
Interactive 2D Particle-based Fluid Simulation

for Mobile Devices

Daniel Månsson

073 508 1234

dmans@kth.se

Bachelor's Thesis at NADA

Course: DD143X

Supervisor: Pawel Herman

Examiner: Mårten Björkman

Stockholm, Sweden 2013

Abstract
This report presents an implementation of a �uid simulation algorithm,

capable of running at 60 frames per second on a modern handheld tablet

device. The goal was to create an interactive application, usable for

helping students understand and visualize some fundamental �uid be-

haviours.

The algorithm was based on previous research for an algorithm,

targeted to run on a desktop PC at 10 frames per seconds for 1000

particles. This algorithm was reduced by removing the capability to

simulate complex elastic �uid properties and made run faster.

The resulting implementation is capable of simulating and visual-

izing: waves, splashes, �uid level equalization in a series of tubes and

simple �uid �ow through pipes. The implementation is capable of sim-

ulating 3000 particles at a steady 60 frames per second on the target

hardware.

Referat
Interaktiv partikelbaserad vätskesimulation i 2D för

mobila enheter

Den här rapporten presenterar en implementation av en vätskesimule-

ringsalgoritm, kapabel att simulera i 60 bilder per sekund på en modern

surfplatta. Målet var att skapa en interaktiv applikations som är använd-

bar för att hjälpa studenter förstå och visualisera några grundläggande

vätskeegenskaper.

Algoritmen var baserat på tidigare forskning, som var riktad mot att

fungera på en stationär PC med en uppdateringsfrekvens på 10 bilder

per sekund för 1000 partiklar. Denna algoritm reducerades genom att

ta bort möjligheten att simulera komplexa elastiska vätskor och kunde

därmed fungera snabbare.

Den resulterande implementationen klarar av att simulera och visu-

alisera: vågor, stänk, en vätskenivå som jämnar ut sig och enklare �öden

genom rör. Implementationen har kapacitet att simulera 3000 partiklar

i 60 bilder per sekund på målhårdvaran.

Contents

1 Introduction 1

1.1 Purpose . 2
1.2 Problem statement . 2

2 Background 3

2.1 Basic �uid simulation . 3
2.1.1 Eulerian grids . 4
2.1.2 Lagrangian particles . 4

3 Implementation 5

3.1 Algorithm . 5
3.1.1 Numerical integration . 6
3.1.2 Pseudo code clari�cation . 6
3.1.3 Algorithm overview . 6

3.2 Neighbor search . 13
3.3 Threading . 13
3.4 World collision . 14
3.5 User interaction . 16
3.6 Rendering . 17
3.7 Testing method . 18

4 Results 19

4.1 Goal . 19
4.2 Fluid behavior . 20

4.2.1 Waves . 20
4.2.2 Pressure equalization in an U-tube 21
4.2.3 Splash . 22
4.2.4 Flow . 23

4.3 Performance . 24
4.3.1 Impact from threading . 24
4.3.2 Particle count . 24

4.4 Visualization . 25

5 Conclusion 27

5.1 Future work . 27

Bibliography 29

Chapter 1

Introduction

Computational �uid dynamics is an interesting and well researched �eld. There
exists many algorithms for simulating and visualizing the motion of �uids for a
range of di�erent applications, especially in the �eld of special e�ects for movies and
computer games. However, the calculations required for �uid simulations has always
been computational expensive. Therefore, most algorithms either focus on o�ine
rendering or require some kind of high power device, such as a GPU1, for making
the simulation run in real time.

In recent years, the power of mobile devices have increased enough to make them
a viable choice for simulating �uids. Naturally, their computational power is still
not on par with regular desktop computers, since they are required to run from a
limited power source and have a greater size constraint. This puts an interesting
constraint on the available previous research since the research to date has tended
to focus either on algorithms for real-time simulation on the GPU, or algorithms for
large scale o�ine simulations.

The target processing unit for this prototype will be the Tegra 3 mobile processor,
released in 2011. It is a common high end processing unit that has been used in
many devices. With the constant increase of processing power in mobile devices,
the Tegra 3 should provide a good baseline for the performance benchmark. The
Tegra 3 has got a quad- core processor and a GPU with 12 pixel shader units. The
test device will be a Microsoft Surface RT tablet, using the Tegra 3 T30L(1.2 GHz)
with 2 GB of RAM.

While the Tegra 3 is powerful by mobile standards, it does not compare to the
performance of a desktop computer. This is extra noticeable when comparing the
GPUs, where the Tegra 3 is noticeably weaker than a high end GPU. This will
make the previous research using the GPU less suitable for this simulation, since
they usually uses a high end desktop GPU. The Tegra 3 GPU will not have enough
performance to perform a complex simulation on top of rendering the scene.

1GPU - Graphics Processing Unit. Specialized hardware used to perform graphics calculations

with high performance. Since those calculations basically are �oating point operations this kind of

hardware can be used for other kind of calculations as well, such as �uid simulation.

1

1.1 Purpose
The purpose of this prototype is to explore the capability of running �uid simulation
on mobile devices and to use the prototype to visualize some interesting �uid prop-
erties. The goal of the visualization is to make this prototype usable for educational
purposes, where people getting started in �uid dynamics can get an idea of how
�uids behave.

