
Efficient K-means clustering and the importance
of seeding

PHILIP ELIASSON, NIKLAS ROSÉN

Bachelor of Science Thesis
Supervisor: Per Austrin

Examiner: Mårten Björkman

Abstract
Data clustering is the process of grouping data elements based on some
aspect of similarity between the elements in the group. Clustering has
many applications such as data compression, data mining, pattern recog-
nition and machine learning and there are many different clustering
methods. This paper examines the k-means method of clustering and
how the choice of initial seeding affects the result. Lloyd’s algorithm is
used as a base line and it is compared to an improved algorithm utiliz-
ing kd-trees. Two different methods of seeding are compared, random
seeding and partial clustering seeding.

Referat
Effektiv K-means klustring och vikten av startvärden

Klustring av data innebär att man grupperar dataelement baserat på nå-
gon typ a likhet mellan de grupperade elementen. Klustring har många
olika användningsråden såsom datakompression, datautvinning, möns-
terigenkänning, och maskininlärning och det finns många olika klustrings-
metoder. Den här uppsatsen undersöker klustringsmetoden k-means och
hur valet av startvärden för metoden påverkar resultatet. Lloyds algo-
rithm används som utgångspunkt och den jämförs med en förbättrad
algorithm som använder sig av kd-träd. Två olika metoder att välja
startvärden jämförs, slumpmässigt val av startvärde och delklustring.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Document Overview . 2

2 The k-means method 3
2.1 Lloyd’s algorithm . 4
2.2 Kd-tree . 5

2.2.1 Kd-center . 5
2.2.2 Blacklisting algorithm . 5

2.3 Weaknesses of Lloyd’s and the kd-tree algorithms 6
2.4 Seeds . 8

2.4.1 Random . 8
2.4.2 Partial clustering . 8

3 Experiments 9
3.1 Running time of Lloyd’s and K-means 9

3.1.1 Dimensions . 9
3.1.2 Data points . 12
3.1.3 Cluster centers . 12

3.2 Effects of seeding . 13

4 Conclusions 15

Bibliography 17

Chapter 1

Introduction

Data clustering is the process of grouping data elements in a way that makes the
elements in a given group similar to each other in some aspect. Clustering has many
applications such as data mining, statistical data analysis and bioinformatics[1]. It
is also used for classifying large amount of data, which in turn is useful when ana-
lyzing data generated from search engine queries, articles and texts, images etc.

Clustering has no exact definition and there are several ideas of how a cluster can
be defined. Each idea result in different types of algorithms that each is useful for
different types of data. An example of such an idea is centroid based clustering.
The main idea of centroid based clustering is that each data points belongs to the
cluster which center is within closest distance of that data point. Again, how dis-
tance is measured varies depending on application and clustering algorithm. For
each clustering method the resulting clusters should match the intuitive idea of how
the elements are partitioned. This definition is far from precise as it depends on
ones intuition, and it does not apply to data of higher dimensions as it is extremely
hard, if not impossible, to grasp the natural partitioning of data with more than
three dimensions.

1.1 Problem Statement

The k-means method is a popular[2] approach to clustering, the method is simple
and heuristics allow for relatively efficient implementation that still produce good
results. Lloyd’s algorithm is a well known and very simple heuristic for performing
k-means clustering but it suffers from performance problems. The speed and results
of Lloyd type algorithms depend on the initial positions of cluster centers and the
algorithm used to update the centers. This paper will use Lloyds algorithm as a
baseline and examine how the update algorithm can be improved using kd-trees as
well as the impact the initial cluster centers have on results and running speed.

1

CHAPTER 1. INTRODUCTION

1.2 Document Overview
In chapter 2 the k-means method will be described in detail and in sections 2.1 and
2.2 the algorithms considered in this paper are explained and briefly discussed. In
section 2.4 two methods of choosing seeds will be examined. Chapter 3 contains the
practical experiments performed and their results. In section 3.1 the two clustering
algorithms are compared and in section 3.2 two methods of choosing initial seeds
are tested against each other. Lastly in chapter 4 the conclusions of this paper are
presented.

