and to were identified to corrupt the lexicon. In Siskind’s
simulations [1] without noise and homonymy all words were paired with the right
meaning. Prevention of that happening is easiest done by excluding these words
or at least only using the words in instances where they have the same meaning, a
problem though as that means fewer utterances can be generated.

Another problem is that it is time consuming to add new utterance formats that
make sense. Separate words such as verbs, nouns and adjectives are easy to add
individually, but it is not possible to add these dynamically which makes it quite
time consuming to add a reasonable amount of words (that does not corrupt the
lexicon).

In this implementation there are multiple symbols assigned to each word but
there is no way of pairing multiple words to one symbol unless the words are not
separated by spaces, where the algorithm will identify the combination as an entirely
new word instead.

The algorithm does not know how to arrange the symbols in a manner that it
can create a sensible functional expression i.e. { GO(John, TO(school)) }. This is
not a problem for the actual lexical acquisition task, but it limits the amount of
applications based on this algorithm.

However, to solve this problem two additional methods was developed by Siskind
[1] and can be implemented though that is outside the scope of this study.

27

CHAPTER 7. DISCUSSION

7.2 Homonymy and noise

The implementation in this study handles the three problems: handling of sentences,
referential uncertainty and bootstrapping. There exists even more possible problems
such as that a scene can be falsely described, which is called noise. A description
of a scene in just one sentence is often not complete as it can be done in many,
many ways. Which event is actually referred to in the sentence? For example the
utterances It is sunny and The horse stood in the meadow can both describe the
same scene, but signifies two completely different events. Noise however is the case
when the utterance does not refer to any of the events in the scene.

Another possible problem called homonymy is that a word, depending on the
context, could have different meanings. An example is the word right. In some
cases it means that something is correct, in some it explains that someone should
be able to do something and it can also signify a direction.

Siskind has a solution for these problems [1], but according to his own simulation
a homonymy rate of 1.68 and a noise rate of 5% with a vocabulary size of 10,000
words results in about 20 % false positives and false negatives in the lexicon, a result
which is far from reliable.

7.3 Implementing other senses

This implementation mainly focuses on visual input, most utterances are structured
to what is visually observable (i.e. John walks to the store). What this means is
that the degree of referential uncertainty increases if more sensory input is imple-
mented (i.e. {CAUSE, sun, WARM, face} as a hypothesis to John walks to the
store). However, simulations of this algorithm have shown that the rate of lexical
acquisition is unaffected by the increase in referential uncertainty (see table 6.2),
Siskind acquired similar results [1]. Consequently there should not be a problem to
implement symbols for hearing, touch, taste, smell and balance. The same applies
for facial expressions and body language. The referential uncertainty increases but
does not affect the acquisition task.

7.4 Applications

One present-day application would be to combine this algorithm with a scene
interpreter- and a speech recognition system. This scene interpreter would have
to be able to detect events in a scene or from the real world, in which area Siskind
also has made some work [2]. The events would then be converted to a set of sym-
bols which the algorithm is able to understand. These events would then be paired
with words identified by the speech recognition system. Utilization of this could be
in very complex systems like conversation robots able to interact with the world.
Other computer vision modules could be integrated like a nervous system able to
detect pressure (i.e. touch).

28

7.4. APPLICATIONS

A problem that might arise is if the system learns a word incorrectly. Currently
this means that the lexicon is broken, the algorithm cannot reset incorrect meanings
because the algorithm has no way of telling a correctly learned word apart from an
incorrectly learned word. The system must therefore be able to relearn a word to
be practical. Thinking about possible applications like this gives ideas about how
the algorithm can be developed further.

29

Chapter 8

Conclusion

Conclusions that can be drawn are that the results acquired in this study are abso-
lutely comparable with that of Siskind’s [1]. If a comparison is made between the
implementation in this study and the results Siskind acquired with only the use of
the principles used in this study, there is no difference in the percentage of words
learned (100% in both cases) if compared to the test cases without homonyms in
this study (see table 6.3 and illustrated in figure 6.3), as consideration regarding
homonymy was not part of this implementation. Consequently the aim for this
study, to replicate Siskind’s results was achieved.

Moreover, another interesting conclusion is that referential uncertainty does
not affect how many words are learned as the results acquired show no difference
regardless of the number of hypotheses for an utterance, precisely what Siskind’s
study [1] also showed. Thus the algorithm has been very well implemented in this
study regarding this problem.

In addition, to further optimize the lexical acquisition algorithm what could be
done is to implement solutions to homonymy and noise. This is absolutely necessary
in order to be able to use the algorithm on real world languages, with much more
complicated texts and sentences than the ones treated in this study, and achieve a
passable grade of word meanings acquired.

31

Chapter 9

Bibliography

1. Siskind JM. A computational study of cross-situational techniques for learning
word-to-meaning mappings. Cognition. 1996;61(1-2):39-91.
2. Siskind JM. Grounding language in perception. Artificial Intelligence Review.
1995;8:371-91.
3. Treutwein B. Syntax summary. [updated - ; cited 2012 Apr 10]. Available from:
http://www.lrz.de/∼bernhard/Algol-BNF.html
4. Anick P, Pustejovsky J. An application of lexical semantics to knowledge acquis-
ition from corpora. COLNG 1990 Volume 1. 1990.
5. Ogino M, Kikushi M, Asada M. How can humanoid acquire lexicon? 2006.
6. Kit C. How Does Lexical Acquisition Begin? A cognitive perspective. Cognitive
Science. 2003;1(1):1-50.
7. Yu C, Ballad DH, Asalin RN. The Role of Embodied Intention in Early Lexical
Acquisition. Cognitive Science. 2003.

33

