
Visibility in PostGIS

Determining the visible buildings in a city environment using a spatial database.

KARL JOHAN ANDREASSON, CHRISTIAN WEMSTAD

Batchelor’s Thesis at NADA
Supervisor: Michael Minock
Examiner: Mårten Björkman

Abstract
To be able to determine which building a pedestrian can
see by the naked eye for any given coordinate is the core of
this paper. The project is a part of the SpaceBook project,
which caters to help tourists and urban workers in a city
environment. Therefore it is important that the program
has a tight correspondence to the real world.

Maps are exported from OpenStreetMap and imported
into PostGIS, an extension to PostgreSQL. Functions are
constructed in PostGIS to determine which buildings are
visible from a given GPS-coordinate. Checking the center of
the buildings as well as all the corners of said building does
this. The program has inherited execution time constraints
from the SpaceBook project. These are met for relatively
small radius around the pedestrian (500 meter radius).

Optimization of the program is hard to accomplish due
to the rather complex building placement in a city. There
is no safe assumption of the city environment to be made
that can be used to further accelerate the execution time
of the program.

Referat
Synlighet i PostGIS

Att kunna avgöra vilka byggnader en fotgängare kan se för
någon given GPS-koordinat är den centrala delen i den-
na rapport. Projektet är en del av SpaceBook-projektet
vilket har som mål att hjälpa turister och stadsarbetare
i en stadsmiljö. Det är därför viktigt att programmet har
en tydlig verklighetsanknytning.

Kartor exporterades från OpenStreetMap och importer-
ades in i PostGIS, ett tillägg till PostgreSQL. Funktioner
konstruerades i PostGIS för att avgöra vilka byggnader som
är synliga från en given koordinat. För att uppnå detta
kontrolleras synligheten av centrum samt alla hörn på byg-
gnaden. Det finns tidskrav på exekveringstiden på grund
av SpaceBook-projektet. Dessa uppnås när en relativt liten
radie runt positionen väljs (ca 500 meter).

Optimering av programmet är komplicerat på grund av
den komplexa placeringen av byggnader i en stad. Därför
är det svårt att hitta säkra antaganden som kan utnyttjas
för att optimera programmet ytterligare.

Statement of collaboration

The work done for this project can be divided into three parts:

1. Possibility and background work

2. Developing of program and functions

3. Report writing

In the first part work was mostly done together. The second part was divided so
that Karl Johan was more focused on the database functions while Christian mostly
focused on developing the framework for testing the functions. In the report writing
part the work was divided evenly. Karl Johan focused on results and discussions
while Christian focused on the implementation. Though this was just for the first
draft of the report, the other person proofread and extended the text when needed.
Proofreading of the whole report was done together.

Contents

1 Introduction 1
1.1 Overview . 1

2 Background 3
2.1 The SpaceBook Project . 3
2.2 Tourism . 3
2.3 Computer Games . 3
2.4 Resources . 4

3 Approach 5

4 Analysis 7
4.1 Implementation . 7
4.2 Results . 10
4.3 Discussion . 11

5 Conclusion 13

Bibliography 15
References . 15

Appendices 15

A Program 17
A.1 Example Output . 17
A.2 Code . 19

Chapter 1

Introduction

For a pedestrian to be able to navigate an unknown city, or part of a city, and get
instant information about the buildings around her that are in sight. To help make
this a reality was the purpose of this project.

This approach, giving feedback based on location, makes it possible to let
tourists wander off and explore without the need of organized tours. This is un-
heard of for the broad masses; the only tourist market, which has been active in
this regard, is in the museums where they provide a headset for the visitors with
pre-recorded information. To scale this approach up for a whole city is a challenge.

To be able to determine the visibility for a specific point in a city in an effective
manner, spatial requests are needed. To make this effective, an obvious approach
was to do this on a database level using a spatial database. A spatial database is a
database that is optimized for querying data regarding relations in space. This can
be done with points as well as polygons in the space, polygons that could represent
the outlines of buildings.