2

Chapter 2

The k-means method

The clustering method known as k-means is a method that describes the ”best”
partitioning of a data set containing k number of clusters. The method is defined
by its objective function which aims to minimize the sum of all squared distances
within a cluster, for all clusters. The objective function is defined as:

arg min
S

k∑
i=1

 ∑
xj∈Si

‖xj − µi‖2

where xj is a data point in the dataset, Si is a cluster (set of data points) and µi

is the cluster mean (the center point of cluster Si).

One aspect of k-means that makes it different from many other clustering methods
is that the number of clusters is fixed when clustering occurs. This can be consid-
ered as both a weakness and a strength. One positive property of a fixed number
of clusters is that the k-means method does not introduce new clusters in case of
an anomaly data point, instead it sorts the anomaly data point to its closest clus-
ter. The drawback of using a fixed number of clusters is that it might not be clear
how many clusters a dataset might contain. Using an unsuitable k may cause the
k-means method produce poor results, possibly to the point of becoming unusable.

3

CHAPTER 2. THE K-MEANS METHOD

As with any clustering method k-means is not suitable for all types of data.
Even when individual clusters have suitable properties for k-means clustering the
density and position of the cluster can cause it to produce counterintuitive results.

Raw input data Intuitive clustering K-means clustering

Figure 2.1: K-means clustering unfit to cluster irregular data clusters

Lastly the computational difficulty of finding a cluster configuration that mini-
mize the objective function has been proven to be NP-hard[1] with a worst case time
complexity of 2Ω(n)[3] where n is the number of data points. Therefore heuristic
algorithms are used in order to minimize the k-means function.

2.1 Lloyd’s algorithm
The first heuristic algorithm to perform k-means clustering was proposed in 1957
and is known as Lloyd’s algorithm [1]. This algorithm is often referred to as ”the
k-means algorithm” which might cause confusion, as it does not define k-means
clustering.

The algorithm works by iteratively improving the position of the cluster centroids.
How the initial centroid positions, known as seeds, are decided is not part of the
algorithm and is something that has to be provided as an argument in order for the
algorithm to operate. How seeds can be estimated is discussed in section 2.4.

The algorithm improves centroid positions by iterating the following two steps:

step one: Si = {xj : ‖xj − µi‖ ≤ ‖xj − µc‖ ∀ 1 ≤ c ≤ k}

step two: µi = 1
|Si|

 ∑
xj∈Si

xj

In step one all data points, x1...xn, are assigned to one of its closest centroid, µi.
The process of finding a closest neighbors is called nearest neighbor search.
In step two all centroids, µ1...µk, are updated by calculating the mean of all data
points in the cluster.

4

2.2. KD-TREE

These steps are performed until some type of criteria is met, usually that there
were no change in the cluster configuration or that the change in the target func-
tion was below a certain threshold.

Note that Lloyd’s algorithm does not specify how distance is measured. The most
common measure of distance is the euclidian distance, although other distance func-
tions is used when clustering certain kind of data. An example is the Jaccard dis-
tance used for natural language processing[4].

The time complexity of one iteration of Lloyd’s algorithm is O(ndk)[5] where n
is the number of data points, d the dimension of the data and k the number of
cluster centroids.

2.2 Kd-tree
One approach to improve Lloyd’s algorithm examined by Pelleg and Moore[5] is to
reduce the times it take to assign each data element to its closest cluster. This is
done with a space partitioning data structure called a kd-tree. Simply put a kd-tree
is a binary tree where every node contains a hyperplane defined by a dimension and
a point. This plane splits space into two, represented by the two children of the
node. The data points are stored in the leaves of the tree. The splitting dimension
is usually chosen according to a fixed sequence but may also be randomized. The
kd-tree algorithms discussed below are both computationally the same as Lloyds
and will generate the same cluster configuration for the same input data.

