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Reinforcement learning AI to Hive 
Abstract 
This report is about the game Hive, which is a very unique board game. Firstly we cover 
what Hive is, and then later details on our implementations of it, which issues we ran into 
during the implementation and how we solved those issues. Also we attempted to make an 
AI and by using reinforcement learning teaching it to become good at playing Hive. More 
precisely we used two AI that has no knowledge of Hive other than game rules. This 
however turned out to be impossible within reasonable timeframe, our estimations is that it 
would have to run on an upper-end home computer for at least 140 years to become decent 
at playing the game.  
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Förstärkningslärande AI till Hive 
Sammanfattning 
Denna rapport handlar om det unika brädspelet Hive. Rapporten kommer först berätta om 
vad Hive är och sedan gå in på detalj hur vi implementerar spelet, vad för problem vi stötte 
på och hur dessa problem löstes. Även så försökte vi göra en AI som lärde sig med hjälp 
av förstärkningslärning för att bli bra på spelet. Mer exakt så använde vi två AI som inte 
kunde något alls om Hive förutom spelreglerna. Detta visades vara omöjligt att genomföra 
inom rimlig tid, vår uppskattning är att det skulle ha tagit en bra stationär hemdator minst 
140 år att lära en AI spel Hive på en godtagbar nivå. 
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Foreword 
This report has been created in correlation with the course DD143X - Degree Project in 
Computer Science, First Level, 15 ECTS. The course was taken while studying at for a 
Master of Science in Engineering, Major in Computer Science and Technology at the 
School of Computer Science and Communication (CSC) in the Royal Institute of 
Technology in Stockholm, Sweden (Kungliga Tekniska Högskolan, KTH).  
Both co-authors have done a fairly equal workload, both on the report writing side and the 
programming side. However Anders did slightly more work on the report while Rikard did 
slightly more on the programming side, especially related to testing and debugging.  
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1. Introduction 
1.1 Background 
Hive is relatively new strategic board game, compared to most board games, it was only 
created in 2001 by John Yianni. One key difference between Hive and other board games 
is that Hive does not have a board that is the playing field, instead of a board the playing 
field is made up by the hexagonal pieces known as the hive. Because you both move 
around pieces and add new pieces to the playing field while playing the game, this causes 
the playing field to change over time.  
At the start of the match, each player has eleven pieces of five different types, all in the 
hand with the play field empty. These five types players get in different quantities, they 
consist of one queen bee, two beetles, two grasshoppers, three spiders and three soldier 
ants. The goal of the game is to surround the enemy’s queen bee, on all six sides with 
pieces from either player. For example if the black queen bee has 5 friendly pieces (pieces 
that are black in this case) next to her, and a white spider moves in on the last empty 
hexagon next to the queen, causes white to win.  
One of the most important rules in Hive is the “only one hive” rule. This rule refers to the 
playing field, it may not be broken up into multiple non-connected parts, and every piece 
must be connected to every other piece through other pieces. Each of the five different 
types of pieces has their own movement rules. Each turn the player has a choice between 
adding a new piece or moving an already existing piece based on a few rules. If the player 
cannot move or add a piece without breaking the rules, the turn will automatically go to the 
opposing player. 
At the moment, there are two expansion packs available to the game, with a third one in 
development. Each expansion pack adds an additional piece to the game; the mosquito, the 
ladybug and the pillbug respectively. However they are not dealt with in this report. [1][2] 
 
 

1.1.1 Adding a new Piece 
On the first turn, each player may freely place a piece of his or her choice, as long as the 
one hive rule is not broken. However on future turns a player may only place a piece if the 
target location is next to a friendly piece and is not next to a hostile piece (piece of 
opposite color). In addition if it’s the 4th turn the queen bee must be placed if it hasn’t 
been already. An unofficial rule that tournaments often use is to disallowing the placing of 
the queen bee on the first turn. This is due to a tendency for draws if the queen bees from 
both players are placed on the first turn. [1] [2] 
 