1.1 Overview

In Chapter 2 an explanation of the context of the project is presented along with
relevant information of the situation as well as necessary information of the resources
used in the project.

Chapter 3 focuses on what was done in the project and answers questions of the
reader might have of what the actual approach to the problem at hand is and what
is done to solve the problem.

The section 4.1 Implementation provides a more in depth view of how the pro-
gram solves the problem was implemented. A thorough review of the code is pre-
sented with illustrations to give an increased understanding of the implementation.

The following section Results all the results are presented, this includes the raw
data such as timings of the implementation with different settings activated.

In the section 4.3 Discussion all the data presented in Results are reviewed and
discussed. For example what is the maximum distance a tourist is interested in a

1

CHAPTER 1. INTRODUCTION

building? Is this the same as an urban worker? Another aspect is the question
whether there are any ways to improve our algorithm? Can one assume anything
of building arrangement in a city environment?

In the last chapter a conclusion of the project is presented, this includes whether
or not it was possible to achieve the SpaceBook project goals. The chapter also
contains a summary of what has been done to achieve this conclusion. Possible
source of errors regarding the implementation are also presented.

2

Chapter 2

Background

2.1 The SpaceBook Project

This project is a part of the SpaceBook project, which is a “speech-driven, hands-
free, eyes-free device for pedestrian navigation and exploration”. The main target
group of the SpaceBook project is tourists and urban workers [2].

2.2 Tourism

Tourism has always been a huge market and easing the exploration of the city for the
tourists has been and always will be relevant. In Stockholm alone the tourists stayed
at sleeping accommodations over 10.5 million times during 2011. This is an increase
of 5% compared to 2010. This ascending trend is not exclusive to Stockholm. For
all of Sweden the guest nights increased with 1% [3].

Sightseeing buses and other travelling services with a guide describing the sur-
roundings to the tourists is a common way of exploring the city. Designing the
tour themselves and executing it in their own pace makes the tour more interesting
for the tourists. This is because they are able to focus on what they think is the
more interesting parts of the tour. They will also not have to follow the time sched-
ule for when the tour buses and making the starting times of sightseeing. This is
done by letting them wander off with a device that takes the tourists GPS position
and determines the buildings visible to her with additional information about the
buildings.

2.3 Computer Games

Similar challenges are present in computer games. Determining the visibility in a
game is commonly done for person playing a game in a three dimensional simulation
of the game environment. The way most computer games tackle this issue is to load
in the whole environment and then model the view of the player based on that.

3

CHAPTER 2. BACKGROUND

This is not possible for this project implementation because the environment the
program is to model is significantly larger than the counterpart in computer games.

Also computer games have a quite long loading phase of the data that is to be
used in the program, this is not desirable in the program because of the way it is
supposed to be used on the move. If the program takes too long to load the tourist
might be discouraged to use the whole final product.

2.4 Resources
To store the data about the buildings and surroundings in the city, a database is
necessary. The database of choice in this project is PostgreSQL. PostgreSQL is re-
leased under MIT-License and thus is a free and open source database. PostgreSQL
is an object-relational database management system that uses the Structured Query
Language and implements most of the SQL:2008 standard, which is the ISO stan-
dard [4].

Just PostgreSQL alone is not enough to complete the questions to the database,
also called queries. To make the database able to answer the required queries an
extension to PostgreSQL called PostGIS is needed. PostGIS enables the database
to act as a spatial database and thus enabling spatial queries. A spatial database
is designed to store and query data of their relations with other objects in space. A
spatial query is a query of relations between objects in space [1].

OpenStreetMap is an open source map of the whole world that makes it free to
use and edit as you please, this also implies that the data entered to OpenStreetMap
are from volunteers. The license used by OpenStreetMap is Creative Commons
Attribution-ShareAlike 2.0 [5]. To convert the data extracted from OpenStreetMap
to SQL queries an open source Java program was used. This conversion was done
outside of this project.