1.2 Problem statement
Performance is one of the main issues with simulating �uids on mobile devices. To get
a usable simulation a high number of particles is needed, but increasing the number
of particles also increases the computational load. This article aim to explore which
parts of a existing algorithm can be left out, in order to increase performance, as
well as the e�ect of threading on the Tegra 3 device.

Another issue to take into consideration is the actual �uid behaviour. While
it is important that some of the most basic �uid dynamics features are plausibly
reproduced, the simulation does not need to perfectly physically accurate. The goal
is only to use this project as a visual aid and not to be used for actual measurements
corresponding to the real world.

Chapter 2

Background

This chapter aims to give a brief introduction to computational �uid dynamics.
There will not be an in-depth discussion of �uid simulation techniques, since the
focus of this work is mainly implementation based and educational. The literature
used in this chapter provides a good source for a more in-depth discussion.

2.1 Basic fluid simulation

There are many di�erent variations of computational particle based �uid simula-
tion algorithms available in literature. However, little work has been done on �uid
simulation on lower power devices, since �uid dynamics is inherently computational
expensive.

[HKK07] and [WLL04] describes two algorithms using the GPU for doing the
computational work. In a few years, it is possible that mobile GPUs becomes pow-
erful enough to simulate �uids and still being able to render a scene. This is not the
case on the target device, which needs the GPU to work on rendering the frame.

Many of the CPU based algorithms are not designed to run in real time on a
desktop computer. Even if they claim to be interactive, the frame rates usually ends
up being 10-20 frames per seconds. This is not an acceptable frame rate for this
implementation's target application, which requires a steady 60 frames per second.

The implementation described in this report will be based on an algorithm aiming
to simulate viscoelastic �uids, written by Clavet, Beaudoin and Poulin [CBP05]. One
problem with this algorithm is that it only runs at 10 frames per second on their
target hardware and has support for much more complex �uid behavior than is
needed for our implementation. Therefore, a reduced version of their algorithm will
be used, avoiding the computationally expensive part which managed the elasticity.
However, the algorithm is both robust and relatively simple to implement, making
it suitible for the scale of this project.

The algorithm described in [CBP05] aims to solve the Navier- Stokes equation
of �uid motion, which is the base equation for all �uid simulations. It is a precise
mathematical model for natural �uid �ow, which describes the �uid as a velocity �eld

3

for the �uid density. The Navier-Stokes equations precisely describes the evolution
of this velocity �eld over time. There exists two main categories for integrating over
the velocity �eld: eulerian grids and lagrangian particles, which will be given a quick
overview in the following sections.

2.1.1 Eulerian grids
Eulerian grid use �xed points in a reference frame to track �uid motion. These
points track the velocity of the �ow passing through them, the current density at
the point and how it changes.

This technique are mostly used for high quality o�ine �uid simulation, but are
also in a few cases used for interactive �uid simulation, such as [WLL04].

While this technique can give great quality simulations, there are some possible
problems. The conservation of mass has to be handled carefully, since it is tracked
explicitly at the points. Even rounding errors can lead to mass disappearing from
the simulation.

Fast moving particles can also be troublesome, since the maximum distance a
unit of mass can travel during a simulation step is from one �xed point to the
adjacent point.

This is not the technique used by Clavet, et al, but is a viable option in many
cases.

2.1.2 Lagrangian particles
Lagrangian particles is an alternative approach to �uid simulation and the one used
by Clavet, et al. Instead of tracking �xed points in space, small units of mass is
tracked using particles. This approach is called Smoothed particle hydrodynamics
(SPH) and was �rst developed by Lucy [Luc77] and by Gingold and Monaghan
[GM77] to solve astrophysical problems.

The particles maintain certain �eld properties such as velocity and pressure.
The state of the �eld can be evaluated at any position by sampling all particles
by using a smoothing kernel function. This is a radially symmetric kernel function
with combines the data from all nearby particles within the given radius. Particles
closer to the center has more e�ect on the resulting value and particles outside of
the radius does not e�ect the value at all.

With this approach conservation of mass is trivial, since the particles' mass
values are constant. The �uid does not require a prede�ned grid and calculations
are not needed where there are no �uid. It is also more suitable for fast moving
�uids behavior, such as splashes, since there is no implicit limit on how far an unit
of mass can travel during one simulation step. These properties makes this technique
suitable for our implementation.

Chapter 3

Implementation

This chapter will describe the implementation of the simulation. This implementa-
tion is a two-dimensional �uid simulation, based on previous research with adjust-
ments to make it more suitable for real time simulation.

Section 3.1 will describe the algorithm used by the simulation; the algorithm is
based on previous research and here we will present the previous research along with
the changes made to it.

The following sections will describe implementation speci�c algorithms and tech-
niques which are not part of the core �uid simulation algorithm. Section 3.2 and
3.3 will discuss techniques for increasing the computational performance, section 3.4
and 3.5 will discuss issues related to user interaction and section 3.6 provides an
overview of the rendering techniques used.

