
Comparing different Genetic Algorithms through

solving Steiner Networks

Gustav Sennton
910616-1293

CDATE3 KTH

Supervisor: Michael Minnock

May 21, 2012

Abstract

The purpose of this paper is to inspect the behavior of different genetic
algorithms. Some different characteristics, of selection and reproduction
of individuals, are implemented in a genetic algorithm and the results are
then compared to see if some characteristics are more important than oth-
ers. More specifically the reproduction methods mutation and crossover
are compared and the selection methods elitism selection and biased ran-
dom selection are compared. The problem, which the genetic algorithms are
tested on, is called the Steiner network problem. The results indicates that
using elitism selection together with mutations is the best method when
solving trivial problems. For more difficult problems mixing mutations and
crossovers and using biased random selection seems to be the best alterna-
tive though this result is not as certain as the fast convergence of elitism-
mutation algorithms for trivial problems.

Sammanfattning

I denna rapport undersöks olika sorters genetiska algoritmer. Olika sorters
selektion och fortplantning av individer implementeras i en genetisk algo-
ritm. Resultaten av användandet av dessa olika implementationer jämförs
sedan för att se hur mycket de olika egenskaperna p̊averkar algoritmen. Fort-
plantningmetoder som tas upp är mutationer och blandningar av olika in-
divider medan de selektionmetoder som tas upp är elitist-selektion och par-
tisk slumpselektion. Problemet som den genetiska algorimen testas p̊a kallas
Steinernätverk. Enligt de resultat som tas fram är elitistselektion kombin-
erat med mutationer den bästa metoden för att lösa simpla problem. När det
kommer till sv̊arare problem verkar det bäst att använda b̊ade mutationer
och blandningar av individer tillsammans med partisk slumpselektion.

Contents

1 Introduction 1

2 Overview 2

3 Background 3
3.1 Genetic Algorithms . 3
3.2 Steiner networks . 5

4 Approach 7

5 Implementation 8
5.1 Overview . 8
5.2 Individual representation . 8
5.3 Fitness . 9
5.4 Reproduction methods . 10
5.5 Selection methods . 11
5.6 Replacement . 11

6 Results 13

7 Discussion 16

8 Conclusions 18

9 References 19

Chapter 1

Introduction

One of the tools an engineer uses is reusing, that is, using already known
concepts to skip redoing old work. Many such concepts are not created
solely by humans; some concepts are barely interpretations of the properties
of nature. One part of computer science, where concepts from nature are
used, is Genetic algorithms. Those kinds of algorithms are based on the
evolution theory, i.e. the concept of how organisms evolve through surviving
and reproducing.

To think that the development of something as complex as a human
started with some single-celled organism is incredible. This development is
the result of billions of years of evolution. Genetic algorithms is a way to
try to mimic those results; the basic idea of genetic algorithms is to start
with some random (and thus probably unusable) individuals which are to
be interpreted as solutions to a specific problem. These individuals are then
evolved until they reach a state where they actually can be used to solve the
problem in a good way (preferably in the optimal way).

Genetic algorithms have some features which are highly attractive. For
example several solutions to a problem are handled at the same time. Some
of the benefits of this is that the solutions can be improved in parallel and
that the solutions can be combined.

The purpose of this paper is to compare some of the features of genetic
algorithms. More specifically to compare the two reproduction methods
mutation (changing a single individual) and crossover (combining several
individuals) and the two selection methods elitism selection and biased ran-
dom selection.

1

Chapter 2

Overview

In the Background section of this paper the basics of genetic algorithms
and Steiner networks are explained. Some examples of different genetic
algorithms are given and also some examples of solutions to Steiner networks
are shown.

The Approach section explains the different tests done in this paper and
why those tests are being done.

The different parts of the implementation used are explained in the Im-
plementation section – this includes the representation of individuals, the
different selection methods and the reproduction methods.

In the Results section of this paper the results, of running the different
genetic algorithms with two different Steiner network problems, are shown.
The first problem is a simple problem chosen to show the faster convergence
of some algorithms and the other is a more difficult problem chosen to show
the better performance of more sophisticated algorithms.

The results are then discussed in the Discussion section and some sug-
gestions, on how to improve the work done in this paper, are presented.