4

Chapter 3

Approach

This project was created to see if there was a possibility to create a program deter-
mining the visibility in a city. Due to the mobile nature of the SpaceBook project
there are time constraints that needed to be taken into consideration.

The time constraints promoted an approach in a low level nature. A natural
calculations level for this was therefore on a database level. To determine the
possibility of the project and efficiently implement functions a spatial database was
needed due to the spatial requests. The spatial database of choice in this project
was PostGIS, an extension to PostgreSQL. When determining the possibility of the
project, the approach was to explore the library functions available in both PostGIS
and PostgreSQL.

Being able to make accurate decisions of visibility in a city environment the data
used was based on data extracted from OpenStreetMap using an open source Java
program. To avoid total dependence on the data given by the extraction program,
a set of results will be double-checked in the actual place by visual determination.

The Java-program used to extract data from OpenStreetMap exports had no
functional way of determining the height of a building. This was because the map
in OpenStreetMap does not always have a height value. Due to this every building
was considered to be of infinite height.

How far can one see in a city environment and after what distance are the
buildings not relevant to the observer any more. These questions were rather specific
to the city and the approach was to let the end user decide at what distance buildings
should be evaluated. Now a user or an application using this implementation could
decide which distance is reasonable of how far a tourist or an urban worker can see
and still find the information useful.

A function that determines the visibility of a building from a position in the city
was central in this project. The definition of visibility used in this project was that
if one point of the building was in sight, the building was deemed visible. Being
able to determine the visibility of a building the central point of the building along
with the corners should be checked. If one of these points was visible the building
was deemed visible from that position. To be able to determine which buildings

5

CHAPTER 3. APPROACH

are visible around the coordinate the distance to every building is calculated. The
buildings that are within the given distance are then evaluated for visibility.

The testing and benchmarking of the program was done on a laptop with as few
other processes running as possible. The mean value of several measurements was
used to further strengthen the results.

6

Chapter 4

Analysis

4.1 Implementation

The first line of action when trying to solve this problem was to write a function to
determine if the center of a building is visible. The central point of the building is
never in sight from the position of the pedestrian. However, if no buildings intersects
a line between the center and the position of the pedestrian, one part of the building
must be in sight. This is the part of the wall that blocks the center of building from
being in sight.

The center of the building was located and the buildings that intersects with a
line between the center and the point where the pedestrian was standing were identi-
fied (Seen as the red point in the figure 4.1). Accessing the center of the building was
achieved by using the built-in PostGIS function called ST_Centroid(geometry).
This function takes a standard PostGIS geometry and locates the center point in
the geometry (Seen as the blue point in the figure 4.1). From this point a line was
created using ST_MakeLine(geometry, geometry). This function returns a
PostGIS LineString from the two PostGIS geometry parameters (Seen as the black
line in the figure 4.1).

Figure 4.1. Visibility of the center point of building V.

7

CHAPTER 4. ANALYSIS

To find all the intersections on the line between the building center and the
pedestrian, the function ST_Intersects(geometry, geometry) was used. The
intersects function takes the LineString as the first parameter and a building as
the second parameter and returns true if the building intersects with the line. The
intersects function is looped through all the buildings in the database, except the
building the pedestrian is looking at, to find possible intersects (An intersection is
shown in figure 4.2).

Figure 4.2. A building is intersecting the visibility of the building V.

Since the visibility of a building is not only determined if the center of a building
is visible or not; an extension to the first algorithm was made. In this extension
a function for checking every corner of the desired building was included, to get a
more precise determination of visibility. Using the same reasoning as for the center
of the building, a line was defined between the pedestrian and the corner. If no
other buildings intersects this line, the corner was deemed visible since either the
corner is in sight or the part of the wall that blocks the corner is.