3.1 Algorithm

The algorithm used in this implementation is based on an algorithm for particle-
based viscoelastic �uid simulation, presented by Clavet, et. al, mentioned in the
background chapter.

The algorithm presented by [CBP05] aims to handle �uids of di�erent viscosity
and elasticity, making it able to simulate splashing water and more robust clay. The
method used is robust, stable and able to animate simpler scenarios at interactive
frame rates, making it suitable for a simulation with user interaction.

However, their performance requirements are based on a PC (2005) with no
power limitations and their de�nition of interactive frame rate is 10 frames per
second. Our implementation requires a frame rate of 60 frames per second and needs
to be able to run on a low power handheld device. Therefore, some modi�cations
are needed.

First of, instead of implementing the algorithm in three-dimensional space we
will implement it in two-dimensional space. This does not modify the algorithm but
will decrease the average number of neighbor- pairs per particle by a factor of 3 and
make the rendering simpler. Also, the computation of the �uid elasticity is one of

5

the more computational expensive part of their algorithm, therefore it was left out
of our algorithm.

We will describe the algorithm we used and which parts are based on their
algorithm in section 3.1.3.

3.1.1 Numerical integration

The algorithm described by [CBP05] advances the simulation by using a prediction-
relaxation approach. They argue that to avoid the stability issues inherited by an
explicit integration scheme, using an implicit integration scheme is more suitable.

Their method avoids explicit force integration by going though the following
steps, each simulation update:

1: Get the new position of a particle by advancing it based on its velocity.
2: This position is then changed (relaxed) during the simulation step by positional

constraints, such as density adjustment and collision response.
3: At the end of the simulation step, the new velocity are calculated by subtracting

the previous position from the new relaxed position.

3.1.2 Pseudo code clarification

The pseudo code in the following sections uses a combination of mathematical nota-
tion and programming conventions. This is to allow a more implementation oriented
description of the algorithms used, since some techniques used are dependant on
those details.

The concepts in need of clari�cation are the following:

1: index . Integer
2: timeStep . Scalar
3: pos . Vector
4: pos.x . X component of vector
5: Particle p . p is of type Particle
6: p.pos.x . Accessing members
7: DoStu�(timeStep, p) . Function call

3.1.3 Algorithm overview

This section aims to describe the algorithm used in such a way that performing a
similar implementation should be clear. The pseudo code will therefore be more
detailed than usual. The algorithm is based on [CBP05] and we will there not
discuss the concepts in depth, and ask the reader to consult their paper for a deeper
discussion.

Algorithm 1 Simulation step

1: function Update(timeStep)
2: ApplyExternalForces(timeStep)
3: ApplyViscosity(timeStep)
4: AdvanceParticles(timeStep)
5: UpdateNeighbors()
6: DoubleDensityRelaxation(timeStep)
7: ResolveCollisions()
8: UpdateVelocity(timeStep)

Algorithm 1 shows the algorithm at a high level. This function is called once
per simulation step with the time elapsed since last step. To increase the numerical
accuracy the time step is �xed at 1/60, since that is the target frame rate. This avoids
a few issues, such as instabilities caused by large time steps and nondeterministic
behaviour.

Data structures and context

The algorithms described in section 3.1 are part of a particle manager component.
Analogous to object oriented programming they can be seen as methods to the
particle manager class. This means they have access to a collection of parameters
and other components, available in the particle manager component.

The type 'Particle' contains the following data:

1: pos . The particle's position
2: posprev . The particle's previous position
3: vel . The particle's velocity
4: index . An index value used by the grid component

This is a list the parameters accessible by the algorithms:

1: radius . Maximum distance particles e�ect each other.
2: collisionRadius . The distance from a wall that counts as a collision.
3: p0 . Rest density
4: σ . The viscosity's linear dependence on the velocity
5: β . The viscosity's quadratic dependence on the velocity
6: k . Sti�ness used in DoubleDensityRelaxation
7: knear . Near-sti�ness used in DoubleDensityRelaxation
8: gravity . The global gravity acceleration

This is a list the data accessible by the algorithms:

1: List<Particle> particles
2: List<List<Particle>> neighbors
3: Grid grid . See section 3.2
4: DistanceField distanceF ield . See section 3.4

1. List<Particle> particles

This is the main list of particles. All algorithms in section 3.1.3 are based
around iterating through this list. Since this is such a common operation all
'for each' loops over all particles in this list are simply listed as: for each

Particle p

This list is created and initialized in the beginning of the simulation.

2. List<List<Particle>> neighbors

This is a collection of each particle's list of neighbors. These lists are gen-
erated in the function 'UpdateNeighbors' and used when a neighbor lookup
is required. Only includes particles which are within each others radii. A
neighbor list for particle p is accessed as: neighborsp

3. Grid grid

This component hashes the particles based on their position to a grid, to allow
faster neighbor search. Particles register their movement to this component
and the neighbor lists gets their data from this component. More information
about this component is available in section 3.2.

4. DistanceField distanceF ield

This component manages the world representation. The world is represented
by a distance �eld, where each data point contains the distance to the closest
edge and the normal away from that edge. The distance �eld is discussed in
more depth in section 3.4.