2

Chapter 3

Background

One way of solving problems, where finding the optimal answer is very diffi-
cult, is using heuristics – algorithms that are fast but which might never find
the optimal solution as opposed to, for example, exhaustive search which al-
ways finds the best solution but needs a lot of time. Genetic algorithms
are one kind of heuristics where aspects of Darwin’s evolution theory are
used to improve numerous random solutions to find one optimal solution.
Problems, which can be solved using genetic algorithms, are called Combi-
natorial Optimization problems. A combinatorial optimization problem is a
problem where the goal is to find the best element in a set of elements. An
example of a combinatorial optimization problem is the Traveling Salesman
problem.

3.1 Genetic Algorithms

Every genetic algorithm has a population of individuals; every individual
represents a possible solution to the problem at hand. An individual can be
represented in many different ways depending on the problem to solve, the
most common way is, according to Sivanandam and Deepa (2008, p.43), to
represent an individual as a bit-string. This sort of representation is easy to
implement because for example mutating the bit-string can be done through
simply flipping some bits.

A genetic algorithm spans over a number of generations – a step from
one generation to the next is called an iteration. According to Sivanandam
and Deepa (2008, p.30) every iteration of a genetic algorithm consists of four
steps; Selection, Reproduction, Evaluation and Replacement. Evaluation is
simply a matter of computing the fitness of the individuals of a population
and Replacement is the act of choosing which individuals, of the old popu-
lation, to replace with new ones. Selection and Reproduction are described
in the sections below.

3

Selection

Selection is the method of selecting the individuals which will reproduce.
Selection, just like Replacement, is done to improve the total fitness of the
population from one generation to the next, i.e. to improve the solutions of
the algorithm. One example of a selection method is; merely selecting the
fittest individuals of a population, this is called elitism selection. Another
example is to assign a bias to each individual, based on that individual’s
fitness, and then filter the population randomly, using the individuals’ biases.
In this way the fittest individuals will have an advantage while the less fit
individuals still have a small chance to survive until the next generation.
The biased random selection method is by Sivanandam and Deepa (2008,
p.47) called a roulette wheel selection.

It is important to note that the biases of a random selection method
must be chosen with care since choosing small biases will make the selection
algorithm totally random while choosing large biases will make the selection
method similar to elitism selection.

Reproduction

Reproduction is when the individuals breed to create new offspring. The
reproduction method of a genetic algorithm is one of the most important
parts of the algorithm since this method determines how new solutions are
created. There are two reproduction methods: mutating (changing) a single
individual and crossing (combining) multiple individuals. Mutations and
crossovers can be done in many different ways. When using bit-strings one
of the simpler ways to perform a mutation is, as stated above, to flip some
bits of the string. Some examples of crossover, used with bit-strings, are
mentioned by Sivanandam and Deepa (2008, p.51); two of those examples
are single-point crossover and multi-point crossover. Single-point crossover
means choosing one point in the representation of an individual. The part to
the left of that point is then copied from the first parent’s representation to
that of the child. Then the right part of the second parent’s representation
is copied to the right part of the child’s representation to create a whole new
representation. An example of single-point crossover is shown in Figure 3.1.
A multi-point crossover is similar to a single-point crossover but, instead
of one point, several points are chosen so that several different sections of
the representation are taken from the two different parents. An example of
multi-point (two-point) crossover is shown in Figure 3.2.

An important concept when discussing genetic algorithms, or heuristics
in general, is the term ”fitness landscape” which is, according to Mitchell
(1999, p.6) ”a representation of the space of all possible genotypes along with
their fitnesses” (a genotype here means an individual’s representation). The
term fitness landscape is important because knowing the topology of the

4

Figure 3.1: A single-point crossover

Figure 3.2: A two-point crossover

fitness landscape, corresponding to a specific problem, helps constructing
better algorithms for that problem. For example when solving a minimiza-
tion problem, with a fitness landscape which has lots of local minima, the
methods used must be able to handle a population with great diversity so
that alternative solutions can be presented to overcome the ones stuck in
local minima.

3.2 Steiner networks

The Steiner network problem is, according to Agrawal, Klein and Ravi (1995,
p.440) a problem where you want to connect a set of nodes in a graph so
that the total length of connections is as small as possible. The connections
between nodes of the network does not have to be straight lines; you could
set up imaginary connection points, in the network, which the connections
can then pass through. In figures 3.3, 3.4 and 3.5 examples of solutions to
Steiner network problems are shown. The original network nodes are colored
black and the imaginary connection points are colored red. In Figure 3.3
and Figure 3.4 two different solutions to the same problem are shown; the
solution shown in Figure 3.4 is better than that in Figure 3.3 since the total
length of the connections in Figure 3.4 is smaller. In Figure 3.5 a solution,
containing two inner connection points, to a second network is shown.

