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Abstract 

 
Brain-computer interface is a promising research area that has the potential to aid 

impaired individuals in their daily lives. There are several different methods for 

capturing brain signals, both invasive and noninvasive. A popular noninvasive 

technique is electroencephalography (EEG). It is of great interest to be able to 

interpret EEG signals accurately so that a machine can carry out correct instructions. 

This paper looks at different machine learning techniques, both linear and nonlinear, 

in an attempt to classify EEG signals. It is found that support vector machines provide 

more satisfactory results than neural networks.  
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I. Introduction 

Brain-computer interfaces promise the ability to control tools and perform tasks 

without lifting an arm. Such interfaces can even be used by individuals who are 

otherwise unable to move their limbs (Wolpaw, 2009). For reasons such as this, the 

brain-computer interface is a research area of great interest to scientists. Using various 

techniques, it is possible to measure electric activity in the brain. The signals may 

then be processed and features of particular interest elicited. Afterwards, these 

features may be interpreted as instructions to a connected device with the help of a 

translation algorithm. 

There are various methods of measuring brain activity. These methods differ in means 

of execution as well as accuracy. Some methods are invasive, requiring the 

implanting electrodes into the brain. These methods often provide accurate signal data, 

but the physical presence of a foreign object inside the brain can lead to scar tissue 

and is thus usually unfavorable (Wolpaw, 2009). Invasive procedures are therefore 

rarely performed on humans. Other methods, such as electroencephalography (EEG), 

are noninvasive. EEG measures the activity on the scalp. It is applied on the outside 

of the head without causing any physical damage. As a result of its externality, 

however, EEG often provides less accurate data than do invasive methods. 

Consequently, being able to process such data accurately is of great value. EEG 

provides the opportunity to capture motor imagery, allowing a subject to mentally 

convey a movement, which can then be interpreted and replicated by a machine. 

With the promising applications of EEG, it is of great interest to be able to classify 

EEG signals accurately. In this report, we shall examine how EEG signals may be 

classified using machine learning techniques. 

 

II. Methodology 

This paper will examine linear and nonlinear methods for classifying EEG data. We 

begin with the single-layer perceptron, move on to the multilayer perceptron, and 

conclude with the support vector machine. General opinion regarding classification of 

EEG signals favors simplicity, advocating the use of linear methods whenever 
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possible (Müller, Anderson, & Birch, 2003). However, more complicated, nonlinear 

methods may sometimes provide better results. 

The experiment consists of classifying EEG signals collected from one subject 

imagining moving his left or right arm. There is no physical movement involved. 

There are 160 trials, 80 corresponding to imagining moving the left arm and the other 

80 to imagining moving the right arm. The signals have been measured over a 

duration of nine seconds, but only the five most relevant seconds have been extracted, 

specifically the last five seconds. Signals were recorded for the mu and beta 

frequencies, with two channels for each. Hence the input data consists of four 

dimensions; it is processed using MATLAB. Labels, corresponding to the correct 

classifications, are given, making this a supervised learning experiment. The goal is to 

classify the data into two classes based on which arm the subject imagines moving. 

We shall begin by attempting to classify the data using a linear model, namely a 

single layer perceptron. Then we shall proceed to use a more complicated, nonlinear 

model, the multilayer perceptron. Finally, we shall try to classify the data using 

support vector machines. 

The first step is the processing of recorded data. The data is divided into two classes: 

data corresponding to the subject imagining moving his right arm, and data 

corresponding to imagining moving his left arm. We have 80 trials for each. To teach 

the network that there are two alternatives, it is necessary to combine the two classes 

of data in a fruitful way. The classes cannot be processed separately, otherwise there 

is no need for discrimination between the two and hence no need for learning. 

The data is divided into 71 time windows, here referred to as time slices. The time 

slices cover the thought process as the subject imagines moving a particular arm. 

Hence we expect that at corresponding times in the thought process the subject is 

performing analogous imagination be it related to the left arm or the right. Therefore, 

it seems appropriate to process the data one time slice at a time. Thus we have data 

for 160 trials for the first time slice, then data from the 160 trials for the second time 

slice, and so on. At each time slice, each input is four-dimensional, corresponding to 

two frequencies and two channels. 
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III. Linear Classification: the Perceptron 

A first attempt at classifying the EEG signals may be to use a (single-layer) 

perceptron. A perceptron is an artificial neural network that is a linear model for 

supervised learning. This suits our present situation given that we have the correct 

label for each 4-tuple of input. The network works by weighting each input parameter 

and summing these values. If the sum is greater than the threshold value for a neuron, 

the neuron fires. In this paper we will represent a threshold value using a bias input. 