1.1.2 Moving a Piece 
Each piece type has its own movement rule, but there are some general rules applying to 
all pieces. Firstly the one hive rule may not be broken during movement, even if the new 
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position of the piece would make it to only one hive again. Naturally, pieces may not move 
on top of each other, with one exception, the beetle. Additionally pieces may not be moved 
until the queen bee has been placed on the playing field. Finally, pieces may not move 
through spaces they do not naturally slide into, see the queen bee’s image for an example. 
[1]  
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1.1.2.1 Image Explanation 
In the pictures below we are showing the possible movements of the different pieces. For 
your convenience here’s a short coverage the different colors mean: 
* Black tiles represent any hive piece, from either player. 
* Green tiles represent a valid move. 
* Red tiles represent a specific invalid move we’d like to point out. 
* White tiles are unoccupied and invalid to move to. 
* Black tiles with green center means there’s a hive piece here and the beetle can move on 
top of it. 
* Blue tiles are used to explain how the spider can come to a green tile; it cannot stop on 
blue tiles however. 
 

1.1.2.2 Queen Bee 
The queen bee has the simplest movement rule of them all. It may move one step in any 
direction as long as that move doesn’t break any other rules. [1]  

 
Figure 1: This figure illustrates the movements of the Queen Bee. 
In addition it shows the naturally slide into rule talked about in end of 1.1.2.  
The queen does not naturally slide into the tight space on her right (red). 
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1.1.2.3 Beetle 
The beetle moves one step in any direction similar to the queen bee, however as mentioned 
before it may move on top of other pieces. Pieces below located below it may not move, as 
well as for the adding new piece rule, this entire stack of pieces is counted as the beetle at 
the top. You may move your beetle on top of another beetle, potentially creating a stack of 
up to five pieces. [1] 

 
Figure 2: This figure illustrates the movements of the Beetle. 
The beetle moves like the Queen, but can walk on other pieces. 

 
 

1.1.2.4 Grasshopper 
The grasshopper jumps over pieces, it may only jump in a straight line, until the first 
empty hexagon. It must jump over at least one piece. [1] 

 
Figure 3: This figure illustrates the movements of the Grasshopper. 
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1.1.2.5 Spider 
The spider always move exactly three steps, and on none of these steps may it step on a 
title is has already visited during these three steps, including initial position. Each step the 
spider must move around another piece it is connected with, which means that the spider 
can’t jump a gap (going from left 1 to the green next to it would be jumping the gap). [1] 
 

 
Figure 4: This figure illustrates the movements of the Spider. 
The spider cannot move in a 1-2-1 pattern which would be backtracking from 2 to 1. 

1.1.2.6 Ant 
The ant moves very similar to the spider, but is not fixed at three steps, but instead as many 
as the player chooses. The ant is generally seen as the strongest tile in the Hive, since it can 
move to almost any position. [1] 

 
Figure 5: This figure illustrates the movements of the Ant. 
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1.2 Artificial Intelligence 
 
Artificial Intelligence (AI) is a branch of computer science which aims to create machines 
that can take the best actions based on given data. [4] If we already know the best action 
according to given data and the problem’s size is small, it is easy to create the perfect AI. 
But in most cases either the problem’s size is too large, or we ourselves don’t know the 
best action. A good example is chess, the game has been played and studied for several 
hundreds of years and we still don’t know the best action in every state. 
 
Machine learning is a major branch of AI which is about constructing machines which can 
study and learn from data and experience. One of the largest none machine learning 
branches of AI is search algorithms; here one can use large search trees and heuristic to 
pick the most optimal action. Search algorithms do not learn by experience. Back to 
machine learning, there are many way for a machine to learn by experience, all quite 
different. The one that’s covered in this report is called reinforcement learning, it will be 
explained more in detail soon. Other common types of machine learning are decision tree 
learning, artificial neural network and clustering analysis. [5][7] 
 
Reinforcement learning is a type of machine learning that aims to create a machine which 
tries different approaches and learns from these approaches based on a carrot and stick 
approach. The basics of reinforcement learning are to have a set of states and a set of 
actions where every action will lead to a new state. Every action also has a weight, which 
decides how good the AI sees this action. The machine will then give or take weight from 
the action depending on the result (carrot or stick). [6] This can be seen similar to the 
following real world scenario. In this scenario we have a student taking an exam without 
any knowledge in the subject, after each attempt the student will either receive a gold star 
(“carrot”) if he passed the exam or a whip on the hands (“stick”) if he failed the exam. 
After lots of attempts the student will ace the exam, scoring full points, still without any 
actual knowledge on the subject. 
 