5

Figure 3.3: A simple, and suboptimal, solution to a Steiner network problem

Figure 3.4: A (close to optimal) solution to a Steiner network problem. The
solution contains one imaginary connection point colored red

Figure 3.5: Another (sub-optimal) solution to a Steiner network problem.
The solution contains two imaginary connection points colored red

6

Chapter 4

Approach

There are two selection methods used in this paper; elitism selection and bi-
ased random selection (roulette wheel selection). These two methods should
have a difference in performance in problems with different fitness land-
scapes; because of this the algorithms implemented are tested on two prob-
lems which should be different in this aspect. The first problem is a simple
3-node problem and the second one is a more difficult 5-node problem. Thus
the hypothesis is that the elitism selection method is of better use in the
simple 3-node problem while the biased random selection should perform
better in the difficult 5-node problem.

To be able to compare mutations and crossovers both mutations and
crossovers use a two-point method in this implementation. The number
of bits changed by the two-point method is changed during testing since
crossovers probably(this is tested) are better when changing many bits and
mutations probably are better when changing fewer. This is because mu-
tating too many bits of an individual will probably change the individual
too much to be effective. Crossover on the other hand should perform bet-
ter than mutating when the number of bits changed is high since crossover
mixes two good solutions.

One important parameter tested in this paper is the size of the popu-
lation – for example when using only crossovers the diversity of the initial
population is crucial.

7

Chapter 5

Implementation

5.1 Overview

As stated in the Background section the step of going from one generation to
the next, in a genetic algorithm, is called an iteration. In every iteration of
this implementation half of the population is chosen to reproduce to create
the next generation. When the reproduction has been done the offspring
produced replaces the individuals that were not chosen for reproduction(and
possibly some of the ones that were chosen too) and thus a new generation
is created.

5.2 Individual representation

In the implementation used in this paper every individual has three differ-
ent variables. The first variable is an integer representing the number of
imaginary connection points used by the individual. The second variable is
an array of inner connection points (i.e. positions in two dimensions which
can be represented as tuples of x,y-values), every x- and every y-value is an
integer which can be represented as a bit-string. The third variable is a bit-
string representing the connections between different imaginary connection
points and also between those points and network nodes. Every bit in the
bit-string represents the existence of a connection. The maximum number
of connection points is fixed and the number of points represented in the
point-array is always the same; the maximum. The minimum number of
points is always one – having zero points in an individual does not make
sense in this implementation because then there would be no connections
between any network nodes.

Figure 5.1 shows an example of an individual. The maximum number of
connection points of the individual is two and there are three network nodes
in the network. The positions of the connection points are represented as
x- and y-values of the form (x,y). In the bit-string representing the individ-

8

ual’s connections the connection from one point to itself is also represented.
This does not add anything since a connection from one point to itself has
length zero but it is there for ease of implementation. Every such connection
therefore works as a dead bit – changing it will not change the solution.

Figure 5.1: A representation of an individual and the graph corresponding to
that representation. The positions of the network nodes are not specified in
the representation and could therefore be placed anywhere. The connection
between the two connection points is dotted since the second point (p2) is
inactive, meaning that its connections does not add to the total length of
the individual’s connections.

In the implementation used in this paper there are never any direct
connections between two fixed network nodes – there is always an imaginary
connection point linking different network nodes together. The algorithm
can still have inner connection points on the same positions as fixed network
nodes which means that there can still, in a sense, be direct connections
between the positions of the fixed network nodes.

5.3 Fitness

In every genetic algorithm an individual represents some solution to a prob-
lem. In this case the problem at hand is a Steiner network problem and
the parameters which define an individual are therefore the inner connec-
tion points of a solution and their connections to each other and to the
fixed network nodes. The goal of the Steiner network problem is to create
networks with as small total length of connections as possible. The fitness
of an individual should therefore directly depend on the total length of the
individual’s connections. Thus the individual with the best fitness has the
lowest total length of connections and therefore represents the optimal solu-
tion. If an individual has not connected all the nodes of the network to each
other the fitness of that individual is set to a large default value so that the
individual is considered unfit.