To achieve this, the program first needed to find out how many corners the de-
sired building had. Using the buildings polygon as the parameter to the PostGIS
function ST_ExteriorRing(geometry) an outline of the polygon was returned as
a LineString. This LineString is used in the PostGIS function ST_NumPoints(geometry)
and the function will then return the number of corners of the building. When the
program has the number of corners it will loop a new query for every corner, contain-
ing the function ST_PointN(geometry, int) with the current corner as a param-
eter. The PointN function will then return the point of the current corner. Using
this point and the pedestrian point with the functions ST_MakeLine(geometry,
geometry) and ST_Intersects(geometry, geometry) in the same way as for
the center point will return whether each corner is visible (As illustrated in the
figure 4.3).

This solution did not consider the fact that different buildings have different
height since we in the beginning of the project did not have access to a database
containing the height of the buildings, meaning that every building is blocking the

8

4.1. IMPLEMENTATION

Figure 4.3. Visibility of the corner points of building V.

way even if it in real life is just a foot tall.
The next stage in the implementation was to be able to list all buildings that

are visible from a specific location. This was achieved on the database level, using
the database scripting language PL/pgSQL[6] inside the functions. A function was
created that takes the input parameters distance and a position and returns the
identification number of each building that are visible from that position. The
function extracts a circular area around the position with the distance as radius.
This area was then used to create a temporary view in the database. Further, in
this temporary view the database then logs all the buildings, loops through them
and checks if they are visible, with the same visibility check as uses before. Finally
returning the result.

This version of the code worked as planned but it was not very time effi-
cient. Locating the most time consuming factor in the code was done to im-
prove the execution time. The most time consuming factor was located to be the
ST_Intersects(geometry, geometry), this is because it is heavy for the com-
puter to calculate and because this function was called multiple times. Since the
function is a standard function in PostGIS it was not possible to change it to make
it faster, without rewriting the whole function. But it was possible to make the im-
plementation execute faster by reducing the amount of input data to the function.
It was also possible to reduce the number of times the function was called making
the whole program go faster. These two enhancement where accomplished by intro-
ducing an extra table called blocked and an extra view. This table blocked contains
all the buildings that are blocked by other buildings and the view all buildings inside
the distance circle that are not in table blocked, therefore not blocked or not yet
checked. If a building (Blue building in figure 4.4) was blocked it means that all its
corners and center is being blocked by other buildings (Red buildings in figure 4.4).
When checking the next building (Green building in figure 4.4) there is then no need
to check if the green building is being blocked by the blue building since then the
red buildings will also block the green building. By adding the blue blocked building

9

CHAPTER 4. ANALYSIS

to the table blocked and only check new buildings against the view not containing
blocked buildings the number of calls to ST_Intersects(geometry, geometry)
is significantly reduced (Code for this in appendix A.2 function allVisibleBuild-
ings(numeric, numeric, numeric)).

Figure 4.4. The green building is being blocked the red buildings. Checking the
blue building is unnecessary.

Another optimization made in the function checking visibility on a single build-
ing. By changing the function to return true as soon as a part of the building was de-
clared visible it was possible to reduce the numbers of calls to ST_Intersects(geometry,
geometry) (This can be seen in appendix A.2 function isVisi(numeric, numeric,
numeric)).

4.2 Results
The data returned from the implementation was deemed correct from observations
in the real world. The comparisons were made at different locations in the campus
of KTH.

The timings was done on a computer using i7-2630QM CPU @ 2.00GHz ∗ 8
and running 32-bit Ubuntu 11.10. PostgreSQL version was 9.1.3. Throughout this
section the coordinate used to represent the person in the city will be consistent,
namely 18.07247◦, 59.3457◦. This point is shown in figure 4.5 together with the
houses checked.