Given target labels, the network classifies input by updating these weights based on 

the difference between the target value and the achieved value. A perceptron has been 

implemented in MATLAB and used to classify the EEG data. 

We start by organizing the data into a pattern matrix. In this experiment, the pattern 

matrix is a 4 × 160 matrix where the rows correspond to the different dimensions of 

the input data and the columns correspond to the different trials. It is a good idea to 

make use of batch learning, so that the data for the 160 trials can be processed all at 

once. The values of the weights of the neural network will result in it classifying some 

input correctly and other input erroneously. The error, defined as the difference 

between the target output and the actual output, will be used to update the weights of 

each neuron the neural network in an attempt to more closely replicate the desired 

output. The error for each trial for a particular time slice contributes to the value that 

is added to the current weight to produce the new weight. The algorithm is run for 40 

rounds or epochs. At the end of each epoch, the weights are updated. 

The delta rule captures the weight update for a weight wj,i  connecting node j to node i. 

This is given by the equation below, where xi is the input to node i, t j  is the desired 

target output at node j and ! is the learning rate, a constant that affects the rate of 

weight update. In this experiment, we choose! to be 0.001.  

!wj,i =!xi t j "wj,k xk( )
k
#  

Rather than getting bogged down in calculating each weight update individually, we 

make use of matrix multiplication to perform batch learning. We then get the 
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following formula, where all the individual elements are placed in matrices. The 

summation follows from the definition of matrix multiplication. 

!W =! T !WX( )XT  

The weight matrix W initially contains small numbers that are then updated as the 

algorithm proceeds. The matrix T contains the target outputs, that is, an indication of 

the actual class corresponding to each 4-tuple of input. To simplify our calculations, 

we can choose a symmetric representation of the two classes of data, designating 

motor imagery for one arm by a target output of -1 and that for the other arm by a 

target output of 1. As a result, thresholding can then be done at zero. This means that 

any 4-tuple of input with an output greater than zero will be classified as motor 

imagery for one arm and any 4-tuple with an output less than zero will be deemed to 

correspond to motor imagery for the other arm. 

To incorporate the notion of a threshold, we add a bias input to our data. This is 

represented by a row consisting entirely of 1s introduced as the last row of the pattern 

matrix. An extra column is appended to the weight matrix, corresponding to the 

weight for the bias input. This weight is then equal to the opposite of the threshold 

value for neural activation, and will be updated along with the other weights under the 

algorithm’s execution. 

The figure below shows the numbers of wrongly classified inputs per trial. We see 

that the best values are close to 20 wrong classifications. 
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The table on the next page shows an excerpt from the data produced when the 

algorithm is run. There are 71 time slices in total – too redundant to reproduce here in 

their entirety. The headings Wrong 1 and Wrong 2 indicate the number of 

misclassifications of one type as another, i.e. classifying an imagined right arm 

movement as that of a left arm or vice versa. Since the weight matrix begins with 

small random weights, the values differ somewhat between executions. 

 

 

 

  

Figure	  1	  Wrongly	  classified	  inputs	  per	  time	  slice	  for	  perceptron 
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Table	  1	  Sample	  of	  wrongly	  classified	  inputs	  per	  time	  slice	  for	  perceptron	  

Time Slice Wrong 1 Wrong 2 

1 49 26 

2 35 56 

3 43 21 

10 47 35 

25 43 26 

48 46 37 

71 26 61 

 

Clearly there are a large number of errors considering that each class contains only 80 

specimens. Since there are only two classes of data involved, if we were to go about 

guessing the class of an input instance we would be right 50% of the time. This 

corresponds to an expected number of 40 errors of each type in the above table, 

suggesting that the results above are poor. Perhaps the data itself is not linearly 

separable. 

 

IV. The Multilayer Perceptron 

The multilayer perceptron requires a more complicated approach but holds the 

promise of being able to classify linearly non-separable data. The network we will use 

consists of one hidden layer in addition to the output layer of neurons. The inputs to 

the hidden layer are known; these are namely the inputs to the network. The outputs 

of the hidden layer are unknown. Furthermore, the number of neurons in the hidden 

layer may be varied. The outputs of the hidden layer are the inputs to the output layer. 

Consequently, the inputs to this latter layer are unknown. The outputs of the layer are 

the network outputs and are therefore transparent. 

The algorithm consists of three phases: a forward phase, a backward phase, 

and a phase in which the weights are updated (Marsland, 2009). The forward phase 

consists of pushing the input data through the network and producing output based on 

the input and the current values of the weights in the network. An error is then 

produced at the output end of the network as the actual output differs from the target 
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output. This error is then fed backwards through the network. In the third and final 

phase, this error is used to update the weights, whose new values are used during the 

next forward iteration. 

