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Abstract
Denial of Service (DoS) aims to drain the underlying re-
sources of a service and is a increasing problem for today’s
service providers. In this paper, we propose a novel rep-
utation based proof-of-work (RB-PoW) protocol based on
adaptive scaling of puzzle difficulties to mitigate various
denial-of-service attacks. A testing framework was devel-
oped to examine RB-PoW’s effectiveness against classical
PoW protocols in simulated DoS attacks. We concluded
that in flooding type of denial-of-service attacks the RB-
PoW model is superior to the classical PoW that is based
solely on server load. Both offer similar performance when
exposed to drain-type denial-of-service attacks.



Referat
Ändamålet med Denial of Service(DoS) attacker är att drän-
era en tjänsts underliggande resurser. Attacktypen är ett
växande problem för dagens tjänsteförmedlare. I detta kan-
didatexamensarbete föreslår vi en ny ryktesbaserad Proof
of Work (RB-PoW)protokoll som bygger på anpassningsbar
skalning av pusselsvårigheter för att dämpa diverse denial-
of-service-attacker. Ett testramverk utvecklades för att un-
dersöka RB-PoWs effektivitet i jämförelse med den klas-
siska implementationen av PoW protokoll i en simulerad
DoS-attack. Våra slutsatser är att RB-PoW är överlägsen
i översvämmningsattacker i jämförelse med den klassiska
PoW varianten som är enbart är baserad på serverbelast-
ning. Modellerna har likvärdig prestanda när de blir ex-
ponerade för dräneringsattacker.
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1 Introduction

The Internet continues to grow and has since a time back enabled a single source
to be connected to several millions of geographically dispersed computers. Security
flaws of a new magnitude has as a consequence been introduced; enabling a single
computer to be attacked by millions of sources at once.

This threat also known as denial-of-service (DoS) attacks is a growing concern
as these attacks have shown to disable even well-known services. Unlike other
attacks the primary goal of denial-of-service attacks is to restrict or disrupt the
availability of the service to its legitimate users. It is essentially a targeted effort
to prevent a service from functioning properly by draining the underlying computer
resources. One attempt to counter DoS attacks and to improve service survivability
is a computational approach called Proof of Work (PoW). Proof-of-work also known
as Client Puzzles[1, 2] is cryptographic in flavor and requires the clients to solve an
instance of a predefined problem in order to gain access to the server’s resources.
Proof of Work, when initially proposed, seemed like a very promising method to
fighting DoS attacks but since Laurie and Clayton published the paper “Proof of
Work” proves not to work in 2004, many PoW schemes were disregarded. However,
there was an aspect that Laurie and Clayton did not consider, puzzle schemes that
are adaptive[4, 5].

In this paper, we examine the use of adaptive scaling of proof-of-work problems
to mitigate various DoS attacks. We propose a new Reputation Based Proof of Work
protocol(RB-PoW) that scale problem difficulties based on request rate behaviour
of a user.

The organisation of this paper is as follows. Section 2 explains the theory behind
the reputation based proof-of-work protocol and assumptions that has to be made
as well as notation of the proposed protocol. A brief view on the software testing
framework is given in section 4. An outline of important system parameters and
a detailed explanation of the simulation experiments are given in Section 4. The
results of the simulation experiments are presented in section 5 and a concluding
discussion is provided in section 6.

Proof of Work and Related Work

The fundamental property of Proof of Work is that its puzzles are moderately hard to
solve but easy to verify. This concept was originally proposed by Dwork and Naor
1992 in “Pricing via Processing or Combatting Junk Mail” as a way to counter
e-mail spam by increasing the costs of sending spam, thus making e-mail spam
economically infeasible. Dwork and Naor originally called this a pricing function
since it effectively puts a price on using a service.

The concept of proof-of-work was reinvented by Back, who later proposed ”hash-
cash” as a DoS preventing method in Hashcash - A Denial of Service Counter-
Measure. Back’s idea was to require the requester of a service to compute a cryp-
tographic hash in which the most significant bits start with a certain number of
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zeroes.1 Consequently, the average work to solve a ”hashcash” puzzle is exponential
to the number of zero bits required vis-à-vis computing a single hash to verify[8].

The idea of proof-of-work has since then been adapted into various field such as
mitigating denial-of-service attacks [9], limiting the rate of new TCP connections
[2] and as an inducement in peer-to-peer networks[8, 10]. Variants of proof-of-work
schemes are further discussed in “Resource inflation threats to denial of service
countermeasures”.