Average runtime while checking center and all the 24 corners of the building E
was 69 milliseconds. Mean value of runtime while checking the center point and the
4 corners of the building Kungliga Tekniska Högskolan was 28 milliseconds. Average
runtime while checking visibility of all buildings around the point in a 100 meter
radius was 69 milliseconds.

Checking every building in a 500 meter radius the program executed in average
in 3300 milliseconds. Determining visibility of every building in a 1000 meter radius
has an average runtime of 12000 milliseconds.

10

4.3. DISCUSSION

Figure 4.5. Settings for the results.

4.3 Discussion

The results in section 4.2 should be taken with moderation and are not absolute
truths, mainly because the testing was used on computers running several back-
ground processes. These processes were impossible to manage and could affect the
timings.

All the results of which buildings were visible presented in section 4.2 corre-
sponds to our own measurements in the actual environment. The absolutely largest
problem with the data presented was the fact that the program does not take into
consideration that there might be ground level differences present in the city. Typ-
ically, hills cause visibility to increase or decrease in a city. Also the program
considers every building to be of infinite height. This premise to the project causes
the program to think that a house as small as a tool shed might block the visibility
of the Stockholm Palace. This would of course not be the case in the real world.
The problem with height of buildings and ground level is caused due to the fact that
height of building and ground level is not present on every building in the maps on
OpenStreetMap.

Another important aspect of our project was the catering to urban workers and
tourists. Therefore it was important to consider whether or not a tourist is able to
see a building from 1000 meters, or even further, away. This is generally not the
case in the central parts of a city except for big landmarks such as the Eiffel tower.
Though in regards to tall buildings the implementation is more restricted by the
fact that no height values are existent in the calculations.

Maybe there is a optimal distance to the buildings which are to be checked but

11

CHAPTER 4. ANALYSIS

this number is highly likely to differ from city to city and therefore we implemented
the function, which finds the visible buildings (allVisibleBuildings(longitude,
latitude, distance)), in such a manner that the maximum distance is a parameter
to the function. In this way the user or application using the implementation can
determine how distant buildings they want to be able to get information about.

Another way to optimize the execution time might be to be less strict of what
makes a building visible. Either not checking the center, or not checking every corner
can do this. Both solutions limit the amount of calls to ST_Intersects(geometry,
geometry) that is the bottleneck in the current implementation.

Cities does not follow any kind of strict architectural design standard. Because
of this making any kind of assumption about the visibility in a city is a hard task
to do correctly. There is no way of to determine where buildings are located and
in what shape they have. There are patterns, as in blocks, but no magic rule that
can be used in an implementation. This limits the amount of possible optimizations
drastically.

12

Chapter 5

Conclusion

To determine what is visible for a pedestrian in a city environment is possible using
a spatial database. The approach to define functions in the database limits the
overhead and increases speed compared to a implementation on application level.

The execution times are not unreasonable for an application connecting to a
server, especially if a smaller radius of the area searched is used. The SpaceBook
project set out to implement a program to ease the day of urban workers and tourist.
This project is a step in right direction to accomplish this task.

One optimization implemented is using the fact that if a building is covered,
i.e. not visible to the pedestrian, this building does not need to be checked if it
blocks another building. Optimizing the program for faster execution, the amount
of calls to the function ST_Intersects(geometry, geometry) has to be reduced
even further. Making an assumption of the city layout and using it to eliminate
buildings that could not possibly be visible from the current position can do this.
Another approach is to change the requirements to make a building visible.

Sources of errors in the results from the program are most likely to come from the
absence of checking height or ground level in the implementation. The timings of the
program will differ with computer set-up and the amount of background processes
running when executing this implementation. This can of course be eliminated
completely by running it on a dedicated server, which should be the case in the
SpaceBook project.