1.3 Purpose and Problem Statement 
 
There are many multiplayer games where you can play competitively including a few 
board games such as chess and go. While playing these games, one almost always wants to 
play against someone on the same level as oneself, since the match will be a lot more 
interesting that way. Though there is an exception to this, it may still be fun to win against 
a friend or someone else even if they are obviously weaker, because it boosts ones 
confidence and pride. However this exception only applies while playing against a real 
person, when the opponent is an AI, the game will be boring if it is too easy. So when 
playing against an AI, the AI has to be strong in order for one to improve while playing 
and become stronger for the next match against a real person.  
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Hive is a relatively new board game and has not been studied as much as chess or other 
board games, there are therefore not many strategies and books about it. We will thus try to 
create a strong AI without knowing any strategies. 
 
We also like to see if it’s possible to make a strong AI by playing two dumb AI against 
each other for a long time. An allusion to the real world could be two people that only 
know the very basics of mathematics trying to learn linear algebra by competing against 
each other … who can score the best on exams. Each time they only get to know who got 
the most correct answers, and not which questions were answered correctly.  
  



14/25 

2. Implementation 
2.1 Hive 
Since the game has not been released open source anywhere, barely been created for 
computer at all with only one browser version existing, we had to create the game 
ourselves. The first topic we discussed was problems we would run into during 
development. The first obvious problem was that the game board’s tiles are hexagonal 
instead of square, how do you represent hexagonal tiles in the computer’s memory? After 
staring on an image with several hexagonal tiles, we came up with an easy and elegant 
solution; using two simple arrays to form a matrix with a slight change of the definition of 
what a neighboring tiles are. When using squared tiles neighboring tiles are easy and 
intuitive; say [n][m] is the current tile { [n-1][m], [n+1][m], [n][m-1], [n][m+1]} are the 
tiles neighboring it. With our solution to the hexagonal problem, [n][m] have two 
additional neighbors { [n+1][m-1], [n-1][m+1] } for a total of six. 
 

 
Figure 6: This figure illustrates how one can visualize our solution. 
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The other major problem we identified was that the game board can grow infinitely large 
by moving pieces in one direction forever, see picture below. 

 
Figure 7: This figure illustrates how tile A, B, C, D and E can endlessly move to the right.  
If C move to the right side of the new position of B, D to the new position of C etc. 

Quickly, it was realized that due to the amount of pieces for each player, eleven, the 
maximum needed size at any given time would be no larger than 24x24 (straight line in 
any direction with the possibility to move outside it by one step). After some discussion we 
came to the conclusion that we’d use a fix 24x24 matrix; centering the pieces after every 
move. This makes them never being able to grow beyond the bounds of the matrix. 
 
Now with the solutions to upcoming issues figured out, we made a class diagram for the 
game. It’s pretty simple, the game class keeps track of and handles general functionalities, 
such as turns and game board. Action and AI are interfaces for use with an AI with 
GameAction being an implementation of the Action interface; and Piece is the interface 
used by the pieces in the game (Ant, Beetle, Grass, Queen, and Spider). The individual 
pieces only have a custom toString and a custom move method.  
 
During implementation it was noticed that handling coordinates on the map was an 
inconvenience, so an additional class was created. The class contains an i and a j value, 
representing the position in the game board matrix, in addition to lots of methods, such as 
“getNearbyCords()” and “isSurrounded()”.  
 