Problem definition
Proof of Work has been shown to potentially work as a prevention mechanism to
at least mitigate the effects of a DoS attack[2]. However, scaling problem difficulty
with server load may render problem difficulties that induces a significant disruption
to the legitimate client. Naive proof of work implementations similar to hashcash
are significantly CPU-bound[11]. Consequently, a service protected by trivial PoW
schemes heavily penalises users of lesser hardware, as supported by our findings
presented in table 5.1, as well as Tsang and Smith[12].

Problem statement
• Can an individually adaptive Proof of Work scheme be optimised to penalise

malicious behaviour while still enabling legitimate clients to access the service,
thus improving performance versus a conventional load scaling system?

• Is there a viable way to implement a Proof of Work system that maintains
service, even to mobile users, while the system is under attack?

Purpose and method
The purpose of this study is to research ways to improve the classical Proof of Work
in such a way that legitimate users are less affected by the Proof of Work than the
participants of a DoS attack. Furthermore to find a way to dynamically scale the
required proof of work when dealing with different hardware.

A PoW difficulty scaling model is developed and its performance is measured
against a naive CPU load difficulty scaler. To support the testing, a Proof of Work
testing framework is designed and implemented.

Scope and delimitations
This study explores a reputation based approach to scaling proof-of-work puzzle dif-
ficulties, thereby covering necessary theory of puzzle-based mechanisms specifically
hash-reversal based puzzles. Furthermore, the study aims to cover explanations of
the implemented protocol, simulation experiments and results of significance.

1In the first scheme of hashcash the initial bits of two hashes had to match - what mentioned
in the text is actually a recent improvement.
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There is various types of proof-of-work protocols as of recently. Hence, the
study does not specifically aim to cover these but might be mentioned throughout
the paper. Various types of denial-of-service attacks exists, some which aim to
disable lower level layers. This paper is limited to DoS attacks on application level
layer by technical reasons. Otherwise, a proof-of-work scheme can be circumvented
by an attack on a lower abstraction layer.2

One important parameter of any DoS mitigation scheme is the time to live
(TTL) parameter of an initiated but idle connection. The study does not cover
TTL optimisation. The variable is fixed as infinite throughout this paper.

Terminology
A brief explanation of terminology and abbreviations used throughout this paper
follows:

• Client / User: Client and user will be used interchangeably depending on
the context where the term client tend to be more software oriented in contrast
to user which usually is referred from an “in system” perspective.

• Adversary: Attackers or users with malicious intent will be referred to as
adversaries. An adversary is technically a client in the system, but will not be
regarded as such throughout this paper, since the intentions of the adversary
is to exploit and/or interrupt the service in contrast to the legitimate client.

• SHA2: refers to the SHA256 secure hash algorithm[13].

• Puzzle: A problem instantiation of the problem type specified in the protocol.
See section 2.1.2.

• Problem: A general problem, may also refer to a Puzzle.

• PoW: Abbreviation for Proof of Work.

• DoS: Abbreviation for Denial of Service (attack).

• RB-PoW: Our reputation based adaptive Proof of Work scheme.

2 Adapting Proof of Work
Denial of Service attacks are often possible due to the low price of a request, for
an adversary often a single network packet[5], compared to the work the service
provider performs. Puzzle-based proof-of-work limits an attacker’s possibilities to
impose a high work load on a server from a sole client by increasing the cost of
each request. Laurie and Clayton argued that Proof of Work, assuming a fixed
cost proof-of-work pricing function, would not work. In this section we present an

2Application layer and abstraction layer of the OSI model.



4 CONTENTS

alternate interpretation of proof-of-work incorporating problem scaling and indi-
vidual adaptation, that may in fact be a practically viable scheme to considerably
attenuate the effects of a denial-of-service attack.

The RB-PoW scheme utilises a hash-reversal puzzle very similar to hashcash.
The difference to hashcash is that RB-PoW uses SHA2 in place of SHA1, since it is
a cryptographically stronger hash[14]. The puzzle is a seed Pi[j]3. The client needs
to find an Si[j] such that the computed hash h = H(Si[j]||Pi[j]) holds the property
that the leading d (issued difficulty) digits in the hex representation of h are all
equal to zero. It is computationally infeasible to find x for a given h such that h =
sha2(x)[13], consequently the only way to find Si[i] is by sequential trial. For dl+1 =
dl + 1, only 1

