EXAMENSARBETE
VID CSC, KTH

Datadrivet Iarande av vagbeskrivningar

Data-driven learning of the meaning of route
descriptions

Lioubartsev, Dmitrij dmitrijl@kth.se

Hallqvist, Kristoffer khallg@kth.se
Exjobb i: datalogi
Handledare: Skantze, Gabriel

Examinator: Bjorkman, Marten

Datadrivet larande av vagbeskrivningar

Sammanfattning

Interaktionen mellan méinniskor och datorer begréinsas ofta av véra vitt skilda sétt att
kommunicera pa, exempelvis vid en beskrivning av en vig. [detta projekt forsoker vi utveckla
ett program som genom att analysera visuella och verbala vigbeskrivningar gjorda av méniskor,
kan gissa sig till ords betydelser genom att koppla ihop dem med fordefinierade objekt eller
handlingar. Resultaten visar att det med en tillricklig méngd data gar att 14ra en dator ord som
representerar specifika objekt eller rorelsemonster genom att hitta ord som sdgs i samband
rorelser i vissa riktningar eller i nérheten av vissa objekt.

Data-driven learning of the meaning of route
descriptions

Abstract

The interaction between humans and computers is often limited by the large differences of the
ways we prefer to communicate, for example when trying to describe a route. In this project, we
aim to develop a program that by analyzing visual and verbal human given route descriptions,
can accurately guess the meaning of certain words by associating them with predefined objects
or actions. The results indicate that with a sufficient amount of data, it is possible to learn the
words representing certain objects or movement patterns by finding words said in conjunction
with moving in certain directions or in the vicinity of certain objects.

Table of contents

1 Introduction.
2 Background
2.1 Similar work

2.2 Test data available and deflnltlons of terms.

2.3 Tools
2.3.1 Tf-idf
3 Procedure
3.1 Limiting and speC|fy|ng the problem
3.2 Overview of method
3.3 Recognizing movement patterns
3.4 Recognizing landmarks
3.5 Mapping intervals to dialogue segments
3.6 Computing tf-idf
4 Final results .
4.1 Final results
4.2 Comparing idf weighting schemes
4.3 Comparing tf-idf
5 Discussion .
5.1 Result analy5|s

5.2 Improving Results by Improvmg Test Data

5.3 Accuracy of tf-idf
6 Conclusion)
7 References

oCoo~NNOITOTRMABEDN

https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.loqk2ebdo0o5
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.rl8q4yaqg5o
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.k3fi9bqo8dgi
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.e60gqw5x2c6i
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.13tei1xe991t
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.mi2w6ljs8g14
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.70cxxcwsz3dl
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.unuddqx94ai1
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.cloz3vo02vwk
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.vqnfkso55qii
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.mizsenx4f2up
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.xnzp6ylwbzjv
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.xnzp6ylwbzjv
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.cd9gzg4lju5p
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.cd9gzg4lju5p
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.cd9gzg4lju5p
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.xm7j1iklsaln
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.5512ttm5i5e2
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.2cdluloswmoy
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.t7oryq3e6eml
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.e21z9ncm9rvb
https://docs.google.com/document/d/1u7Z6mjkTDZVHktySViAJX4Em__Qb7pJX8boweiEZLZE/edit?usp=drive_web#heading=h.fg7gkbm9spx7

1 Introduction

A large problem in the computer science field is having a computer understand natural human
language, both spoken and written. Different humans speak in different accents, speeds, pitches,
and have a tendency to not strictly follow grammatical rules. Different words can have the same
or similar meanings, and aside from that, a human can easily make unintentional logical errors
by saying or writing the wrong word.

Overcoming these problems is a complicated task, but it opens up possibilities for many
interesting applications, like having a computer following instructions. Specifically, this project
is focused on navigational instructions. A standard approach is to tell the computer the
definitions of different words. It is a simple task to program a robot (or any machine) to turn left
when it receives the instruction “left”. The computer will then parse the human instructions and
will try to identify these words to try to understand the instruction.