13

Bibliography

[1] What is postGIS? retrieved Feb. 9 2012. <http://postgis.refractions.
net/>

[2] SpaceBook retrieved Apr. 1 2012. <http://spacebook-project.eu/>

[3] Turismen i Stockholm retrieved Apr. 1 2012. <http://www.stockholmtown.
com/templates/page____19505.aspx>

[4] PostgreSQL:About retrieved Apr. 1 2012. <http://www.postgresql.org/
about/>

[5] OpenStreetMap:Copyright and License retrieved Apr. 1 2012. <http://www.
openstreetmap.org/copyright/en/>

[6] PL/pgSQL - SQL Procedural Language retrieved Apr. 10 2012. <http://www.
postgresql.org/docs/8.3/static/plpgsql.html/>

15

http://postgis.refractions.net/
http://postgis.refractions.net/
http://spacebook-project.eu/
http://www.stockholmtown.com/templates/page____19505.aspx
http://www.stockholmtown.com/templates/page____19505.aspx
http://www.postgresql.org/about/
http://www.postgresql.org/about/
http://www.openstreetmap.org/copyright/en/
http://www.openstreetmap.org/copyright/en/
http://www.postgresql.org/docs/8.3/static/plpgsql.html/
http://www.postgresql.org/docs/8.3/static/plpgsql.html/

Appendix A

Program

A.1 Example Output
Checking visibility of the building named E, the first boolean value corresponds to
whether or not the center of the building is visible, and the rest 24 boolean values
corresponds to the 24 corners of the building:

mindb=# select isVisible(18.07247,59.3457,’E’);
isvisible

t
f
f
f
f
f
f
t
t
t
t
t
t
f
f
t
t
t
t
t
t
f

17

APPENDIX A. PROGRAM

f
t
t

(25 rows)

Time: 70,654 ms

Whilst checking the building named Kungliga Tekniska Högskolan the output
from the program might look like this, in this case there are only four corners of
the building and therefore the first boolean is the center and the following four are
the corners: Example output from program:

mindb=# select isVisible(18.07247,59.3457,’Kungliga Tekniska Högskolan’);
isvisible

t
t
t
t
t

(5 rows)

Time: 27,319 ms

Checking all the possible buildings in a 100 meter radius from the coordinate
representing the pedestrian the output consists of the id of the buildings visible.
Example output looks like this:

mindb=# select allVisibleBuildings(18.07247,59.3457,100);
allvisiblebuildings

61

386
285
241
51

324
314
153

(8 rows)

Time: 65,615 ms

18

A.2. CODE

A.2 Code

CREATE OR REPLACE FUNCTION i sV i s i b l e (numeric , numeric ,
numeric) RETURNS TABLE(v i s i b l e boolean) as $$

DECLARE
distanceToGoal numeric ;
−−i dOfBui ld ing i n t e g e r ;
numberOfCorners integer ;
tmpint integer ;
l o op i n t integer ;
l ong i tude ALIAS FOR $1 ;
l a t i t u d e ALIAS FOR $2 ;
idOfBui ld ing ALIAS FOR $3 ;
BEGIN
−− Determines the d i s t ance to the b u i l d i n g
SELECT INTO distanceToGoal st_maxdistance (trans form (

s t_ s e t s r i d (st_point (long i tude , l a t i t u d e) ,4326) ,3006) , geom)
FROM haspolygon WHERE id = idOfBui ld ing ;

−− Creates tmpview which conta ins the b u i l d i n g s which shou ld
be checked i f the b l o c k

EXECUTE ’CREATE␣OR␣REPLACE␣TEMP␣VIEW␣tmpview␣AS␣SELECT␣∗␣
FROM␣haspolygon␣WHERE␣ st_di s tance (trans form (s t_ s e t s r i d (
st_point (’ | | l ong i tude | | ’ , ’ | | l a t i t u d e | | ’) ,4326) ,3006) , ␣
geom) ␣<=␣ ’ | | distanceToGoal | | ’ ␣AND␣ id ␣!=␣ ’ | |
idOfBui ld ing ;

−− Checking middle .
SELECT INTO tmpint count (distinct (s t_ i n t e r s e c t s (st_makeline