16 of solutions accepted for difficulty dl are accepted. The complexity
of finding Si[j] is thus O(16d). This is however an amortized complexity, since one
can be lucky and find a solution in the first hash test, or be forced to seek nearly the
complete solution space. The actual running time is in fact geometrically distributed
with an expected outcome of 16d trials before finding the solution, but the running
time may be improved to approach a normal distribution with the introduction
of sub-puzzles[15]. The reputation based proof-of-work model uses subpuzzles to
normalise expected solving times but also to scale problem difficulties. To harvest
the almost normalised run times we use a minimum of 16 sub-puzzles, as suggested
by Henriques and Nordmark. A (sub-)puzzle set may have a cardinality as large
as 256 to enable integer scaling of problem difficulty. The central difficulty scaling
model of RB-PoW will be further addressed in section 2.5.

2.1 RB-PoW Protocol
2.1.1 Protocol notation

To formalize the Proof of Work protocol a few notations will be introduced. Con-
sider the following notations:

Mi = to be ith execution of the protocol M by either a legitimate user or
an adversary.
h = a puzzle generator function.
P[j] = the jth sub-puzzle in P .
m = the number of sub-puzzles, this equals to the size of the set P .
d = an integer indicating the difficulty of the problem set P .
S[j] = the jth solution in S and a solution to jth sub-puzzle in P .
z = a function that return the number of most significant bytes that is zero.

2.1.2 Protocol description

Now let us describe the details of our proposed reputation based puzzle protocol
between client and server. Prior to initiating protocol M the client Ci starts by
requesting(Ri) a service from the server. The server responds with a packaged set

3For a precise definition of Pi[j], i and j, please see section 2.1.1.
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of sub-puzzles Pi of size m and a difficulty d. Each sub-puzzle P [1] . . . P [m] is a
seed derived by g(t, x) where x is value generated uniformly-at-random.

The client Ci must solve each sub-puzzle Pi[j] of Pi by finding a value Si[j] so
that the computed hash H(Si[j] || Pi[j]) has at least d leading zeroes. If such a
hash is found then the solution S[j] is a solution to the sub-puzzle P [j].

The server then verifies each solution of Si by computing H(Si[j] || Pi[j]) with
a stored copy of Pi[j] and confirms that the solution has d leading zeroes. If all
solutions are correctly computed the client Ci’s request Ri will be granted.

server client

Initialisation of protocol M

service request Ri

generate sub-puzzles

P [j] := g(t, x), 1 ≤ j ≤ m

Pi := {∪m
j=1P [j], d}

send puzzles

solve each P [j] ∈ P

Si := {S[1 . . . m]}

send solutions

verify each S[j] ∈ S

grant request Ri

Figure 2.1. Diagram of Proof of Work protocol

If the reputation system deems the server to not be under attack i.e. under
normal server operation, the problem package will be the empty set, indicating that
no puzzles are being distributed. Hence, the client will “solve” this empty set with
no effort and then respond back to the server.4 The server will then verify the
solution for Pi and grant access to Ri of protocol M.

If the reputation system deems the server to be under attack the difficulty of the
problem set for request Ri will be decided by the historical and current behaviour
of client Ci.

The following sections will present server-side metrics needed to define client
behaviour and explain assumptions made for the test environment. We will precisely
define the meaning of client behaviour in our model and finally carry on to develop
and describe the reputation based proof-of-work model.

4This design decision may be questioned, arguing that the handshaking process with empty
sets could bring unnecessary load on the server. However, empty sets will only be distributed when
server load is low thus the extra verification can be afforded.
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2.2 Assumptions

2.2.1 Attack model

In this section, the attack model of the simulation experiment will be described.
In order to specify an attack model and to simulate an attack, some assumptions
regarding the adversary are made. Assumptions enable us to test a DoS mitigation
scheme in the application layer; if any assumption does not hold the protection can
be circumvented by an attack through a lower abstraction layer5. We assume a
server Server, a network with clients {Ci}, and adversary Ad.

Assumption 1 Ad cannot modify any packets sent between Ci and Server.

This is necessary to assume, in particular that it cannot modify legitimate users
packets. If Assumption 1 does not hold and packets can be modified then a denial-
of-service attack can be initiated simply by corrupting all packages thus rendering
any PoW protocol ineffective.

Assumption 2 Ad cannot delay any packets sent between Ci and Server.

By similar reasons as Assumption 1 we must assume that the adversary cannot
delay other clients’ packets. If Assumption 2 does not hold and an adversary can
delay packets arbitrarily then the she can mount a denial-of-service attack without
draining the resources of the server itself.