To let the multilayer perceptron learn something new, we shall use a non-

linear activation function. We choose a function whose derivative can be computed 

easily. Our function is 

! x( ) = 2
1+ e!x

!1  

This function has a derivative that can be neatly expressed in terms of itself: 

! ' x( ) =
1+! x( )!" #$ 1%! x( )!" #$

2
 

In MATLAB, where we need to compute the value of ! x( )  for different values of x , 

we can easily compute the value of ! ' x( ) . 

The forward pass consists of propagating the four-dimensional input through the 

network. The activation of a node hj  in the hidden layer is equal to the sum of the 

weighted inputs wj, i xi . Hence we get 

hj = wj, i xi
i
!  

The transfer function is then applied to this value to produce the input to the next 

layer, namely the output layer. Thus we have the output ok  of node k equal to 

ok = vk, j! hj( )
j
! . 

It is convenient to express these computations using matrices. In addition we shall 

apply the transfer function to both the output from the hidden layer and the final 

output. We then get 

H =! WX( )  

O =! VH( )  
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We want the outer end of the network to produce values that mimic the target value, 

but in order to teach the network this we need to propagate the error backwards 

through the network. The output error !k
o for an output node k is the difference 

between the target value and the actual value. In other words, we have 

! ok = tk !! ok( )  

This difference is multiplied by the derivative of the transfer function for the output 

value to result in gradient descent. The error in the previous layer can then be 

calculated as 

! j
h = vk, j!k

o( )! hj( )  

We can then update the weights by multiplying the respective errors and inputs for 

each layer, summing them and multiplying by the learning rate: 

!W =!" hXT

!V =!" oHT
 

We perform the three passes forty times just like for the single layer perceptron. 

The results of the multilayer perceptron are somewhat better. The multilayer 

perceptron classifies about 65 out of 160 trials wrongly, meaning it has a success rate 

of about 59%. This is however not very far from the random chance of 50%. 

 

V. Support Vector Machines 

We can also attempt to classify the data using a support vector machine. A support 

vector machine seeks to find the best discriminant linear function by maximizing the 

distance between the graph of the function and the closest linear point. In addition, a 

support vector machine can model nonlinear functions using the kernel trick. 

MATLAB includes an implementation of a support vector machine that can be trained 

using input data and labels and then used to classify other data. 

First, we create an SVMStruct object by supplying training data and labels using the 

following command 
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SVMStruct = svmtrain(training_data,labels) 

The training data and labels contain the instances as rows, so the matrices used 

previously must be transposed. Then we use the SVMStruct object to investigate how 

many of the training data points were classified incorrectly. The command  

Output = svmclassify(SVMStruct,Sample) 

produces a column vector of 1s and -1s, depending on the classification of the data by 

the trained support vector machine. The table below shows the resulting errors when 

using different kernel functions with the support vector machine for the first time 

slice: 

Table	  2	  Number	  of	  incorrect	  classifications	  with	  support	  vector	  machine	  

Kernel Function Wrong 1 Wrong 2 

Linear 21 30 

Quadratic 14 39 

Multilayer perceptron 37 44 

Radial basis function 16 32 

Polynomial of degree 3 16 24 

Polynomial of degree 6 7 5 

 

The best nominal result is achieved with a polynomial of degree 6 as the kernel 

function. This trend is maintained across the other time slices. For a polynomial of 

degree 7, the algorithm does not converge. Also interesting is that the multilayer 

perceptron kernel produces relatively poor results. 

 

VI. Comparing the Results 

The linear approach using the single layer perceptron proves to be inadequate to 

classify the EEG data. Similarly, the support vector machine with a linear kernel 

function performs poorly. This suggests that the data is not linearly separable. 

The experimental data suggests that the best classifier is a support vector machine 

with a polynomial of degree 6 as a kernel function. This method surpasses by far any 
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other technique in this report. However, this may be due to overfitting, so that the 

method adapts especially well to the training data. 

 

VII. Conclusion 

The single and multilayer perceptrons have proven difficult to use when classifying 

electroencephalographic signals. The support vector machine implementation 

available in MATLAB proved to be more capable based on the same data. The 

inability of an advanced technique such as the multilayer perceptron to classify the 

data accurately suggests that the data has some noise involved. At the same time, the 

ability of the support vector machine implementation to accurately classify the data 

makes it seem that the data is highly intelligible. Finally, it has been suggested that 

improved data may be acquired by training individuals to shape brain signals 

(Blankertz, Curio, & Müller, n.d.). 
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Appendix: MATLAB Code 

function [ wrongs ] = delta(rate, patterns, T) 
  
    epoch = 40; 
  