In this project, we explore if it is possible for the computer to learn the definitions of words by
itself, from a sample of test data. The setup is the following: the computer knows a set of
concepts, which are the definitions of some words. However, it does not know what language
the instructions are given in, and has to learn the words in that language which correspond to the
concepts. The concepts will be both directions (“north”, “west”...) and objects (“tunnel”, “train
station”). We will use a technique called tf-idf (see chapter 2.2) and see how well it is suited for
this task.

The premise for this project is the project A Testbed for Examining the Timing of Feedback
using a Map Task by Gabriel Skantze [4]. A test person moves the mouse cursor on a specific
map in a specific route, while describing the route (see figure 1.1). This was done by ten
different test persons on five different maps. Both the speech and the mouse movements were
recorded, and that is the test data used in this project.

Figure 1.1. One of the maps with the route the test person it supposed to take. The test person moved the
mouse along the black trail from the start at the bus stop to the end at the restaurant, while describing the
route.

2 Background

This chapter explains the background to this project, including some related work. It mentions
the work which made this project possible, as well as a very detailed explanation of the test data
available. It also covers the tf-idf method which is used by the program. Many important terms
are defined in section 2.2.

2.1 Similar work

This project is within the field of natural language processing (NLP), which is quite broad.
There are many articles and papers in the field of NLP, far too many to cover in this section. To
narrow it down, we have found some research being done in the specific area of route
descriptions:

The paper Learning to Follow Navigational Route Instructions by Nobuyuki Shimizu &
Andrew Haas [1] is about guiding a robot to the correct destination given a route description in
an unconstrained natural language. However, they assume that the natural language is English,
and they also focus on actually following the instructions.

An article which is more similar but also more extensive is Learning to Follow Navigational
Directions by Adam Vogel & Dan Jurafsky [2]. They work with very similar test data, but their
methodology is too complex to take much from in this small project.

Learning to Interpret Natural Language Navigation Instructions from Observations by David L.
Chen and Raymond J. Mooney [3] is a project with a very similar premise, but is broader. They
also have a simulated robot following the instructions given. However, the maps they work with
are much simpler, and are comparable to graphs, where one can only move from nodes to other
nodes that have an edge between them. In our maps, the user is free to move in any direction at
any time.

2.2 Test data available and definitions of terms

The foundation for this project is a certain amount of data collected from a previous experiment
- A Testbed for Examining the Timing of Feedback using a Map Task - by Gabriel Skantze [4].
In the experiment, test persons are describing a route on a map (see figure 2.1) to the computer,
while manually tracing the path themselves with the mouse cursor. This was done by ten
different test persons on 5 different maps. Each map has a route drawn on it, passing various
pictures of landmarks. The idea is that the test person describes the route using directional
words as well as references to the landmarks on the map, e.g. “after you pass the traffic light, go
south”.

The data as a whole entity will from now on be referred to as the test data. The test data consists
of 48 sessions. Each session includes one test person describing the route on one map. Each
session has three key elements: the map, the mouse data file and the dialogue file. The map is
the one the test person traced the path on, the mouse data file is a log of the test person’s mouse
movement and the dialogue file is a transcription of the user’s spoken route description.

The mouse data file consists of a long list of data points. All data points together define the
walk, the route the test person actually traced with the mouse. One data point contains the x and

y coordinates of the mouse position, and the timestamp for when the cursor was at that position.
The timestamp is a relative measure, with 0 referring to the time when the recording began.
Each data point also has an index, starting at 0, giving each data point a unique ID. Thus, a
section can be defined by a start index and an end index, constituting a series of consecutive
data points. So a section represents an array of points, and can be considered to be such, but the
internal representation is two indices.

The recording of the test persons’ route descriptions have been transcribed into text manually,
so the dialogue files contain the route description in text, with near-perfect transcription. The
full route description will be referred to as the dialogue. The dialogue is divided into segments.
A segment corresponds to a sentence and is on average around 10 words long. Each segment
also has a start time and end time, and is given in relative times, meaning that O is the timestamp
of when the recording started. Because of this, a timestamp of for instance “10.000” somewhere
in the dialogue file refers to exactly the same time as a timestamp of “10.000” somewhere in the
mouse data file.

The sound files containing the actual recordings are not available, but they are not relevant to

this project either.

Figure 2.1: A walk (in grey) plotted out on a map. The black dashed line is the route the test person is
supposed to describe.