Assumption 3 Ad cannot oversaturate the transfer layer6 or network layer7

of the Server.

An adversary must be able to perform a denial-of-service attack by sending large
amount of requests to the server. However, we must also assume that the adversary
cannot bring down the server by simply over-saturating the server ports or network
with sheer volume of the adversary’s requests.

2.2.2 Environment

Assumption 4 We will assume that every action the server performs have unit
cost, the assumption does not lessen generality, since an external difficulty scaler
could be added to each action the server performs.

5Abstraction layer in the OSI model
6Transfer layer of the OSI model
7Network layer of the OSI model
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Assumption 5 We will assume that the server is dimensioned to handle load
under normal operation.

2.3 Metrics
In order to establish a quantitative description of metrics required by the difficulty
scaling model as well as simulation experiments this section will outline three sets
of parameters referred to as quantifiers, observables and controllables.

2.3.1 Attack Quantifiers

Service time reflects measurement in the quality of a requested service by a client.
Assuming that the service is web browsing the service time could be the time until
a web page is completely transfered. If an adversary aims to mount a DoS attack
the service quality during the attack can be measured by the average service latency
for legitimate users.

2.3.2 Server Observables

The difficulty of PoW problems handed out as a response to requests are based
a set of selected parameters that in different ways reflects the server’s resource
consumption.

Number of established connections: keeps track of how many clients8 that is
currently connected to the server.

CPU load averages: tell us whether the physical CPU utilization is over or under
saturated. A perfect utilization is when the CPU is busy but no process is stalled.
In general load average differ from CPU usage in two significant ways:

1. the CPU usage measures the instantaneous snapshot while load averages mea-
sure the trend in CPU utilization.

2. the CPU usage only measures how much was active during measured time-
frame while load averages take all demands for CPU into account.

If the server has four CPUs running and the reported load average is 4.00 then the
CPUs are perfectly utilized[16].

Request rate is the quantified amount of requests for a service that a single client
or a group of clients asks for. This measurement is slightly modified to measure the
average time between requests to show the amount servicing required by each client
and the average of all clients in a given time-frame. By introducing a rating scheme
that weights the individual requesting rate of a client with the average request rate
of all clients the Reputation System can hand out problems scaled to the behaviour
of each client. Thereby limiting the amount of service to a client with malicious
behaviour and furthermore giving a natural limit to a DoS attack.

8This is actually the number of web sockets open on the server side.
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2.3.3 Server Controllables

The server resources is managed by the reputation behaviour model, generally it
has two settings that can be regulated. Firstly, Puzzle Difficulty, the difficulty of a
puzzle is based on parameters in Server Observables. However, the scaling of puzzles
can be tuned to respond more harshly or forgiving based on the parameters.

Secondly, Connection Time-out is used to control the lifetime a connection.
This could be a finite duration meaning that if no solution is sent back to the server
within the connection lifetime the connection will be closed. However, in the scope
of the simulation experiments this duration is set to infinite.

2.4 Behaviour model
An essential principle of RB-PoW is the RB-PoW definition of fairness:

Every client has equal rights to the server’s resources.

Figure 2.2. RB-PoW Reputation Model Statement

The behaviour model does not reason about users as legitimate or malicious
in an absolute meaning, it regards each user as a potential evil-doer with varying
maliciousness. A “good” user is thus a user that is less taxing on the system whereas
an adversary is a user that is more taxing on the system than the global average.

Assumption 4 implies that the demands of a client can be measured by the
number of connections concerned initiates in a given time-frame, or the inverse:
how long time is passed between each request. To quantify the behaviour of a user
we measure average time between request instead of average request rate per time
unit. Behaviour bi is calculated as an exponential moving average and is recalculated
at every request the client performs:

bi = α · δ + (1− α)bi−1

where δ is the time difference since the last request. At every request, the global
average behaviour Bi is also recalculated:

Bi = β ·∆ + (1− β)Bi−1

where ∆ = δ · n, n is the number of users currently connected to the system.
The multiplication averages the time between request and enables us to compare
the value to local values. One advantage of measuring the time between request
versus counting requests during a sampling period is that it can be implemented
more efficient. An even more interesting property is the effect on behaviour change
rate. Sampling number of request during a period and averaging over n last periods
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means that a client is considered “good” again after previously considered “bad”
just as fast (in time) as the opposite if concerned client changes behaviour pattern.
Averaging over the last n requests instead will cause the system to respond faster
(in time) if a client start acting maliciously (suddenly increasing request rate) and
demanding a longer time for the client to redeem her behaviour.