ApplyExternalForces

Algorithm 2 Applying external forces

1: function ApplyExternalForces(timeStep)
2: for each Particle p
3: p.vel ← p.vel+ gravity
4: p.vel ← p.vel+ ForcesFromTouchInput(p)

This step applies external forces to all particles. There are two sources of ex-
ternal forces, both can be manipulated by the user. Section 3.5 describes the user
interaction in more detail.

3. Gravity

The gravity is the same for all particles.

4. ForcesFromTouchInput(p)

This is an abstraction of the direct user interaction. These forces are di�erent
for each particle and are dependant on which type of behaviour is required
by the touch controls. One possible case can be that each particle within a
certain distance from a touch point receives a force towards that point.

ApplyViscosity

Algorithm 3 Applying viscosity

1: function ApplyViscosity(timeStep)
2: for each Particle p
3: for each Particle n ∈ neighborsp
4: vp,n ← n.pos− p.pos
5: velinward ← (p.vel− n.vel) · vp,n

6: if velinward > 0
7: length ← | vp,n|
8: velinward ← velinward/length
9: vp,n ← vp,n/length
10: q ← length/radius
11: I ← 0.5 ∗ timeStep ∗ (1− q) ∗ (σ ∗ velinward + β ∗ vel2inward) ∗vp,n

12: p.vel ← p.vel− I

This step is heavily based on the viscosity step in the algorithm by [CBP05]. Vis-
cosity has the e�ect of smoothing the velocities of the particles. It is an impulse
applied radially between neighboring particles. In relation to the real world, water
is a �uid with low viscosity, while scrap has higher viscosity and clay would have
even higher viscosity.

For non-viscous �uids, which is the target behavior of this simulation, viscosity
is used to handle collisions between two particles by decreasing the inwards velocity
between them. The impulse is dependant on the factor (1− q) which increases with
proximity and the factor (σ ∗ velinward + β ∗ vel2inward), where σ and β stands for
the viscosity's linear and quadratic dependence on the velocity.

[CBP05] recommends that only β should be set to a non-zero value for less vis-
cous �uids. This is because the quadratic term only removes high inwards velocities,
but leaves the interesting features of the particle's velocity unchanged.

Note that vp,n is not normalized at line (5); the normalization of both the vector
and the inwards velocity takes place at the lines (7 - 9).

AdvanceParticles

Algorithm 4 Advancing particles to predicted position

1: function AdvanceParticles(timeStep)
2: for each Particle p
3: p.posprev ← p.pos
4: p.pos ← timeStep ∗ p.vel
5: grid.MoveParticle(p) . Section 3.2

This step advances the particles to their new positions, based on their velocities and
stores their previous positions. At line (5) the particle noti�es the grid about its
movement, which updates the particles' position in the grid.

UpdateNeighbors

Algorithm 5 Update neighbor lists

1: function UpdateNeighbors()
2: for each Particle p
3: neighborsp.clear()
4: for each particle n ∈ grid.PossibleNeighbors(p) . Does not include p
5: if |p.pos− n.pos| < radius
6: neighborsp.Add(n)

This step updates the neighbor lists with the correct neighbor information. The
function 'PossibleNeighbors' returns the particles in the 9 grid cells closest to p,
excluding p itself. If p and the possible neighbor n is within each other's radii, n is
added to neighborsp.

DoubleDensityRelaxation

Algorithm 6 Double Density Relaxation

1: function DoubleDensityRelaxation(timeStep)
2: for each Particle p
3: p ← 0
4: pnear ← 0
5: for each Particle n ∈ neighborsp
6: tempn ← |p.pos− n.pos|
7: q ← 1.0− tempn/radius
8: p ← p+ q2

9: pnear ← pnear + q3

10: P ← k ∗ (p− p0)
11: Pnear ← knear ∗ pnear
12: delta ← 0
13: for each Particle n ∈ neighborsp
14: q ← 1.0− tempn/radius . tempn from line 6
15: vp,n ← (p.pos− n.pos)/tempn
16: D ← 0.5 ∗ timeStep2 ∗ (P ∗ q + Pnear ∗ q2) ∗ vp,n
17: n.pos ← n.pos+D
18: delta ← delta−D
19: p.pos ← p.pos+D

This step is implemented using the double density relaxation step described in
[CBP05]. It is a simpli�ed and extended formulation of the SPH paradigm and
aims to ensure volume conservation. Two di�erent measures of the particles' neigh-
bor density is used to decide the impulses between the particles.

The �rst one is the density p and the second is the near density pnear:
p =

∑
n∈neighborsp

(1− |p.pos− n.pos|/radius)2

pnear =
∑

n∈neighborsp
(1− |p.pos− n.pos|/radius)3

Clavet et al. writes that these forms of densities are not a true physical property,
but rather a number quantifying how the particle relates to its neighbors. They also
mention that they tested various other kernel shapes, but arrived to the conclusion
that these gave the best results. These densities are calculated at the lines (3- 9)
and are then used to calculate a pseudo-pressure P and a near pressure Pnear.

Pseudo-pressure is a term de�ned by [CBP05] as P = k(p − p0) where p is the
density calculated above, k is a sti�ness constant and p0 is the rest density. This
will give particles with a density lower than rest density a negative pressure and a
particle with a density greater than rest density a positive pressure. This pressure
will be used at line (16) to calculate if the particle should pull in or push away its
neighbors.