2.3 Tools

2.3.1 Tf-idf

Term Frequency - Inverse Document Frequency, or tf-idf in short, is a numerical statistic often
used in the field of information retrieval. Tf-idf indicates how characteristic or important a word
is to a certain document in a document collection. A document in this context has no
requirements about being well-structured,; it can essentially be just any piece of text.

Tf-idf consists of two parts: tf and idf. The term frequency, tf,, tells us how common a certain
word w is within a certain document d. The inverse document frequency, idf,, tells us how rare
that word w is in the whole document collection. Note that the idf values depend on the words
and the whole dialogue input data, with each word having a fixed idf-score regardless of the
document being worked on. The tf value, in contrast, is a function of not only a word, but also a
specific document.

The tf value is usually defined as the raw amount of occurrences of the word within the
document. The idf value for a word w is calculated as follows:

idf,, = log(N/df,) (Formula 2.1)

where N is the total amount of documents in the whole text collection, and dfw, the document
frequency, is the number of documents in the whole collection that contain the word w. The
final tf-idf score for a word w in the document d is calculated with the formula

tf-idfy =ty * idfy (Formula 2.2)

There are alternative definitions of the tf-idf score. For example, it is common to attenuate the tf
value using a logarithm, a root function or even a boolean function (if the word occurs at least
once in the text, tf is 1, otherwise 0). The base of any logarithm functions used, including the
logarithm function in formula 2.1, is not relevant to the final result, as long as the same base is
used consistently for all words. The tf and idf components can be weighted differently
depending on what is considered most important to the context.

A word that is highly characteristic to a certain document is a word which is common within
that document but rare in the rest of the text collection. Such a word is labeled with a high tf-idf
score in that document.

3 Procedure

In this section the problem is defined more precisely, and we explain the procedure of how to
get from “Test data available” to the solution to the problem.

3.1 Limiting and specifying the problem

We start by defining a limited set of concepts. A concept is not a word, but rather the semantic
implication of it. For example, “running” is a word, but its meaning - the action of running - is
what we refer to as a concept. The concept is of course not affected by the language used to
describe it. The goal is to have a computer program learn the words for different concepts from
a natural language, based on the test data available (chapter 2.2). No assumptions are made
about the natural language from the program’s point of view.

For a small-scale project like this, the type and amount of concepts that the program will try to
learn the words for has to be limited. Some key concepts in route descriptions are landmarks
and directions, which is what will be the focus in this project.

A simple route description from the landmark “Train Station” to the landmark “Church” in
natural language may look as follows:

“Go north until you reach the crossroad. You should turn west and move in that direction until
you see a hotel. After the hotel, go north and you should soon be at the church.”

With access only to words representing directions and landmarks, one could still construct a
sentence like:

“Train Station north Crossroad west Hotel north Church”

It may not be as detailed, but it might be possible to follow that route description and still reach
the destination.

We define concepts for the four cardinal directions: north, east, south and west, later referred to
as movement patterns, or MPs for short. We also define concepts for 12 different landmarks
featured on the maps in the test data (chapter 2.2): bus stop, crossing, hotel, station, department
store, garage, junction, traffic lights, church, field, restaurant, tunnel.

To be able to interpret the results, we decide ourselves what words we consider to be the
“correct™ representation of each concept. We use English words since the test data is in
English.

' “Correct” is written with quotation marks because in a natural language, there are often many correct
ways to describe specific concepts. This is discussed further in chapter 5.1.

Concept

“Correct” word(s)

(moving) North | “north”
(moving) South | ”’south”
(moving) East “east”

(moving) West “west”

Bus Stop ”bus stop”
Crossing crossing”
Hotel “hotel”
Station ’station”

Department Store

bl

”department store’

Garage ’garage”
Junction ”junction”
Traffic Lights “traffic lights”
Church ”church”
Field ’field”
Restaurant “restaurant”
Tunnel ”tunnel”

Table 3.1. The “correct” words for each concept.

Thus, a good result can be defined as many concepts that the program maps to their respective
correct words. This is an indicator of how well the program could learn the words for the
defined concepts. The final definition of the problem can be formulated as follows:

Given the test data available, how well can the program learn the correct words for each
of the 16 predefined concepts using the tf-idf method?