((SELECT s t_centro id (geom) FROM haspolygon WHERE id =
idOfBui ld ing) , trans form (s t_ s e t s r i d (st_point (long i tude ,
l a t i t u d e) ,4326) ,3006)) , geom))) FROM tmpview ;

IF tmpint < 2 THEN −− I f i t was one i t was v i s i b l e .
v i s i b l e = true ;
r e turn next ;

ELSE
v i s i b l e = fa l se ;
r e turn next ;

END IF ;
−− Checking number o f corners in the b u i l d i n g .
SELECT INTO numberOfCorners st_numpoints (st_Exter iorRing (

geom)) FROM haspolygon WHERE id = idOfBui ld ing ;
−− Loops through the corners .
l o op i n t := 1 ;

19

APPENDIX A. PROGRAM

WHILE loop in t < numberOfCorners LOOP
SELECT INTO tmpint count (distinct (s t_ i n t e r s e c t s (

st_makel ine ((select pointn (st_Exter iorRing (geom) ,
l o op i n t) FROM haspolygon WHERE id = idOfBui ld ing

) , trans form (s t_ s e t s r i d (st_point (long i tude ,
l a t i t u d e) ,4326) ,3006)) , geom))) FROM tmpview ;

IF tmpint < 2 THEN −− I f i t was one i t was v i s i b l e .
v i s i b l e = true ;
r e turn next ;

ELSE
v i s i b l e = fa l se ;
r e turn next ;

END IF ;
l o op i n t := l oop in t + 1 ;

END LOOP;
return ;

END;
$$ LANGUAGE ’ p lpg sq l ’ ;

CREATE OR REPLACE FUNCTION a l lV i s i b l eBu i l d i n g s (numeric ,
numeric , numeric) RETURNS SETOF integer AS $$

DECLARE
long i tude ALIAS FOR $1 ;
l a t i t u d e ALIAS FOR $2 ;
d i s t anc e ALIAS FOR $3 ;
bvar boolean ;
count integer ;
n integer ;
BEGIN
−− Creates the two temporary v iews and the t a b l e needed .
EXECUTE ’CREATE␣OR␣REPLACE␣TEMP␣VIEW␣tmp1␣AS␣SELECT␣

st_di s tance (trans form (s t_ s e t s r i d (st_point (’ | | l ong i tude | | ’
, ’ | | l a t i t u d e | | ’) ,4326) ,3006) , ␣geom) ␣AS␣ d i s t , ␣ id , ␣geom␣
FROM␣haspolygon␣WHERE␣ st_di s tance (trans form (s t_ s e t s r i d (
st_point (’ | | l ong i tude | | ’ , ’ | | l a t i t u d e | | ’) ,4326) ,3006) , ␣
geom) ␣<␣ ’ | | d i s t anc e | | ’ ␣ORDER␣BY␣ d i s t , ␣ id ’ ;

EXECUTE ’CREATE␣TEMPORARY␣TABLE␣blocked ␣ (id ␣ i n t e g e r) ’ ;
EXECUTE ’CREATE␣OR␣REPLACE␣TEMP␣VIEW␣tmp2␣AS␣SELECT␣∗␣FROM␣

tmp1␣WHERE␣ id ␣NOT␣IN␣ (SELECT␣ id ␣FROM␣blocked) ’ ;

−− Loop through every p o s s i b l e b u i l d i n g which can b l o c k the
v i s i b i l i t y .

FOR n IN SELECT id FROM tmp1 LOOP

20

A.2. CODE

SELECT INTO bvar i s V i s i (long i tude , l a t i t ude , n) ;
IF bvar = true THEN

re turn next n ;
ELSE

EXECUTE ’INSERT␣INTO␣blocked ␣VALUES␣ (’ | | n
| | ’) ’ ;

END IF ;

END LOOP;

−− Drop the temporary v iews and the t a b l e used in the
func t i on .