The near pressure is de�ned as Pnear = knearpnear, where knear is sti�ness con-
stant for the near pressure and pnear is the near density calculated above. The near
pressure was introduced by [CBP05] to solve a clustering problem. Without the near
pressure, the particles would reach rest density by strongly pulling a small number
of neighbors close enough, which made the �uid separate into independent clusters.
With the introduction of near pressure particles will kept apart to avoid small clus-
ters. Note that the near pressure kernel function is cubic instead of square, making
it less in�uential on neighbors far apart.

ResolveCollisions

Algorithm 7 Resolving collisions

1: function ResolveCollisions(timeStep)
2: for each Particle p
3: index ← distanceF ield.GetIndex(p.pos)
4: if index 6= −1
5: distance ← distanceF ield.GetDistance(index)
6: if distance > −collisionRadius
7: vp,n ← (p.pos− n.pos)/tempn
8: normal ← distanceF ield.GetNormal(index)
9: tangent ← PerpendicularCCW (normal)
10: tangent ← timeStep ∗ friction ∗ (vp,n · tangent) ∗ tangent
11: p.pos ← p.pos− tangent
12: p.pos ← p.pos− collisionSoftness ∗ (dist+ r) ∗ normal

This step resolves the collisions between the particles and the world. The distance
�eld is queried for the distance from the particle's position to the closest edge. If
that distance is less than the collision radius, move the particle away from the edge
by an value dependant on the penetration depth. Also particles in contact with the
edge will receive a small friction force in the tangential direction of the edge.

Since the distance �eld have limited resolution and have a noticeable amount
of error in some cases, correcting strictly after the distance �eld will give jerky
results. Therefore a collisionSoftness factor is introduced to let the correction
take place over multiple simulation steps. This will make the particles slightly
penetrate the wall a couple of frames, but will result in a smoother movement. In
our implementation we use values in the range of 0.4 − 0.8, depending on world
properties.

UpdateVelocity

Algorithm 8 Updating velocities

1: function UpdateVelocity(timeStep)
2: for each Particle p
3: p.vel ← (p.pos− p.posprev)/timeStep

This step updates the velocities to be used in the beginning of next simulation step.
The velocity is de�ned as the change in position during this step, from the previous
position to the predicted, and then relaxed, new position.

3.2 Neighbor search

Since all particle interaction will be between pairs of neighbors, where all values are
equal to zero outside of the particle's kernel radius, there is no need for each particle
to consider all other particles potential neighbors. Therefore, a spatial hashing grid
were implemented.

We make the assumption that the radius of the particles are constant and that
the world is static with �xed boundaries. These assumptions can be used to decrease
the computational cost, in comparison to using a sparse grid which can adjust for
varying radius and world size.

The grid consists of N ∗M square cells with the width and height of radius.
Each cell contains a list of particles belonging to the cell. When a particle has moved
enough to change cell, it is removed from the old cell and inserted in the new cell.

When a particle requests its possible neighbors, the grid �nd which cell it belongs
to and returns the particles in that cell and the 8 cells around it. All neighbors are
guaranteed to lie within those 9 cells, due to the cell edge size of radius, but it is not
guaranteed that all those particles are actual neighbors. Therefore, the neighbors
are calculated once per simulation step and stored into lists. This is to avoid the
overhead of fetching the potential neighbors from the 9 cells and to a distance test
every time a list of neighbors are needed. This calculation is described by the
function UpdateNeighbors in section 3.1.3, algorithm 5.

3.3 Threading

A simple approach was used to make the algorithm usable for multiple threads.
Most of the steps in simulation step algorithm (Algorithm 1) consists of an outer
loop iterating over all particles and performing some kind of calculation. This outer
loop is a simple for loop with a �xed order and there are no rearrangements or other
special operations during any step. This made the following adjustment possible.

Each thread is given an integer id thread_id, from 0 up to the maximum number
of threads - 1 thread_count. Each loop is then changed to start at thread_id instead
of 0 and increment the index with thread_count instead of 1.

Algorithm 9 Update loops with and without threading

1: for (int i = 0; i < particle_count; ++i)

2: for (int i = thread_id; i < particle_count; i += thread_count)

This approach does not seem to very cache e�cient, in comparison with giving
each thread a range of indices to iterate over. However, the neighbor access can be
seen as completely random due to the nature of the particle movement, most likely
changing enough of the cache to make the next particle miss in any case.

A test was made to see if changing the access order by grid cell would increase
performance, since a member of the same cell is more likely to already be in the
cache. However, the only di�erence were a very small increase of computational
time, most likely caused by the overhead from accessing cells. Since there were no
visible bene�ts from one method over the next, the simplest method was chosen.

3.4 World collision

The world is de�ned as a distance �eld where each data point contains the distance
to the closest edge an the normal away from that edge. This gives a fast and robust
way of managing collisions in the world. Each particle only has to sample the data
�eld once to �nd a collision, get the collision depth and the normal along which it
should be displaced.