2.5 Reputation Mechanism as a Difficulty Scaler

The RB-PoW Behaviour model is essential to the RB-PoW adaptive denial-of-
service mitigation scheme. The behaviour model provides a metric describing the
individual client’s load on the service, as well as the global average load per client.
With the introduction of the behaviour model, the puzzle difficulty scaling model
becomes simple to describe:

• The client Ci behaves in a manner comparable to Bi

- The request Ri is assigned a problem difficulty suitable to server load.

• The client Ci demands less resources compared to the general behaviour
(bi > Bi).
- The request Ri is assigned a problem difficulty easier than the general diffi-
culty.

• The client Ci demands more resources compared to the general behaviour
(bi < Bi).
- The request Ri is assigned a problem difficulty harder than the general
difficulty.

Assumption 5 implies that the DoS protection functionality is unlikely to be acti-
vated during normal operation. It also implies that if the server is under attack, the
average adversary is likely more taxing on the system than the average legitimate
user, unless the offender has access to orders of magnitude more adversaries than
the normal user base. The RB-PoW model leverages these assumptions to maintain
service to legitimate desktop and mobile users: if the number of attackers is low
in compared to number of legitimate clients the global average will represent the
legitimate user base. In this case the adversaries will have a faster request rate
than the average population and will be alotted harder problems. If the number
of attackers are more than the number of legitimate users, the average will instead
represent the adversaries. If legitimate users access the service less frequently they
will receive easier problems compared to the problems received by the opposers.

The RB-PoW model further defines a client’s relative behaviour as bri = bi
Bi
,

which is used as a difficulty multiplier. The RB-PoW is a conceptual model that
should be adapted to the specific application. Our implementation, which contains
more than a few arbitrary constants, follows:
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func rp_scale_model(p Param) Difficulty {
if math.Max(p.Cpu.Load, p.Cpu.Avg) < cpu_thres {

return ZeroDifficulty
}
if p.Local.LongMean > 2*max(p.Global.ShortMean, p.Global.LongMean) {

if p.Local.ShortMean > 3*p.Global.LongMean
&& math.Max(p.Cpu.Load, p.Cpu.Avg) < cpu_thres+20 {
return ZeroDifficulty

}
return BaseDifficulty

}
diff := BaseDifficulty.multiply(1 + int((math.Max(p.Cpu.Avg, cpu_thres) - cpu_thres)))
return *diff.multiply(1 + int(5*p.Global.LongMean/p.Local.ShortMean))

}

Difficulty is described as number of leading zeroes required in each subpuzzle, and
the number of subpuzzles.

type Difficulty struct {
Zeroes int
Problems int

}

Multiplication of a difficulty with an integer is defined as multiplication with number
of subpuzzles. The number of subpuzzles is divided by 16 as the number of zeroes
is incremented by one to not generate excessive amounts of easy subpuzzles. 16
puzzles is the minimum amount of subpuzzles to normalise the solving time for a
particular difficulty[15].

func (d *Difficulty) multiply(f int) *Difficulty {
r := *d
r.Problems *= f
for r.Problems > 256 {

r.Problems /= 16
r.Zeroes++

}
return &r

}

3 System Architecture
Since one requirement on our Proof of Work system is that it minimises differences
between a wide variety of devices; it needs to support both desktop and laptops
with different operating systems as well as cellphones and tablets. In order to
minimise the development effort and maximise maintainability of the code base, a
multi platform solution was sought for web-based simulation interface.

A web-based solution makes the application portable, but the web is not in-
herently stateful thus an emulation of a general service is limited. However, the
advent of web-sockets enables a truly multi-platform proof-of-work client in html
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and javascript while maintaining the generality and plasticity of a natively written
socket based application.

The server side was implemented in Google’s novel programming language golang[17].
The real strengths of golang in this context is actually not performance nor sim-
plicity9 but rather it’s standard libraries, which in other contexts may appear im-
mature. Golang includes standard libraries for both html template generation, http
web serving as well as web-sockets. This package makes for an ideal platform for
an application that needs to deliver the client application10 to potential clients as
well as servicing client requests in the model application reachable through the
web-socket interface.