9

5.4 Reproduction methods

The different algorithms implemented use either mutations, crossovers or
both as reproduction methods. If both are used the distribution is random
and uniform, i.e. the difference between the number of mutations and the
number of crossovers is small.

Mutation

Each mutation can change only one of the three variables in an individual’s
representation; the number of connection points, the positions of the points
or the connections between the points.

There are only three ways in which the integer, representing the number
of points, can be mutated – the number can be increased by one, decreased
by one or unchanged. The number is only unchanged if the mutation would
make the integer go out of bounds, i.e. decrease to zero or increase above
the maximum number of connection points allowed.

Since all the imaginary connection points are represented by values in an
array which has a fixed size, changing the number of points only means using
a greater or smaller part of that array. For example; an individual having
a maximum of five imaginary connection points also has an array, of size
five, holding those points. Increasing the integer, representing the number
of connection points used by that individual, will not add a new random
point but rather let the individual access the next point in the point array.
Thus there can be inactive connection points within the representation of an
individual. Those inactive points can still be changed through reproduction
methods and there can therefore be delays in the algorithm before changed
points are activated – changes being done during one generation can go
unseen for several generations.

When it comes to mutating the positions of the connection points the
x- and y-value of a connection point are both considered to be bit-arrays –
when performing a mutation either an x-value or an y-value can be changed
through flipping a number of its bits. The x- and y-values have a fixed
maximum size which prevents them from mutating to a value far away from
the network nodes. For example a value could have a maximum size of
seven bits – then the value holds an integer between zero and 127. In this
implementation every x- and y-value is represented by ten bits meaning that
every value is an integer between 0 and 210 − 1 = 1023. The search space
of the positions of this algorithm has therefore a size of 10242 = 1048576
different positions.

The last variable which can be mutated is the bit-string representing
connections between different points and also between connection points
and network nodes. Every bit represents a connection between two points
or one point and a network node. Mutating the bit-string is done through

10

flipping a number of the string’s bits which is equivalent to removing and/or
adding some connections.

Crossover

In this implementation a crossover is quite similar to a mutation – there are
only two main differences.

First off, when changing the number of points of an individual, instead
of randomly choosing whether to increase or decrease the number of points,
by one, a crossover copies the value of the first parent and then increases
or decreases that value, by one, depending on the number of points the
second parent contains. Thus if the first parent has seven active connection
points while the second parent has only three active points the child will
have 7 − 1 = 6 active points.

Secondly, instead of flipping bits of the bit-strings representing the posi-
tions or the connections of connection points, the bit-strings are first copied
from the first parent and then a number of bits are changed to the corre-
sponding bits of the second parent. This is similar to a two-point crossover
as is shown in Figure 3.2 on page 5.

5.5 Selection methods

Two different selection methods are implemented – elitism selection and
biased random selection(roulette wheel selection). The implementation of
elitism selection is done through simply sorting the individuals depending
on their length. Biased random selection is done through giving every indi-
vidual a new variable called luck. Every individuals fitness is then calculated
as length ∗ luck instead of just length. Depending on how random this luck -
variable is this selection method can be classified as anything from random
selection to elitism selection. In the implementation explained in this paper
luck is a random integer between 100 and 200 meaning that the most un-
lucky (luck = 200) individual must have a length of half the size as that of
the luckiest (luck = 100) individual to be just as fit. In both the implemen-
tation of elitism selection and that of biased random selection used in this
paper the number of individuals selected to reproduce is half the size of the
population.

5.6 Replacement

Since the selection methods of this implementation both select half of the
population, for reproduction, each selected individual needs to produce two
individuals for the next generation. This is done through using a reproduc-
tion method(i.e. mutation or crossover) on each individual twice(to create

11

two new individuals) and then choosing the two individuals with the best
fitness out of the old individual and the two new ones.

12

Chapter 6

Results

The only difference between the test shown in Figure 6.1 and that shown
in Figure 6.2 is the size of the populations used. The values shown in those
two figures are average total lengths taken over the different tests. I.e.
every algorithm is run Tests number of times and during every run the best
solution (the fittest individual) from every generation is saved. The length
of individuals from different test runs are then added and divided by Tests.
In Figure 6.3 and in Figure 6.4 the results shown are not averages over the
different tests but rather the best solutions found in those tests. This is
because taking the average over the solutions gave the same results in most
of the different algorithms. The maximum number of bits, in an individual,
which can be changed through mutation or crossover is also changed when
it comes to the five-node problem. The maximum number of bits changed
is two in the three-node problem and ten in the five-node problem.