3.2 Overview of method

This task is performed by constructing a Java program that takes the test data as input. The plan
is to analyze the test data to determine the time for when the test person moved the cursor close
to certain landmarks or in certain patterns, thus for each concept creating a mapping to a set of
time intervals (chapters 3.3 and 3.4). Each concept is then associated with a collection of
segments which all took place during these time intervals (chapter 3.5). The key idea is that
when moving according to an MP or near a landmark, the test person is likely to have described
the concept using an appropriate word. For each concept, tf-idf scores are computed for all
words in the associated collection of segments (chapter 3.6). By sorting these words in
descending order with respect to their tf-idf score, we will have a ranking order for which words
are considered the most likely to represent the given concept.

3.3 Recognizing movement patterns

We have developed an algorithm used to identify movement patterns in the mouse data.

The algorithm looks for specific MPs one at a time, starting by only looking for movements
going south. It begins by selecting 50 mouse data points at the beginning of the walk. It then
checks whether the movement within that section can be qualified as a movement in a southerly
direction. It is qualified if the ending point is placed south of the starting point and the
horizontal distance between the two points is no longer than a certain fraction of the vertical
distance. This fraction is set to 0.1.

If the movement does not qualify, the interval is shifted forward by one data point. A check is
performed to see if the new section qualifies, and the process is repeated until the movement is
qualified or the end of the mouse data file is reached.

To make sure that this was not just an error on the test person’s part (for example, the test
person flinched with the mouse), the algorithm continues to further extend the section by one
point at a time until a certain number of extra points are added. This number is here set to 50. If
during this time, the section still does not qualify, the instance is finalized and added to the
result list. The algorithm then keeps looking for more of the same MP in the rest of the walk,
starting with a new section beginning where the last MP ended.

The process is then repeated for the other MPs, using the same procedure. The qualification
requirements for the other MPs are similar, but of course adapted to a different direction. For
example, a movement to the east needs the horizontal distance to be at least ten times as large as
the vertical distance, while of course also requiring the ending point to further out east than the
starting point.

Figure 3.2. The results of the MP recognition algorithm drawn on a map, represented with colored lines.
Each color represents a cardinal direction: Green = west, red = south, yellow = east and blue = north. The
grey line of dots represents the walk made by the test person

3.4 Recognizing landmarks

The algorithm used to detect landmarks is very simple. It iterates over the list of mouse data
points. For every data point, the algorithm calculates which landmarks are located within a
certain number of pixels, in this case set to 70, of the data point coordinates. The distance
function is defined as the euclidian distance:

Distance(Point pl, Point p2) = ‘\/I(pl.x - P2 +(ply - p2y) (Formula 3.1)

A consecutive series of data points that are within distance of a specific landmark are
considered to constitute a time interval. The algorithm also keeps track of the previous landmark
that the walk passed, which will be of use later on.

3.5 Mapping intervals to dialogue segments

We now have a set of time intervals, from different sessions, mapped to each concept, and the
next step is to translate these time intervals into collections of dialogue segments. However, a
theory is that the test person will also say the relevant words slightly earlier or later than what is
expected. It may thus be a good idea to extend the time intervals in order to cover more dialogue
segments.

In the case of landmarks, the test person is likely to have said the correct word for a landmark a
long time before actually arriving to that landmark. For example “are you by the hotel? Go
north until you get to the field”, might have been said around the hotel, but would also be
relevant to the field. Thus, for landmarks, we extend each interval backward to the endpoint of
the closest time interval, information that is provided by the landmark recognition algorithm.

Regarding the movement patterns, a phrase like “... until you get to the garage and then go
west.” might be said before actually starting the cursor movement to the west. Therefore, these
intervals are extended both backward and forward by two different constant number of data
points. We are here using the values 60 and 30 respectively, of course making sure that the
endpoints do not go out of bounds.

Each time interval will be mapped to a collection of segments. For a segment to be included in
this collection, at least a certain fraction of the segment has to appear within that interval. In the
algorithm the fraction 0.2 is used.

Mouse data section

|| B L C |

Dialogue
segments

: ; \
Fa

section start time section end time

Time
Figure 3.3. The time interval is mapped to a collection of dialogue segments, including segment A and B,
but not C, because the overlapping time interval is too small.