Communication is performed over a web-socket per client, with a single mes-
sage type which is (de-)serialised to (from) JSON. JSON is natively supported
in the Javascript client, and the golang web-socket library supports JSON (de-
)serialisation. Thus no byte parsing specific to our protocol had to be devel-
oped.

type message struct {
Opcode, SocketId int
Result, Query, Hash string
Problems []problem.Problem
Difficulty problem.Difficulty

}

The client application is initiated by visiting the servers web-page which down-
load the client application11. Upon requesting the application web-page, the server
spawns a goroutine12 handling the http response writing task to deliver the appli-
cation to the client. When the client application initiates it will open a keep-alive
web-socket connection to the server where communication can occur. If the client
wants the server to perform its service it will submit a request with operation code 0,
which means that the client is requesting a problem to solve in order to acquire the
servers trust. The server will generate a set of puzzles tied to the specific client. To
prevent an attacker from reusing solutions for multiple requests or forging problem
sets the problem set φi is chosen by the server and stored in memory. The server
will reply with the set of puzzles and operation code 1, telling the client to solve the
problem set. The client will solve the puzzles, using a brute-force approach since
no better algorithm is known. The client will submit the solutions with operation
code 1. Upon receiving a request with operation code 1, the server will verify the
solution. If the verification succeeds the server will grant the client some cpu time,
otherwise the connection will be terminated.

9But the expressiveness, clarity and performance of go programs is not to be dismissed.
10HTML, CSS, Javascript and all that magic that make stuff happen in the browser
11The client application is built in javascript which is distributed to the client via a web-page.
12Goroutines are golangs built in multi-threading primitive.
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4 Simulation Experiments
The reputation based PoW system’s architecture and load management mechanism
was tested by conducting a series of simulated experiments using custom made
web-based population-simulation interface. The configuration parameters of the
experiments are described in detail in section 4.1.

In the experiments, a fixed set of legitimate users was programmed to send
requests to a single server. To simulate a legitimate population each client was pro-
grammed to send the requests with stochastic based delays and thereby simulating
the unpredictable rate of requests. Each request was also programmed to perform
a fixed load on the server side to simulate the execution of a service. As a result a
normal work load on the server was simulated.

for i := int64(0); i < 250000000; i++ {
//simulate some server load (~80 ms)

}

The requests of legitimate users was mixed with a larger population of adversaries
to mount a DoS attack. The adversaries was programmed to have lesser to zero
delay in-between requests, thus forcing the server to service more requests than a
legitimate user.

A custom made web-based monitor was used to aid the understanding well
the RB-PoW system performed under different scenarios. The monitor uses real-
time graphs to outline information about CPU utilization, requests rates and the
time to solve PoW puzzles. In each run we studie the service time for adversaries,
legitimate and mobile users to see how the protection system affected each type of
behaviour. Control parameters such as number of attacking connections and settings
for delays was changed between experimental runs, as-well as the parameters for
server’s internal reputation mechanism.

A logging web service was developed. The client sends data containing response,
solving and granting time as well as at tag describing if the data came from a mobile,
legitimate desktop user or from an adversary, for every request made to the server,
to the logging service. The datalogger compile the data to human readable format,
enabling us to examine results and compute statistics.

The goal of the experiments was to examine how well the reputation based PoW
architecture performed in mitigating DoS attacks and at the same time serving
legitimate users and users with lesser hardware. The degree of effectiveness from
the experiments conducted was determined by following observations:

• A comparison of how many attacking connections that was required to launch
DoS attacks with comparable levels of performance degradation, with and
without reputation based PoW.

• How much legitimate users and users with lesser hardware was affected by
DoS attacks, with and without reputation based PoW protection.
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4.1 Setup

The simulation experiments resulted in benchmarking the Reputation Based Proof
of Work with the initially proposed Proof of Work protocol. In this section, the
set-up of the benchmarks will be presented.

4.1.1 The legitimate users

The legitimate users had to be fixed. By being consequent, a fair comparison could
be done simulating the same normal work load on the server through all the simula-
tions. The benchmarks was run with 100 legitimate users, each being set to having
a normally distributed access times expected to ten seconds with a fifteen second
standard deviation. Consequently, the most probable delays would vary between
between zero to forty seconds.

4.1.2 Mobile user

The mobile users where set to have the same behaviour as the legitimate users in
respect to request rate. Due to a relative lack of testing hardware the cellphones
clients where only four by number, running on a single device.

4.1.3 The attackers

The simulation experiment will test the solution for two different kinds of malicious
behaviour, both seeking to drain the server resources.