The downside of this method is that it is memory consuming and slow to gen-
erate. The memory consumption is not a problem on any modern handheld device
and the slow generation was solved by generating most of the distance �elds o�ine.
The distances still have to be adjusted to the world size during runtime, but this
only take a fraction of the whole generation time.

The world is generated by using a black and white image, where white represents
a solid material and black represents air. The image is used as input in the following
algorithm and will generate a manhattan distance �eld. An example of the result is
shown in �gure 3.1.

Algorithm 10 Generate distance �eld

1: //Upwards pass
2: s ← Set of all edges, white cells with black neighbors.
3: v ← 0
4: while s not empty
5: Set all cells in s to v
6: s ← All white neighbors to s which has not been given a value
7: v ← v + 1

8: //Downwards pass
9: s ← Set of all edges, white cells with black neighbors.
10: v ← 0
11: while s not empty
12: Set all cells in s to v
13: s ← All black neighbors to s which has not been given a value
14: v ← v − 1

Figure 3.1: An example of the �rst step of the distance �eld generation. The
numbers represent the distance from the edge, where positive numbers are inside
the wall and negative numbers are outside.

To calculate the normals a kernel of uneven size is used. A larger kernel will
result in a smoother but less detailed normal �eld. In our implementation a kernel
size of 9 was used, which requires sampling of 81 data points to generate each normal.
The normal is calculated by:

n̂i = normalize(
∑

j∈N(i)
djûj,i), where N(i) is all data points of the distance �eld

in the kernel, dj is the distance value at j and ûj,i is a normalized vector from the
data point j to i.

These normals are then used to make an approximate transformation of the
manhattan distances1 to euclidean distances2, to make some diagonal cases more
accurate.

3.5 User interaction

The gravity is controlled by the device accelerometer. This allows the user to tilt
the device back and forth to create waves and let the �uid �ow through the world
in any direction.

In addition to controlling the gravity, the user is able to pick up chunks of �uid
using the touch controls or the mouse. The pick up interaction consists of three
forces acting on the nearby particles: an attraction force with pulls the particles
towards the touch point, a small friction force to make the picked up �uid come to
rest earlier and a force corresponding to the movement of the touch point. Figure
3.2 shows the simulation a short while after a user picked up two chunks of �uid.

Figure 3.2: An user picking up two chunks of the �uid. The force used to pick up
the �uid quickly weakens with distance and the force keeping most of the �uid in
place is the force applied by the double density relaxation(Section 3.1.3), which in
this case behaves like surface tension. The downward streams of particles quickly
form into droplets.

1Manhattan distance: The distance between to points using only a strictly vertical and hori-

zontal path. distance(p1,p2) = |p1.x− p2.x|+ |p1.y − p2.y|
2Euclidean distance: The distance between two points using a straight path. The distance is

given by pythagoras theorem: distance(p1,p2) =
√
p1 · p2

Figure 3.3: A visualization of the �uid rendering process. The alpha value is used
as a threshold value in a second rendering pass to get a smooth surface. This is
natively supported on most graphics hardware and therefore a very cheap e�ect.
Left: the (inverted for clearer image) alpha channel in the �rst pass. Right: The
alpha after threshold comparison in the second pass.

3.6 Rendering

This implementation does not focus on the aspect of rendering �uids, but a short
description of the techniques used will be given.

The �uid rendering consists of two passes. The �rst pass render each particle to
an o�-screen bu�er with additive blending. The alpha3 values in the sprite are based
on the distance from the center of the sprite, where the alpha is 1.0 in the center
and 0.0 at the edges. The left part of �gure 3.3 shows this. In this implementation,
the dimensions of the o�-screen bu�er is scaled down by a factor of 4, compared to
the screen resolution.

In the second pass, the background is �rst drawn, then the o�-screen bu�er is
sampled with a linear sampler to produce the �nal image on the screen. The alpha
value is read and compared to a threshold cuto� value. If the alpha is above the
threshold it renders the �uid color with alpha 1.0, if the alpha is below the threshold
the pixel is ignored, leaving the background unchanged. This produces a smooth
�uid-like surface as shown in the right side of �gure 3.3.

The color of a particle is dependant on the amount of pressure there is at the
particle. A simple palette is used where the colors goes from: low pressure → high
pressure, blue → purple → white. Figure 3.2 shows this e�ect slightly; the �uid is
blue at the top of the surface and more purple at the bottom.

As an option for the user, some particles can be turned white to visualize �ow
better. This will simply make 10% of the particles ignore their pressure color value
and always use white. This will, however, only visualize �ow when the simulation is
running and not in captured images.

3Alpha channel: A common channel in images that is being rendered, along with red, green

and blue. Alpha is most commonly used for transparency.

3.7 Testing method
Fluid behavior

The �uid behavior tests are mostly performed and veri�ed in a subjective and graph-
ical manner. If the exhibited behaviour looks as expected, it is good enough for this
implementation's target use case.

Performance

The performance test will consists of two di�erent types of tests.
The �rst type of test will be a static test where all the particles has come to a

rest in the world. The lack of motion will make this test more suitable for showing
di�erences between di�erent implementations, since the input will be very similar
and stable.