13

Figure 6.1: A diagram showing the results of using different genetic algo-
rithms to solve a simple Steiner network with three nodes. Population size:
100, Generations: 100, Tests: 100

Figure 6.2: A diagram showing the results of using different genetic algo-
rithms to solve a simple Steiner network with three nodes. Population size:
1000, Generations: 100, Tests: 100

14

Figure 6.3: A diagram showing the results of using different genetic algo-
rithms to solve a Steiner network containing five nodes. Population size:
100, Generations: 100, Tests: 100

Figure 6.4: A diagram showing the results of using different genetic algo-
rithms to solve a Steiner network containing five nodes. Population size:
1000, Generations: 100, Tests: 100

15

Chapter 7

Discussion

Figure 6.1 shows the results of running the genetic algorithm on a very
simple three-node problem, the problem and its (close to) optimal solution
are shown in figure 3.4 on page 6. The results of using only crossovers for this
problem are clearly visible in figure 6.1 where both the algorithms which use
crossovers show worse results than the other algorithms. The cause of this
is probably the small populations used – the size of the populations is only
100 and there is probably not enough diversity in such a small population
to achieve good results from a crossover-algorithm. Another observation
that can be made from Figure 6.1 is the better convergence of the elitism-
algorithms, than the biased random-algorithms, around rounds 5-25. Elitism
algorithms should be better suited for problems with few local minima while
the biased random algorithms should be better suited for more complex
problem where many different types of solutions should be tested. That is
probably why elitism works better in this simple problem.

Figure 7.1: The placement of the nodes of the five-node problem tested in
this paper.

The five-node problem shown in figure 7.1 is a little more complex
than the three-node problem. Just as in the three-node problem the pure
crossover-algorithms perform a little worse than the rest when the popula-
tion size is small, as can be seen in figure 6.3. In figure 6.4 the only algorithm
standing out from the rest is the one which uses the biased random selec-
tion and both mutations and crossovers as reproduction. As stated in the
Approach section crossover should be more effective when the number of
bits changed during reproduction is high since the point of having crossover

16

is combining parts of several good solutions. This does not seem to be the
case in the five-node problem, which is a bit surprising. Both the crossover-
algorithms are still worse than all the others when a small population is
used, even though the number bits changed during reproduction is higher.

One problem with the implementation used in this paper can be found
when activating an inactive imaginary connection point. Before the connec-
tion point is activated there must be connections between the connection
points and all the fixed network nodes of the network. Then when the in-
active point is activated, and if that point itself is connected to some node,
there will be some redundancy in the connections since the newly activated
connections are not needed. This will give the new individual a greater
length than its parent and the individual’s fitness will be worse than that of
its parent. Using the fitness of an individual’s parents to support the individ-
ual could, in this case, increase the diversity of the population. This is one
of the improvements which can be made to the algorithms used in this paper
and this shows how there are other features which should be tested before
drawing any final conclusions considering the differences between different
genetic algorithms.

17

Chapter 8

Conclusions

To get a better view of the different methods used in this paper more pa-
rameters should have been implemented and tested. For example the im-
plementation could have involved letting the individuals’ fitness depend on
their parents or letting the number of bits, changed during reproduction,
decrease over time.

One parameter that seems to be very important is the size of the popula-
tion used, which is pretty natural – at least when it comes to crossover. Us-
ing only crossover is a method that should be avoided, using only crossovers
might suffice when working with huge populations but in the cases tested
in this paper using only crossover is either worse than everything else or, at
best, as good as the rest.

According to the tests done in this paper simple methods like elitism se-
lection and using mutations are best when solving simple problem while us-
ing both mutations and crossovers and using biased random selection seems
to be the best option when it comes to more difficult problems.

18

Chapter 9

References

• Sivanandam, S.N. and Deepa, S.N., 2008. Introduction to Genetic
Algorithms. New York: Springer Berlin Heidelberg

• Mitchell, M. 1999. An Introduction to Genetic Algorithms. Cam-
bridge, Massachusetts: The MIT Press

• Agrawal, A., Klein, P. and Ravi, R., 1995. When Trees Collide: An
Approximation Algorithm for the Generalized Steiner Problem on Net-
works. SIAM Journal on Computing, Vol. 24, No. 3, p.440-456

19