    [~, colsX] = size(patterns); 
    X = [patterns; ones(1, colsX)]; 
     
    [rowsX, ~] = size(X); 
    [rowsT, ~] = size(T); 
    W = randn(rowsT,rowsX); 
     
    axis([-2, 2, -2, 2], 'square'); 
     
    [insize, ndata] = size(patterns); 
     
    for i=1:epoch 
        weight_change = -rate * (W*X - T) * X'; 
        W = W + weight_change; 
  
         
    end 
    final_weights = W; 
    error = T-W*X; 
  
     
    [~, colsT] = size(T); 
    prod = W*X; 
    wrong1 = 0; 
    wrong2 = 0; 
    for idx = 1:colsT 
  
        if T(idx) > 0 && prod(idx) < 0 
            wrong1 = wrong1 + 1;             
        elseif T(idx) < 0 && prod(idx) > 0 
            wrong2 = wrong2 + 1; 
        end 
    end 
     
    disp('wrong1'); 
    disp(wrong1); 
    disp('wrong2'); 
    disp(wrong2); 
     
     
    wrongs = [wrong1 wrong2]; 
  
end 
  
 
function [ final_weights ] = gen_delta(eta, patterns, T) 
  
    epoch = 80; 
    hidden = 40; 
    scale = 0.9; 
     
    [rowsPatterns, colsPatterns] = size(patterns); 



  16 

  
    [rowsT, ~] = size(T); 
     
    initial_weight_max = 0.1; 
         
    w = initial_weight_max * randn(hidden,rowsPatterns + 1); % 
columns in w == rows in patterns + bias row 
    v = initial_weight_max * randn(rowsT,hidden+1); 
     
    dw = zeros(size(w)); 
    dv = zeros(size(v)); 
     
    for i=1:epoch 
  
         
  
        % The forward pass 
  
        % w corresponds to the weights at the hidden layer 
        hin = w * [patterns ; ones(1,colsPatterns)]; 
        hout = [2 ./ (1 + exp(-hin)) - 1; ones(1, colsPatterns)]; 
  
        % v corresponds to the weights at the output layer 
        oin = v * hout; 
        out = 2 ./ (1 + exp(-oin)) - 1; 
         
  
        % The backward pass 
        delta_o = (out - T) .* ((1 + out) .* (1 - out)) * 0.5; 
        delta_h = (v' * delta_o) .* ((1 + hout) .* (1 - hout)) * 0.5; 
        delta_h = delta_h(1:hidden, :); % removes row added for bias 
term 
         
         
        patterns = [patterns ; ones(1,colsPatterns)]; 
        %dw = -eta .* (delta_h * pat'); 
        %dv = -eta .* (delta_o * hout'); 
         
        % w has an extra column for the bias 
        % Weight update 
        dw = (dw .* scale) - (delta_h * patterns') .* (1 - scale); 
        dv = (dv .* scale) - (delta_o * hout') .* (1 - scale); 
        w = w + dw .* eta; 
        v = v + dv .* eta; 
        disp(i); 
  
         
         
        
    end 
  
  
end 
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for time_slice=1:71 
     
     
     
    disp('time slice'); 
    disp(time_slice); 
    patterns = []; 
    for i = 1:160 
        column_of_four = trial_features{i}(:,time_slice); % take out 
the first time point from each trial (it contains four rows) 
        patterns = [patterns column_of_four]; 
    end 
  
    targets = [ones(1,80), -1 .*ones(1,80)]; 
  
    permute = randperm(160); 
    patterns = patterns(:, permute); 
    targets = targets(:,permute); 
     
    gen_delta(0.001,patterns,targets); 
     
    
end 
  
 
for time_slice=1:71 
  
    patterns = []; 
    for i = 1:160 
        column_of_four = trial_features{i}(:,time_slice); % take out 
the first time point from each trial (it contains four rows) 
        patterns = [patterns column_of_four]; 
    end 
  
    targets = [ones(1,80), -1 .*ones(1,80)]; 
  
    training = patterns'; 
    group = targets'; 
    struct = svmtrain(training,group,'showplot',true, 
'kernel_function','polynomial','polyorder',6); 
  
    grouped = svmclassify(struct,training); 
  
    wrong1 = 0; 
    wrong2 = 0; 
    [rows,~] = size(group); 
    for idx = 1:rows 
            if grouped(idx) > 0 && group(idx) < 0 
                wrong1 = wrong1 + 1;             
            elseif grouped(idx) < 0 && group(idx) > 0 
                wrong2 = wrong2 + 1; 
            end 
    end 
  
    disp('wrong1'); 
    disp(wrong1); 
    disp('wrong2'); 
    disp(wrong2); 
end 