2.2.1 Kd-center

A kd-tree can be used in several different ways in order to improve performance. In
Lloyd’s algorithm a nearest neighbor search is performed on every data point with
respect to every cluster centroid to determine which cluster the data point should
be assigned to. This takes nk time, but with the help of a kd-tree it is possible
to reduce this factor by building a kd-tree containing all cluster centroids. Since it
takes dk log2(k) time to build a kd-tree and log(k) time to find the nearest neighbor
in a kd-tree containing k elements, the time it takes to assign all data points has
now been reduced to dk log2(k) + n log(k).

2.2.2 Blacklisting algorithm

An alternative way to use a kd-tree is to reduce the number of nearest neighbor
searches performed. This kd-tree optimization is based on the idea that several
data points often share a common nearest cluster center. Instead of building a kd-
tree containing cluster centroids the data points are used instead. When a nearest
neighbor search is performed the kd-tree is traversed until a subspace with only

5

CHAPTER 2. THE K-MEANS METHOD

one closest centroid is found. All data points in this subspace can then be assigned
to that cluster center. If a leaf is reached then all data points within that leaf is
assigned to its closest cluster similar to Lloyd’s algorithm, the difference being that
each data point only has to be compared to the closest centroids for that leaf.

Figure 2.2: Subspaces in a kd-tree,
partitioning the data points

When a kd-tree is used in this fashion it is also possible to improve step two of
Lloyd’s algorithm. Since the data in the kd-tree does not change between iterations
the kd-tree need to be built only once. This enables certain data to be calculated
and stored in the nodes of the kd-tree, which can be used to improve the speed of
calculating new cluster means. In Lloyd’s algorithm the time it takes to update µi

is linear with |Si|. By storing the number of data points and mean of all data points
in the subspace for every node in the kd-tree the calculation will then become linear
with the number of subspaces assigned to the cluster instead of the number of data
points.

Note the algorithm explaind in this section is a slightly simplified version of the
true blacklisting algorithm detailed in [5].

2.3 Weaknesses of Lloyd’s and the kd-tree algorithms
As both Lloyd’s algorithm and the kd-tree algorithms are heuristic algorithms there
are no guaranties of how well they will perform. This in regard of both clustering
results and speed.

If for example ”bad” data were to be clustered using k-means it can greatly af-

6

2.3. WEAKNESSES OF LLOYD’S AND THE KD-TREE ALGORITHMS

fect running time of the algorithms. An example of ”bad” data are clusters that
are in close proximity of each other. This will cause the cluster configurations to
converge very slowly, causing many iteration to occur.

Data with clear structure
cpu time: 21.5s
iterations: 5

Data with no clear structure
cpu time: 149.3s
iterations: 70

Figure 2.3: Differance in running time using Lloyd’s algorithm on
data sets where d = 2, k = 25 and n = 100000.

The ”bad” data used in figure 2.3 is of course not appropriate nor meaningful
to cluster using k-means, and is only used for explanatory purposes. There is how-
ever meaningful data that impact the kd-trees algorithms especially. Data of higher
dimensions reduce the effectiveness of the kd-tree structure since it has to traverse
through many nodes when performing a nearest neighbor search. This can cause
the overhead to negate the positive properties of the kd-tree.

Another problem regarding clustering results is that clusters can converge to their
local minimum instead of the global minimum. This is caused by unlucky or poorly
chosen seeds.

7

CHAPTER 2. THE K-MEANS METHOD

Initial cluster centroids (seeds) Resulting k-means clustering

Figure 2.4: Seeds causing k-means clustering to converge to local minimum.

2.4 Seeds
As descibed in section 2.1 the k-means algorithms need seeds in order operate.
There are several methods to find seeds, but only two will be mentioned here.