The second type of test will be a dynamic test where the particles are in motion.
This type of test is more suitable for measure real usage performance, where there
are occasional performance spikes.

Chapter 4

Results

This chapter will present the results from the implementation. Section 4.1 will
describe the goals with this implementation in detail, followed by section 3.7 which
describes the testing method. The tests are split into two sections: section 4.2
contains the �uid behaviour tests and section 4.3the performance tests.

At the end of the section the visualization of the �uid is also discussed.

4.1 Goal
Fluid behavior

As mentioned in the introduction, the aim of this implementation is to provide an
interactive learning platform for people interested in basic �uid dynamics. Therefore,
the local numerical accuracy of the simulation is not critical as the results will only be
used for visualization. However, it is important that the fundamental �uid behavior
is plausible reproduced in the simulation. To make the requirements �t the scale of
this project a couple of scenarios were selected as a goal: waves, splashes, simple
pressure equalization and �ow through narrow passages. These scenarios should
provide a good start for an interested student.

More advanced scenarios were out of scope for this project, such as: simulating
gases as particles, allowing more advanced pressure simulation, bubbles and drag;
elasticity, allowing for simulation of clay or other non-Newtonian �uids; or �uids
with di�erent properties, allowing a simulation of mixing oil and water.

Performance

The performance requirements are quite strict: the maximum time per frame is
16.7ms since the screen on the target device updates at 60 Hz. This includes all
work, such as: reading input, updating the �uid simulation and render the result
to the screen. Occasional bad spots will occur and are to a minor extent accepted.
The goal of the performance test is to �nd a suitable number of particles to use in
the simulation and to measure the e�ects of threading.

19

4.2 Fluid behavior

4.2.1 Waves

Figure 4.1: A wave propagating from the right to the left and back again over a
time frame of approximately three seconds.

The simulation is capable of handling waves. If there is a strong wave without inter-
ruptions it will propagate back and forth across the screen, slowly losing momentum.
This behaviour is shown in �gure 4.1.

Creating an acceptable breaking wave was harder, but the result is showed in
�gure 4.2. It required parameters changes which reduced the surface tension e�ect
enough to make medium sized droplets break apart. Dropping a droplet as in �gure
4.2.3 would not be possible since the droplet would break apart into multiple small
droplets before hitting the surface.

Figure 4.2: A breaking wave.

4.2.2 Pressure equalization in an U-tube

Figure 4.3: A sequence leading to pressure equalization in an U-pipe.

The simulation is able to handle pressure equalization remarkably well. It performs
well even in more complicated cases than the one showed in �gure 4.3. One downside

is that it can take several seconds before the particle system comes to rest at the
equalized state.

4.2.3 Splash

Figure 4.4: Dropping a droplet into a body of �uid. Notice the changes in pressure,
indicated by the purple color, in the frames after the collision, especially frame 2
and 4.

Splashes were hard to get right in this simulation. The forces keeping the particles
together are working against the splash behaviour, but if those forces are decreased
the droplet, as shown in the �rst image of �gure 4.4, will not form naturally.

An interesting e�ect to notice in �gure 4.4 is how the pressure behaves after the
collision. Purple represents high pressure and a shockwave can be seen (2), bouncing
on the bottom of the screen (3), out to the two sides of the container (4), making
the �uid rise (5) at the sides and �nally come to rest (6).

4.2.4 Flow

Figure 4.5: Top: overview of the �ow test. Bottom: zoomed in, showing the
di�erence in velocity for particles adjacent to walls (red) and particles not adjacent
to walls (green). The friction force from the wall slows down collection of particles
tracked by the red circle in comparison to the ones tracked by the green circle.

The �uid �ow in the simulation turned out to work better than expected. Narrow
openings limit the �ow and pressure in the expected way. The small friction force
of the wall collisions also makes the �uid �ow slower closer to walls.

4.3 Performance
This section will discuss performance related subjects, such as the performance im-
pact of threading and which number of particles is suitable for a �uent and interactive
experience. Two di�erent types of performance tests are used, one static and one
dynamic. The static test is a test were the �uid has come to a rest and is not making
any signi�cant movement and the dynamic test is a test where the �uid is constantly
moving.

The testing device was a Windows RT tablet of the model: Microsoft Surface
RT 64 GB. It features a quad-core ARM based CPU and 2 GB of RAM.

4.3.1 Impact from threading
The following table lists the frame times during multiple simple tests made. The
times are an approximation of the average of the last 3 seconds frame times. In
the tests, 3000 particles was used with four di�erent set of parameters, per type of
testing.

1 thread 4 threads improvement factor

Static test 1 36 ms 11 ms 3,3

Static test 2 34 ms 10 ms 3,4

Static test 3 24 ms 8,1 ms 3,0

Static test 4 50 ms 15 ms 3,3

Dynamic test 1 32 ms 11 ms 2,9

Dynamic test 2 32 ms 10 ms 3,2

Dynamic test 3 23 ms 8,5 ms 2,7

Dynamic test 4 42 ms 14 ms 3,0

Table 4.1: A comparison between the average frame time with and without using
threading. This shows that using our technique for threading, the performance was
increased by approximately a factor of 3.