10

3.6 Computing tf-idf

We now have a set of time intervals, from different sessions, mapped to each concept, and the
next step is to translate these time intervals into collections of dialogue segments. However, a
theory is that the test person will also say the relevant words slightly earlier or later than what is
expected. It may thus be a good idea to extend the time intervals in order to cover more dialogue
segments.

Given a word, we define the document frequency, df, as the total number of segments in which
the word occurs at least once, meaning that a word appearing more than once inside a single
segment is not weighted higher within that segment than a word occurring just once in it.

To compute the inverted document frequency, idf, for each word, formula 2.1 is used. N is the
total number of dialogue segments, and the logarithm is of base 10.

Tf is defined as the amount of segments in a given segment collection that contain a certain
word. This means that multiple occurrences within a dialogue segment do not increase the
weight further. This is different from the traditional tf definition, but similar to the df one.
Specifically, the collection of segments will be the segments mapped from time intervals as
described in chapter 3.6.
The tf-idf score is then calculated for each word using the slightly modified formula

tf-idf =tf *idf2 (Formula 3.2)

Putting a higher weight on the idf value by squaring it further benefits less common words at the
expense of more common ones.

11

4 Results

In this chapter the results are presented. For each concept, the words are ranked by their tf-idf
score, i.e. by their likelihood of being the correct representant of the given concept. The
magnitude of the scores is not relevant - the only things that matter are the relative scores, and
thus also the ranking order.

4.1 Final results

This is the results of the exact program described in chapter 3. Out of all different variations of
the algorithms we tried, these are the results we consider to be the “best”.

Table 4.1 MP south
WordTf-idf score
south (98.00
traffic(92.69
lights [87.63
south (73.38
again [65.42

Table 4.2 MP north
WordTf-idf score
north (108.86
traffic|65.50

lights [65.13

south 64.29

again [61.40

Table 4.3 MP west
Word [Tf-idf score
west 86.27
station/62.13
field [61.40
train [55.67
at 55.47

Table 4.4 MP east
Word [Tf-idf score
east 92.62
crossing(64.36

after |58.84
continue58.22

turn 56.44

12

Table 4.5 Landmark bus stop
WordTf-idf score
bus [79.92
stop (77.82
down [22.77
south [21.35
again |18.39

Table 4.6 Landmark crossing
Word [Tf-idf score
crossing (74.02

sign 41.99
pedestrian32.80
east 22.12
should [19.44

Table 4.7 Landmark hotel

Word Tf-idf score
hotel [70.31
white 22.45
thats [21.33
building20.97
pass |17.76

Table 4.8 Landmark station
Word Tf-idf score
station 63.96
train 43.02
railway|25.66
-tation#19.76
S- 18.28

Table 4.9 Landmark department store

Word Tf-idf score
store 49.41
department 48.01
garage 24.85
-tore 18.24
t BREATH_IN[17.87

Table 4.10 Landmark garage
Word [Tf-idf score
garage [39.76
parking30.38
place [24.32
south- |18.24
east |16.59

13

Table 4.11 Landmark junction
Word Tf-idf score
junction [77.81
intersection/31.46
crossroads [20.14
stop 16.79
bus 16.28

Table 4.12 Landmark traffic lights
WordTf-idf score
traffic(86.71
light (82.87
lights [69.59
red |42.76
south [24.26

Table 4.13 Landmark church
Word [Tf-idf score
church [62.89

hotel |18.50
your (16.25
yourselfl15.31
on 15.27

Table 4.14 Landmark field
Word [Tf-idf score
field [74.10
green 60.94
fields 141.06
meadow|34.58
north |21.22

Table 4.15 Landmark restaurant
Word Tf-idf score
restaurant93.43
northwest35.79
parking [27.01
north 26.76
are 23.76

Table 4.16 Landmark tunnel
Word Tf-idf score
tunnel [77.92
railroad22.45
all 16.83
right [16.73
way [15.73

14

4.2 Comparing idf weighting schemes

These are the results of using formula 3.2 compared to formula 2.2 when computing the tf-idf
scores. The difference is the weighting of the idf used in the computation of the tf-idf score. The
tables show the MPs North and West with the two weighting variants. Note that the variant with
formula 3.2 is what is used to get the results in chapter 4.1, so those tables are identical.