2.4.1 Random
Random seeding is the most simple form of seeding. k number of data points are
selected randomly from the data set and those points are used as initial cluster
positions. This might seem as a bad strategy but it works due to the fact that
most data points are in the proximity of a cluster center, given that the data set is
appropriate for k-means clustering. When using random seeds the common practice
is to perform clustering several times with new random seeds each time in order to
minimize the risk of poor results[2].

2.4.2 Partial clustering
The basic idea of partial clustering seeding is to perform clustering on a subset of the
data and use the resulting cluster centroids as seeds when clustering the complete
data set. This method is potentially more powerful than using random seeds but
the time needed to cluster the subset must be taken into account. Using partial
clustering requires a tradeoff between cluster quality and clustering time.

8

Chapter 3

Experiments

In this section the blacklisting kd-tree algorithm is compared to Lloyd’s algorithm
in respect to running speed in order to substantiate the theory discussed earlier.
The effects of seeding will be examined with respect to the result and running time
of Lloyd’s algorithm. The data used for the clustering experiments is generated to
be normally distributed around the cluster centers. The positions of the centers
are randomized with a uniform distribution and scaled to produce well separated
clusters. All data generated is made to be well suited for k-means clustering, as we
were not interested in examining worst case scenarios.

3.1 Running time of Lloyd’s and K-means

3.1.1 Dimensions

The purpose of the following test is to evaluate how well the different algorithms
perform as the number of dimensions increases. In order to keep the tests meaning-
ful the dimensions span from 2 to 10, as the kd-tree algorithm is know to perform
bad at higher dimensions.

Test data generated for this test has 20000 data points and for every combina-
tion of n, k and d, 3 instances was generated resulting in a total of 60 data sets.
Lastly, the average for each combination of d and k were calculated in order to
produce the final result.

9

CHAPTER 3. EXPERIMENTS

Figure 3.1: CPU time for clustering data sets of varying number of
centroids and dimensions containing 20000 data points.

As seen in figure 3.1 the kd-tree algorithm performs very well compared to
Lloyd’s algorithm. Lloyd’s algorithm scales as expected and performs at best 98%
worse than the kd-tree (k = 20, d = 6). It also shows how well the kd-tree scales as
the number of clusters increase.

From this test it is not clear how the kd-tree algoritm scales in regard to dimen-
sions. For the data sets where k = 20 and k = 50 it looks as if the kd-tree algorithm
might scale sub-linear with dimensions. In order to clarify a more thorough test is
performed.

For the following test a total of 50 data sets is used. For every dimension 10
data sets were generated. For this test k = 20 and n = 20000. The final result is
the average of all 50 clusterings performed.

10

3.1. RUNNING TIME OF LLOYD’S AND K-MEANS

Figure 3.2: CPU time for clustering data sets of varying
dimensions using the kd-tree algorithm.

In figure 3.2 it becomes clear that the kd-tree algorithm scales super-linear with
the number of dimensions.

11

CHAPTER 3. EXPERIMENTS

3.1.2 Data points

The purpose of the following test is to see how well Lloyd’s algorithm and the kd-
tree algorithm scales as the number of data points increase. A total of 45 data sets
is used, 3 data sets for every combination of n and k. The dimension of the data is
3. The results was averaged in order to produce the final results.

Figure 3.3: CPU time spent clustering data sets containing a
varying amount of data points and clusters of dimension 3.

The results displayed in figure 3.3 show that Lloyd’s algorithm can compete
with more advanced algorithms such as kd-tree for data sets of smaller size. The
difference in time becomes more noteable as the the number of data points increase.
The reason for Lloyds algorithm performing so well is most likely due to its simplicity
causing only a minor overhead. Note that Lloyd’s never performed better than the
kd-tree for any given k.

3.1.3 Cluster centers

The following experiments are performed in order to evaluate how the kd-tree al-
gorithm and Lloyd’s algorithm perform as the number of centroids increase. The
data used contains 20000 data points of dimension 3.