Flooding Behaviour : The attackers try to submit as many requests as possible,
solving the problems as fast as possible regardless if proof-of-work is activated.
The test set-up consists of seventeen Quad Core Q9550 2.83Ghz machines running
Ubuntu operative system each handling four client processes in parallel.

Draining Behaviour : The attackers try to have many connections open in par-
allel, even if it means an increased number of contexts switches and longer solving
time for each problem when proof-of-work is activated. This set-up consist of twelve
equally specified machines each running 40 clients in parallel.

The server load is in fact only affected by the total request rate, but the reason to
test both flooding as well as draining is to examine performance of RB-PoW under
different circumstances, since a lower individual request rate among adversaries may
well disguise concerned adversary amidst legitimate users.

5 Results

We performed two sets of experiments to design to test and study the effectiveness
of RB-PoW in comparison to classical PoW;
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• Server Flooding Attacks: in this experiment, the server was flooded with ad-
versaries programmed to have no delays between requests.

• Server Draining Attacks: in this experiment, the server was drained by having
a large amount of adversaries faking to be legitimate users by having identical
delays as the legitemate users.

5.1 Mitigation against Server Flooding

Table 5.1. Results from simulated server flooding. All time measurements in
milliseconds (ms). Attacker population size is seventeen computers simulating four
clients each. The results are the mean of sample data with a 99% confidence level
that the population mean is within the interval.

Prot. model Attackers Legitimate users Mobile devices
Pop. size Solving Service Solving Service Solving Service

PoW 17x4 1266±9 1794±12 3129±98 3652±99 31959±4576 32488±4556
RB-PoW 17x4 1875±43 2312±43 267±13 582±22 2975±1031 3469±1103

5.2 Mitigation against Server Draining

Table 5.2. Results from simulated server draining. All time measurements in mil-
liseconds (ms). Attacker population size is twelve computers simulating fourty clients
each. The results are the mean of sample data with a 99% confidence level that the
population mean is within the interval.

Prot. model Attackers Legitimate users Mobile devices
Pop. size Solving Service Solving Service Solving Service

PoW 12x40 12700±199 14377±210 2616±119 3707±145 59119±14150 61005±14175
RB-PoW 12x40 14615±380 15371±383 4555±332 5206±345 29940±13426 30753±13490

6 Conclusions

In this paper, we have explored the possibilities of a reputation based proof-of-work
protocol in mitigating DoS attacks. We have presented the RB-PoW protocol,
an experimental architecture and tested the protocol with a web-based simulation
interface. We presented results of two simulation experiments, server flooding and
server draining with two types of implementations; classical proof-of-work and the
proposed reputation based proof-of-work. The results are the average milliseconds
of our simulation data with a confidence level of 99%, see Appendix 1 for detailed
explanation in the significance of our results. Furthermore, the results from these
simulation experiments will be brought to discussion in following paragraphs with
the goal of answering the initial problem statements:
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6.1 Server Flooding

The results of simulating server flooding, see table 5.1, shows that the RB-PoW
protocol is a vast improvement to mitigating DoS flooding attacks in comparison
the the classical PoW. It is interesting to note that the RB-PoW perform better in
all three user-type cases. The most significant improvement was to the mobile users
where the service time was reduced approximately 9 folds.

This finding was unexpected and suggests that PoW in its classical implemen-
tation is very primitive. There are several possible explanations for this result and
the most significant reason is likely to be the fact that the classical PoW does not
in any way separate legitimate users from adversaries. There are, however, other
possible explanations. It may in fact be the result of inadequate tuning of the PoW
protocol.

6.2 Server Draining

Contrary to expectations, the results of simulating server draining in table 5.2 show
that classical PoW is slightly better at servicing legitimate users with a service time
approximately 1.4 times better than RB-PoW. However, RB-PoW still performs
significantly better than classical PoW regarding mobile users, with a almost 2
times faster service time. Although, the performance of servicing mobile users in
both protocols would in a real world context be far from acceptable.

Even though the results was quite contradictory to our expectations the ex-
planation for this result is rather reasonable. The proposed RB-PoW system is
based on differentiating malicious behaviour from legitimate behaviour. However,
in the simulation experiment the adversaries was programmed to fake themselves
as legitimate users, thus defeating the core concept of RB-PoW.

6.3 Concluding Remarks and Feasibility

The present results are significant in two major aspects. First and foremost, the
results show that existing proof-of-work protocols can be improved by using clever
and adaptive scaling of problem difficulties. Reputation based scaling is a feasible
approach in improving the dynamics of the proof-of-work concept and has shown
to improve the taxing impact on adversaries while having a less effect on legitimate
users during denial-of-service attacks with flooding characteristics.