Here’s a detailed class diagram of how the game looks like in the end. 
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Figure 8: This figure illustrates our class diagram. 
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2.2 AI 
The basic needs of reinforcement learning are to have a set of states, a set of actions and 
rules to go from a state to another state. In our case, a state is how the game board looks 
like, an action is a move by a player which changes a state to another state. Except the 
already mentioned the most important thing in reinforcement learning is deciding how to 
reward or punish the AI. [3][6] 
 
The first thing we had to figure out when doing the AI was how to represent a state and an 
action. The decision how to represent an action was taken during the implementing of the 
game, see figure 8. So when corned with the problem on how to represent a state, a simple 
solution was selected, during the development of the game a “print game’s board” had 
been created for use with the console interface. The print was taken to use as the game 
board’s current state but all unnecessary character was removed, such as space, new line 
and “-“ (in order to save memory). Also a way was needed to calculate all possible actions 
given the current state, so a method was implemented doing just that. After some careful 
considerations it was decided that this method was better located in the main game instead 
of in the AI. This is due to if the game was to be expanded in the future to include a GUI, a 
method just like this one would be required to highlight possible moves for each piece. 
 
After the AI was implemented it had to play matches in order to learn, but before that 
commence, the way to reward and punish the AI had to be decided. After some 
consideration it was decided to let each action A of a state S have a weight which is an 
estimate on how good the action is based on previous experiences. Before any action was 
used in a certain state, all actions were given a total weight of 10000, so each individual 
action was given a weight of 10000/sumActionsInState. During a game every action used 
by the AI was record and then added or subtracted weight using the following algorithm; 
say an entire game is worth 1000 weight, so an used action will be rewarded or punished 
with e.g. [1000/amount of action used] (minimum weight 1 however), which means that 
short and quick games will be more rewarding, instead of prolonged games where there is 
a greater chance of doing a mistake. Which action will be chosen the AI is easy to pick, 
simply randomize an integer X between 0 and then sum of all weights for this state, then 
go through all actions one by one and subtract the action’s weight from X. The action that 
makes the [X <= 0] is the chosen action. This means that action with high weight is more 
favored, but still encourages exploring of new tactics. Furthermore if the last action 
resulted in a win, the AI will always use this action in the future, and the opposite if last 
action resulted in a loss, the AI will never use this action again. Because the wanted AI is 
supposed to be as dumb as possible (see purpose), no long term sight was given to the AI, 
it will not consider future states. 
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3. Results 
3.1 AI Learning 
For this phase we used a few variants on the AI when it comes to their configuration. They 
are called A, B and C.  

Type Start Weight Change Weight 

A 10000/actionCountInState 1000/usedActionsInMatch 

B 10000/actionCountInState 10000/usedActionsInMatch 

C 10000/actionCountInState 100000/usedActionsInMatch 
Figure 9: actionCountInState refers to the amount of different actions in a specific state. 
usedActionsInMatch refers to total amount of actions used in the specific match. 

 
Due to the extensive time it took to run just a few matches, unfortunately only two longer 
learning runs were completed.  
 
 
 
 
 
 

 
 

3.2 Graphs 
Graphs are a nice and clean way to present data. The following graphs are based on the 
second run of matches. More data can be found in Appendix A. 
 

Run AI 1 
Type 

AI 1 
Color 

AI 2 
Type 

AI 2 
Color 

Matches 
Played 

Running 
Time 

Win 
Percentage 

(White) 
1 B White A Black 200 14h 34m 53% 
2 C White C Black 300 21h 45m 44% 

Figure 10: This table shows our configurations for our 2 runs. White is the one who does the first action.   
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Figure 11: This figure illustrates how many states we have encountered after a number matches.  
As one can see, the growth is close to linear. 

 
 
 
 
 
 
 

 
Figure 12: This figure illustrates how many new states we encounter per action made. 1.00 means that we encounter a new 
state each action. As we can see, the encounter ratio is over 99%.  