12

3.2. EFFECTS OF SEEDING

Figure 3.4: CPU time when clustering data sets with varying cluster count

The results displayed in figure 3.4 shows how well the kd-tree algorithm scales
as the number of clusters increase. Even though it was expected for the kd-tree to
severely outperform Lloyd’s algorithm in this kind of test the results was still better
than expected. The difference in time between 50 and 250 centroids is only 0.29 sec-
onds for the kd-tree algorithm. For Lloyd’s algorithm the difference is 10.22 seconds.

The reason the kd-tree algorithm perform so well for this test is most likely due to
the fact that as the number of clusters increased, the number of data points per
cluster decreased. This results in the kd-tree structure having to create an equal
amount of subspaces in order to cover all data points regardless of how many clus-
ters is used. This in turn makes the kd-tree equally deep and equally fast to search
in.

3.2 Effects of seeding

In order to examine the effects of seeding, Lloyds algorithm is used to cluster the
same data with different initial seeds. The quality of the clusters and the running
time of the clusterings are then compared between the two ways of seeding. The
data generated for this experiment has 10000 data points, 20 clusters and 3 dimen-
sions. A total of 100 data sets is used.

In order to perform partial clustering
√

n =
√

10000 = 100 points are chosen at
random and clustered. These clusters will then be used as seeds when clustering
the full data set.

13

CHAPTER 3. EXPERIMENTS

For the random seed simply k = 20 data points are selected at random and these
will become the seed when clustering the full data set.

In table 3.1 the parameter qavg denotes the average clustering quality. This is a
unitless scale where lower results equal better quality. The parameter iavg denotes
the average number of iterations performed when clustering. The parameter tavg

denotes the average running time. Note that for partial clustering the time used to
perform the partial clustering is not included due to limitations in the software used
to perform clustering. Only the time used to cluster the full data set is available.
The column ”Best time” describes how many times the seeding method resulting
in faster running time and ”Best quality” describes how many times the seeding
method resulted in better quality.

tavg qavg iavg Best time Best qualtiy
Pre clustered 1.6055 3.8533 ∗ 105 22.4000 65 67

Random 1.8370 5.0430 ∗ 105 24.9300 34 33

Table 3.1: Results of the random seeding method and the partial clustering
seeding method.

Looking at the results in table 3.1 shows the difference in performance regarding
both time and quality. Unfortunately the true cost of the partial clustering method
is still unknown as the cost of finding the seed is not included. However, it is
clear that partial clustering can notable affect both quality and running time when
clustering a complete data set, showing us that carefully chosen seeds can improve
algorithms such as Lloyd’s and kd-tree.

14

Chapter 4

Conclusions

The problem statement asks how Lloyd’s algorithm can be improved in order to
deal with its performance issues. Analyzing the results of our experiments we can
conclude that there are several ways of improving Lloyd’s algorithm. Although the
kd-tree structure provided a significant speed increase for certain types of data it
does not always perform better in terms of speed. The kd-tree algorithm still per-
form bad when used with high dimensional data [5], which is a common type of
data in certain applications. We have also shown that carefully chosen seeds can
improve both speed and quality of Lloyd’s algorithm.

In this paper we have examined two different ways of seeding and two different
ways of iteratively improving cluster centroids. There is of course others and more
complex methods that can be examined in order to further improve the task of
k-means clustering.

15

Bibliography

[1] Anil K. Jain, Data Clustering: 50 Years Beyond K-Means. Michigan State Uni-
versity, Michigan

[2] P.S Bradley, Usama M. Fayyad, Refining Initial Points for K-Means Clustering.
University of Wisconsin, Wisconsin

[3] Andrea Vattani, k-means Requires Exponentially Many Iterations Even in the
Plane. University of California, San Diego

[4] Sophia Katrenko, Pieter Adriaans, A Local Alignment Kernel in the Context of
NLP. University of Amsterdam, Netherlands

[5] Dan Pelleg, Andrew Moore, Accelerating Exact k-means Algorithms with Geo-
metric Reasoning. Carnegie Mellon University, Pittsburgh

17