As shown in table 4.1, running our implementation on four hardware threads,
approximately yields a speed up by a factor of 3. These values seem to be correct even
outside of the testing environment, where user interaction is part of the simulation.

4.3.2 Particle count
The following test were made to �nd a reasonable particle count for use in an average
user case. The two testing scenarios were used with di�erent particle count, as shown

in table 4.2

count static dynamic

2000 6,9 ms 6,3 ms

2500 8,7 ms 8,3 ms

3000 11 ms 10 ms

3500 13,5 ms 13 ms

4000 16 ms 15 ms

4500 18,5 ms 17 ms

5000 21 ms 21 ms

Table 4.2: A comparison between the average frame time in two di�erent scenarios,
with di�erent amount of particles.

An interesting observation from this result is that the dynamic test receives
slightly better results. Intuitionally, this can be unexpected results since moving
particles have to change their position in the grid more often. However, a moving
�uid is more likely to spread better across the available space, reducing the average
number of neighbor pairs which in turn reduces the number of computations required
for each particle.

It is important to note that these time �gures are measurements of only the �uid
simulation step; other parts of the implementation is not included in this time, such
as input management and rendering. The rendering used in our implementation is
quite simple and not very time consuming, in an average case the rendering uses 1 -
2 ms per frame to set up all draw calls and other information required by the GPU
to render the frame.

The main loop is set up in the order: render, update, present; where present
waits for vertical sync and �ips the screen back bu�ers. This allows the GPU to
work on rendering during the simulation step update. Since this implementation is
heavily CPU bound, by the time the simulation step is complete, the GPU has a
frame ready to be presented.

4.4 Visualization

To give an interesting user experience it is important to visualize the �uid simulation
in an interesting way. In this implementation, the rendering is kept as simple as
possible, while still creating convincing results. The only e�ect used is the smoothing
of the edges, as described in section sec:sec:Rendering, otherwise the rendering is
basically just colored balls.

There are two aspects which the visualization focuses on: pressure changes and
�ow. Pressure is visualized by giving each particle a color from a palette, based on
their pressure in the simulation step DoubleDensityRelaxation in section 3.1.3. This
makes the user able to visualize how the pressure changes during di�erent events;

�gure 4.5 shows increased pressure where the �uid are pressed against a wall and
the second image of �gure 4.4 shows the beginning of a shockwave when the droplet
hit the surface.

Flow are visualized by simply highlighting 10% of the particles. When the par-
ticles are colored by pressure, it can be hard to follow the �ow of particles since
the pressure changes rapidly. By highlighting a number of particles it gives the user
some reference points to track, making the �ow easier to visualize. Figure 4.5 shows
how this highlighting looks, but an actual moving simulation is required to fully
appreciate the e�ect.

Chapter 5

Conclusion
In conclusion, this implementation works reasonably well on the target device. The
implementation is able to recreate the �uid behaviours we aimed to implement,
such as waves, pressure equalization and interesting �ow behaviour. Adjusting the
parameters to get the desired result turned out to be di�cult and we did not succeed
in creating a breaking wave in an environment, without the side e�ect of making
the surface tension too low.

The computational performance of the simulation allows the simulation to handle
about 3000 particles. This is more than enough to simulate the scenarios targeted
by this report.

5.1 Future work
This implementation is mostly meant as an introductory work to �uid dynamics
and can therefore be seen as relatively simple and naïve. There are many aspects of
which this simulation could be improved.

The targeted �uid behavior can be extended by using one of the many varia-
tions available in literature, such as the full algorithm by Clavet [CBP05] to allow
viscoelastic behavior.

Many of the components used in the implementation are focused on simplicity
instead of performance, making them not optimal and suitable for change. The
neighbor search can be implemented in a number of di�erent ways. A solution
described by [Gre08] seems like a good possible choice.

With the recent advancement of mobile processors, the GPU capabilities are
starting to become powerful. In a few years, the GPU based techniques such as the
ones described in [WLL04] and [HKK07] might be more suitable for mobile �uid
simulation.

Also, this implementation did not use the ARM SIMD1 instruction set, NEON,
to speed up calculations. By utilizing this the calculations would most likely have
been considerably sped up.

1SIMD: Single Instruction, Multiple Data. Performs the same operation on multiple data

elements, at the cost of one operation.

27

Bibliography

[CBP05] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based
viscoelastic �uid simulation. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 219�
228. ACM, 2005.

[GM77] Robert A Gingold and Joseph J Monaghan. Smoothed particle
hydrodynamics-theory and application to non-spherical stars. Monthly
notices of the royal astronomical society, 181:375�389, 1977.

[Gre08] Simin Green. Particle-based Fluid Simunlation. Presentation by NVIDIA
Corporation, 2008.

[HKK07] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. Smoothed
particle hydrodynamics on gpus. In Computer Graphics International,
pages 63�70, 2007.

[Luc77] Leon B Lucy. A numerical approach to the testing of the �ssion hypothesis.
The astronomical journal, 82:1013�1024, 1977.

[WLL04] Enhua Wu, Youquan Liu, and Xuehui Liu. An improved study of real-
time �uid simulation on gpu. Computer Animation and Virtual Worlds,
15(3-4):139�146, 2004.

29