20/25 

 
Figure 13: This figure illustrates how long time the AI needs to make a decision which action it should take next.  
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4. Discussion and Conclusion 
4.1 Discussion 
After only 300 games each AI had already seen 318 thousand different states with a total 
of 17.4 million possible actions to commit, since each AI only saves data from its own turn, 
there were around 636 thousand states the game had been in. This was a large toll on the 
primary memory causing more and more usage of the page file. This caused a drastic 
increase in time per move that can be seen in figure 13, in the first 100 matches it takes 
around 0.11 seconds per move but increase to 0.16 seconds per move for the last few 
matches of the test. The change in speed is first noticed after 120 matches, and the delay is 
increasing fast with an average move after 300 matches takes 50% longer than a match at 
100 matches and we suspect it will continue to increase in a similar fashion. 
  
As we can see in figure 12 the amount of new states per move is over 99% and not 
decreasing, this indicates that we almost never go to an old state, more exactly we only 
revisit an old state approximately 0.49% of the turns. On average, an AI does 1000 turns 
per match, which means that each match the AI only visits 5 old states. Given that the first 
state is guaranteed to be an old state after the first match, it is actually only 4 old states per 
match, implying 0.39% is the probability of visiting an old state after each action. 
 
Since we have 0.39% chance to visit an old state each time we make a move it means that 
at best we have visited 0.39% of all states the game can be in. There is a chance for 
backtracking which will visit an old state and increases the chance to visit another old state. 
Also, as one can see in figure 12, the chances of visiting an old state has yet to decrease 
which indicates that there are still more than 99.61% states to visit. 
 
Let us assume that we actually have visited 0.39% of all states in our 300 matches, and let 
us also make the assumption that we will visit the same amount of new states in the 
upcoming 300 matches, and so on. With these assumptions, we will need to play: 
100/0.39 * 300 = 76923 matches to encounter every possible state. Playing 300 matches 
for the two AIs took 21 hours and 45 minutes on the computer we used, 76923 matches 
with the same speed would take us 21.75 hours/300 * 76923 = 5576.92 hours = 93 days to 
only visit each and every state. For our AI to learn something, we would want it to at least 
try each and every action at least once, since the average amount of actions in a state is 
54.55 it would mean that we would need to use at least 55 actions from the average state, 
and hence visit every state at least 55 times so for a minimum to use every action once, it 
would be 93 days * 55 = 5115 days = 14 years. The AI would not learn much by using an 
action once, 10-100 times would be needed to actually learn something useful which 
would take 140-1400 years. And this is calculated with a best case scenario and even 
before considering the additional time each action takes due to paging when reaching 
larger amount of known states and actions. 
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A possible solution for the memory problem would be to create a file for each state which 
has information about every action and its weight. Every turn the AI would find the correct 
file, load the data from it and then decide which move to make. This is somewhat manual 
paging but would be required when the program exceed the page file limit. Although this is 
likely to be substantially slower while still using the RAM for most the work in the normal 
case, it may actually have improved speed when reaching very large page files. 
Additionally, compared to the page file, small separate file would only be limited by 
secondary memory (e.g. HDD) size; unlike the page file which generally has a maximum 
size. 
 
 

4.2 Conclusion 
Ultimately, we could not use reinforcement learning to create a strong AI for hive by using 
two as dumb as possible AIs to teach each other. This has mostly to do with the amount of 
possible actions and the time it takes to try them out. The time it takes for the AI to play 
enough matches to encounter each and every state a numerous times to try each and every 
action at least once would be too long. Without calculating the increment of time it takes 
when changing to use page file instead of primary memory and ignoring the probability 
that it may use an action it already has used before. So the calculated 14 years needed to 
use each and every action at least once is calculated in the best case scenario, hence 
ignoring the two increasing factors just mentioned. 
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Appendix A 
More Data from Learning Runs 
Can be downloaded at http://csc.kth.se/~rblixt/kex/stats.xlsx 

  

http://csc.kth.se/~rblixt/kex/stats.xlsx
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Appendix B 
Game and AI Code 
Can be downloaded at http://csc.kth.se/~rblixt/kex/code.zip  
 
 

http://csc.kth.se/~rblixt/kex/code.zip
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