Another result of significance is that the RB-PoW protocol during our simulation
of draining type of denial-of-service attacks at worst performed like the cpu-scaling
PoW implementation.

The findings are very valuable in the aspect that they show that RB-PoW could
work as an effective substitute to current proof-of-work schemes, since it provides a
vast improvement in protection against some attacks while at the same time does
not seem to perform significantly worse in situations less than ideal to RB-PoW.
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6.4 Lessons learned
During the our implementation of the RB-PoW protocol and the observations made
during simulation experiments we have conducted:

• That moving costs of services onto the clients help in mitigating denial-of-
service attacks. The RB-PoW protocol show a potential way of maintaining
server stability even under changing conditions.

• An adaptive implementation of proof-of-work schemes effectively puts high
impact on adversaries and low impact on legitimate users during server flood-
ing.

• Tuning of server controllable parameters and choice of reputation system have
very strong effects of effectiveness regarding RB-PoW protocols. The math-
ematical model of the reputation system is a major parameter when scaling
problem difficulties based on the behaviour of the users.

• The protocol could be improved by using bit-strings instead of byte-strings to
make the difficulty levels more fine grained.

• A non-linear difficulty model could potentially be more effective against large
scale flooding type of denial-of-service attacks.

6.5 Suggested Directions for Future Research
The investigation presented in this paper is experimental in its nature. For further
research we suggest the following two possible extensions of the current protocol.

6.5.1 Non-linear difficulty scaling

Green et al. in “Reconstructing hash reversal based proof of work schemes” demon-
strates that hash-reversal schemes based server load would be ineffective when under
attack by GPU utilizing adversaries. On the contrary it was shown that, schemes
which adapts accordingly to client behaviour could be effective against such an
attack. Therefore a direction for further research would be to explore the possi-
bilities of improving our proposed protocol with a non-linear difficulty scaling as
improvement to cope with potential GPU-based DoS attacks.

6.5.2 IP-address spoofing mitigation

The RB-PoW model may be susceptible to ip-address spoofing attacks, where an at-
tacker tries to appear as many different clients with low computational capabilities,
if the adversary is able to read packages sent to other ip-addresses. This scenario is
plausible if an adversary Alice is on the same network as Bob providing the service,
or if Alice has access to some large subnet which she can use to fake clients. Explore
methods to mitigate this type of attack.
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1. STATISTICAL CONFIDENCE

1 Statistical Confidence

An important question of our study is, when do we trust our data? The results
presented in Section 5 was collected from the simulation experiments run through
the web-based simulation interface. The data was collected as samples during a
certain time-frame during the experiments, dividing data into the categories of
adversaries, legitimate users and mobile device users. However, can we be certain
that the calculated averages of our samples represent the average of the whole
population?

The answer lies in statistical mathematics. To bring confidence in the presented
results it is important that a average of the sample data can, with a certain prob-
ability, be found within a interval of confidence, also known as confidence interval.
Hence, knowing this interval enables the possibility to infer that the average of one
sample is significantly different from another, as long as the confidence interval of
the averages do not overlap.

One fundamental requirement of finding these confidence intervals is that the
distribution of the samples is known. However, the distribution of our the result
data in our simulation experiments is likely a sum of pascal and unknown distributed
variables. Because of the uncertainty a bit of magic is required to solve this problem.

1.1 Arithmetic Averages Have a Bit of Magic

That bit of magic is the Central Limit Theorem. The theorem states that, given
a sufficiently large sample of identically distributed independent variables,13, each
with a well-defined mean and well-defined variance14, will be approximately nor-
mally distributed[18].

From this theorem two implications can be drawn that is relevant for our test
data:

• A random sample scan be taken from any population, in our case samples
of the simulation experiments, even if the simulation data is not normally
distributed and assume it to be approximately normally distributed.

• The theorem also allows assumptions to be made about the sample data of
the simulation regardless of the entire simulation data. Thereby, an interval
estimation can be made about the true average of the simulation data with
only sample data.

1.2 Confidence in Test Results

The probability that the average of whole population falls within the interval of
the result data is either 1 or 0 - the interval captures the average or it doesn’t[18].

13The central limit theorem generally takes effect when samples is larger than 30.
14This implies that both the mean the variance should be finite.
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However, with a 99% confidence it is (probably) safe to assume that the average of
the population actually falls within the confidence interval of the result data.
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