Table 4.17 MP north, using idf?
WordTf-idf score
north [108.86
traffic|65.50

lights |65.13

south 64.29

again [61.40

Table 4.18 MP north, using idf
WordTf-idf score
north [113.35
and [95.19
then [92.63
go [88.47
to 84.70

Table 4.19 MP west, using idf?
Word [Tf-idf score
west 86.27
station|62.13
field |61.40
train [55.67
at 55.47

Table 4.20 MP north, using idf
WordTf-idf score
and |74.73
the [74.63
west [73.72
you (71.92
go |71.67

As can be seen, increasing the idf weighting by squaring vastly improves the results. However,
further increasing the idf weighting does not further improve the results, but rather makes
uncommon words stand out too much.

4.3 Comparing section vs extended section

These are the results of extending the sections, as described in chapter 3.5, versus not doing
that. The tables show landmarks Hotel and Restaurant. Note that the results in chapter 4.1 were
achieved with extension of intervals extending, so the tables are identical.

15

Table 4.21 landmark hotel, extending

Word Tf-idf score
hotel [70.31
white [22.45
thats [21.33
building20.97
pass |17.76

Table 4.22 landmark hotel, without extending
Word |Tf-idf score

hotel |55.51
white [22.45
building20.97
pass [16.28
left 15.45

Table 4.23 landmark hotel, extending
Word [Tf-idf score
restaurant93.43
northwest35.79
parking [27.01
north 26.76
are 23.76

Table 4.24 landmark hotel, without extending
Word Tf-idf score
restaurant72.53
parking [23.63

lot 23.43
left 17.82
north 16.61

As can be seen, the correct words for the landmarks, “hotel” and “restaurant” respectively, have
higher scores when the intervals are extended. That is natural - since more words are said during
a longer interval, that word will also appear more times, getting a higher tf value and thus also a
higher score. However, other irrelevant words also appear more times, which can lead to the
program being less confident about the what the correct word is.

16

5 Discussion

In this chapter the results are presented. For each concept, the words are ranked by their tf-idf
score, i.e. by their likelihood of being the correct representant of the given concept. The
magnitude of the scores is not relevant - the only things that matter are the relative scores, and
thus also the ranking order.

5.1 Result analysis

Looking at the results, we can tell that the program successfully mapped each concept to the
word we intended, except for the three landmarks whose english language representation
consisted of more than a single word. Our program does not support considerations of these
representations, but instead treats each word as an independent entity. We can still note, though,
that the top candidates for these concepts were in fact parts of the multi-word representations we
had in mind, which means that the program should be able to get the words right with only a
minor modification.

We can also see that when it comes to landmarks, the program generally had an easier time
choosing a winner compared to the situation with movement patterns. For example, the word
“south” was only deemed slightly more likely than “traffic” to represent the action of moving
south, whereas the word “tunnel” had a score nearly four times as high as “railroad”, the second
most likely candidate, when trying to find the english word for the tunnel landmark.

The results in chapter 4.2 showed that the standard weighting on the idf does give high scores to
the correct words, but also gives very high scores to common words like “and” and “go”. By
modifying the weight on the idf score by squaring it, the common words’ scores becomes
significantly lower, and it really improved the results. Some experimenting also showed that
taking the weighting further, to a cubic weight, made some uncommon words receive too much
score, so using formula 3.2 to calculate the tf-idf score is the optimal.

The results in chapter 4.3 showed that extending the sections did not have a very large impact
on the results. While the correct words got a higher absolute score, so did the other words, and
the benefit extending the sections is questionable.

5.2 Improving results by improving test data

It is important to remember that there is usually not a single true unambiguous representation
for a given concept, and the test persons can not always know whether their own description is
sufficiently accurate. For example, the “field” landmark was mapped to the word “field” as its
most likely representation. However, when you look at the candidates below it, you find words
such as “green”, “fields” and “meadow”. Many people consider “meadow” and “field” to be
synonyms, and the field is indeed green, which means that a lot of people likely referred to it as
the “green field”. Are these representations wrong? No, most certainly not. They are in fact
more descriptive than “field”, and would actually probably be prefered in a route description.

