

Project Specification

Sudoku Solvers

Group members
Andreas Broström 900714-3853 <abros@kth.se>
Simon Johansson 910424-2459 <simj@kth.se>

Supervisor
Roberto Bresin <roberto@kth.se>

Project	
 Specification	
 –	
 Sudoku	
 solvers	
 	
 Andreas	
 Broström	

	
 	
 Simon	
 Johansson	

	
 2	

Introduction
In our bachelor thesis we are going to investigate different solving techniques for Sudoku.
Sudoku is a popular logic-based puzzle where the objective is to fill a 9×9 grid with digits, with a
subset of the solution already given, so that each column, each row, and each of the nine 3×3
sub-grids contains all of the digits from 1 to 9.

Fig. 1, a basic instance of a 9x9 Sudoku.

Fig. 2, a solution of fig. 1.

Most of the Sudoku solving algorithms that we have seen so far in our initial research have been
based on totally different ideas: There is the brute-force version that does not use any logic at
all compared to the completely rule-based “pen-and-paper” algorithm [pap]. It is impossible to
compare them all so we will have to limit ourselves to some of the more different ideas.

Problem statement
In principle Sudoku can be solved using a brute-force algorithm but it is more interesting to find
an efficient Sudoku solver. Our task is to study and analyse well-known, good-performing
Sudoku solving algorithms as well as creating our own algorithm that will be based upon human
strategies. We will then implement the different algorithms, which will then be tested and bench
marked to measure their performance. We will not find the best algorithm to solve a Sudoku but
rather see how different techniques compare to each other and how the “human-like” algorithm
compares to the computer-based.

One of our goals is that the algorithm that we develop will be as “human-like” as possible.
Another goal, which can be called our main goal, is that the algorithm that we develop should be
“best” or, more importantly, the most efficient in at least one of the aspects that we compare.

Approach
To do this we are going to start of by studying three different kinds of Sudoku solving algorithms,
a brute-force approach for comparison, a search tree algorithm with a focus on backtracking
and a rule based human approach, which we will build our own algorithm upon.

When we got enough resources about these three aspects of Sudoku solvers, we are going to
implement all the algorithms in java so that we get a fair comparison when we later measure
their performance. The brute force and backtracking implementations wont require as much
time and effort to get to a acceptable state, but when it comes to our own algorithm, we must
first identify which strategic rules we shall choose and also in which order we will check them
[rules].

Project	
 Specification	
 –	
 Sudoku	
 solvers	
 	
 Andreas	
 Broström	

	
 	
 Simon	
 Johansson	

	
 3	

After we got three working Sudoku solvers we are going to test them against a Sudoku
database or generator with varying difficulties. We will measure performance such as time,
memory needed and algorithmic steps* and then compare the algorithms against each other for
further analysis.

*With algorithmic steps we mean to compare the well-known algorithms to our own, human
strategy based, in another aspect then time. What we mean to do is basically to count each step
the algorithm takes towards a solution, whether it is a number placed in a cell or just a
comparison to see in which cell to place the next number.

References
[pap] A Pencil-and-Paper Algorithm for Solving Sudoku Puzzles by J. F. Crook:

http://www.ams.org/notices/200904/tx090400460p.pdf (2013-02-01)

[rules] Strategy Families

http://www.sudokuwiki.org/Strategy_Families (2013-02-01)

Fig. 1 http://en.wikipedia.org/wiki/File:Sudoku-by-L2G-20050714.svg

Fig. 2 http://en.wikipedia.org/wiki/File:Sudoku-by-L2G-20050714_solution.svg

Time plan
Task Deadline

Study Sudoku & solving techniques Feb 11

Look for references and analyse solving algorithms Feb 18

Find Sudoku generator or database Feb 25

Halfway report complete Mar 03

Halfway report read-through Mar 05

Implement algorithms & Testing Apr 01

Essay complete Apr 10

Essay read-through Apr 12

Review Apr 23

Presentation Apr 24