EXECUTE ’DROP␣VIEW␣tmp3 ’ ;
EXECUTE ’DROP␣VIEW␣tmp2 ’ ;
EXECUTE ’DROP␣VIEW␣tmp1 ’ ;
EXECUTE ’DROP␣TABLE␣blocked ’ ;
r e turn ;

END;
$$ LANGUAGE ’ p lpg sq l ’ ;

CREATE OR REPLACE FUNCTION i sV i s i (numeric ,numeric ,numeric)
RETURNS boolean AS $$

DECLARE
long i tude ALIAS FOR $1 ;
l a t i t u d e ALIAS FOR $2 ;
idOfBui ld ing ALIAS FOR $3 ;
count integer ;
numberOfCorners integer ;
l o op i n t integer ;
distanceToGoal numeric ;
BEGIN

−− Ca l cu l a t e maximum d i s t ance to b u i l d i n g
SELECT INTO distanceToGoal st_maxdistance (trans form (

s t_ s e t s r i d (st_point (long i tude , l a t i t u d e) ,4326) ,3006) , geom)
FROM tmp2 WHERE id = idOfBui ld ing ;

−− Use t h i s d i s t ance to e l im ina t e b u i l d i n g s which cannot
b l o c k the view o f the b u i l d i n g .

EXECUTE ’CREATE␣OR␣REPLACE␣TEMP␣VIEW␣tmp3␣AS␣SELECT␣∗␣FROM␣
tmp2␣WHERE␣ st_di s tance (trans form (s t_ s e t s r i d (st_point (’ | |
l ong i tude | | ’ , ’ | | l a t i t u d e | | ’) ,4326) ,3006) , ␣geom) ␣<=␣ ’ | |
distanceToGoal ;

21

APPENDIX A. PROGRAM

−− Checks v i s i b i l i t y o f cen ter o f b u i l d i n g .
SELECT INTO count count (distinct (s t_ i n t e r s e c t s (st_makel ine ((

SELECT s t_centro id (geom) FROM tmp3 WHERE id =
idOfBui ld ing) , trans form (s t_ s e t s r i d (st_point (long i tude ,
l a t i t u d e) ,4326) ,3006)) , geom))) FROM tmp3 WHERE id !=
idOfBui ld ing ;

IF count < 2 THEN −− I f i t was one i t was v i s i b l e .
re turn true ; −− Return t rue immediate ly .

END IF ;

−− Number o f corners in the b u i l d i n g .
SELECT INTO numberOfCorners st_numpoints (st_Exter iorRing (

geom)) FROM tmp3 WHERE id = idOfBui ld ing ;

−− Loops through the corners and checks v i s i b i l i t y f o r each
− i f one corner i s found v i s i b l e the func t i on re turns
t rue .

l o op i n t := 1 ;
WHILE loop in t < numberOfCorners LOOP

SELECT INTO count count (distinct (s t_ i n t e r s e c t s (
st_makel ine ((SELECT pointn (st_Exter iorRing (geom) ,
l o op i n t) FROM tmp3 WHERE id = idOfBui ld ing) ,

trans form (s t_ s e t s r i d (st_point (long i tude , l a t i t u d e)
,4326) ,3006)) , geom))) FROM tmp3 WHERE id !=
idOfBui ld ing ;

IF count < 2 THEN −− I f i t was one i t was v i s i b l e .
re turn true ; −− Return t rue immediate ly .

END IF ;
l o op i n t := l oop in t + 1 ;

END LOOP;
return fa l se ;

END;
$$ LANGUAGE ’ p lpg sq l ’ ;

22

	Introduction
	Overview

	Background
	The SpaceBook Project
	Tourism
	Computer Games
	Resources

	Approach
	Analysis
	Implementation
	Results
	Discussion

	Conclusion
	Bibliography
	References

	Appendices
	Program
	Example Output
	Code