Another interesting example is the “hotel” landmark. By just looking at the picture, one can tell

that it is a white building but it is quite hard to see that it is in fact a hotel. The words “white”
and “building” are among the top candidates, which indicates that many test persons probably

17

referred to it simply as the “white building”. And that is most definitely not an incorrect
description, because the hotel is indeed a white building! Yet another example is “department
store”, where one test person kept referring to it as “some sort of commercial building”.

You can also apply a similar reasoning to the MPs. They don’t have to be described in terms of
cardinal directions - the words “up”, “down”, “right” and “left” might be preferred depending
on the context, but neither of them can be considered wrong.

One solution to problem with the ambiguity of the landmarks on the maps is to add captions
under all landmarks. Some maps had captions under certain landmarks, and the consistency in
the dialogue increased for those landmarks with captions, so it would most certainly improve
the results. However, is that something desirable? In the real world, people do not always
describe an object consistently using the same words. A hypothetical commercial system needs
to be able to understand synonyms. One way to accomplish this is to do the experiment with
many more test persons, so that all synonyms are used often enough to get significantly higher
scores than any “incorrect” words. In that case it might not be easy to handle multi-word
representations like “bus stop”, without further modifications to the program.

5.3 Accuracy of t-idf

The way the test persons described the landmarks was not always consistent. As concluded in
the previous chapter, it can be improved by using modified versions of maps and giving clearer
instructions to the test persons. However, that is not the only inconsistency. Figure 5.1
highlights how inconsistent a walk can be.

18

- T
i

Figure 5.1. The walk of one of the test persons on map number 4, with recognized instances of MPs. The
lines seem very random and highlight how confused the program is.

As can be seen in figure 5.1, the program has recognized a lot of MPs where there should not be
any, and showcases that humans may have trouble following a given route with the mouse. This
is quite an extreme case though, and most walks are quite careful. The exact impact on the final
results of walks like this is unknown, but it is most definitely not positive.

The tf-idf method has shown to be quite robust, though. With all the errors in the test data, it
still ranked the “correct” word(s) highest, even though it was close in a few cases (MP “south”
as the closest one). Tweaking various parameters did not affect the results significantly either.
And of course, the more test data, the higher accuracy in the results.

19

6 Conclusion

Tf-idf is a viable and accurate method to identify the correct words for predefined concepts.
Despite inconsistent test data, it still managed to find the correct word(s) for all 16 concepts,
and slightly tweaking some of the parameters did not have a large impact on the results.
However, it is not that potent for cases where there are multiple ways to describe one concept.
In a real-world environment, the tf-idf technique is probably not optimal. In a more controlled
and simulated environment, like the situation in this project, tf-idf can be very effective.

20

References

7 References

1. Learning to Follow Navigational Route Instructions - N Shimizu, A Haas (2009)
http://ijcai.org/papers09/Papers/IJCAI09-249.pdf

2. Learning to Follow Navigational Directions - A Vogel, D Jurafsky (2010)
http://nlp.stanford.edu/pubs/spatial-acl2010.pdf

3. Learning to Interpret Natural Language Navigation Instructions from Observations -
David L. Chen and Raymond J. Mooney (2011):
http://www.cs.utexas.edu/~ml/papers/chen.aaaill.pdf

4. A Testbed for Examining the Timing of Feedback using a Map Task - Gabriel Skantze
(2012) http://www.speech.kth.se/prod/publications/files/3761.pdf

5. C. D. Manning, P. Raghavan and H. Schiitze, Introduction to Information Retrieval,
Cambridge University Press, 2008

21

http://ijcai.org/papers09/Papers/IJCAI09-249.pdf
http://ijcai.org/papers09/Papers/IJCAI09-249.pdf
http://nlp.stanford.edu/pubs/spatial-acl2010.pdf
http://nlp.stanford.edu/pubs/spatial-acl2010.pdf
http://www.cs.utexas.edu/~ml/papers/chen.aaai11.pdf
http://www.cs.utexas.edu/~ml/papers/chen.aaai11.pdf
http://www.speech.kth.se/prod/publications/files/3761.pdf

