
Designing a Better Touch Keyboard

JOEL BESADA (JBESADA@KTH.SE)

DD143X Degree Project in Computer Science, First Level
KTH Royal Institute of Technology, School of Computer Science and Communication

-
Supervisor: Anders Askenfelt
Examiner: Mårten Björkman

iii

Abstract

The growing market of smartphone and tablet devices
has made touch screens a big part of how people interact
with technology today. The standard virtual keyboard used
on these devices is based on the computer keyboard – a
design that may not be very well suited for touch screens.

This thesis seeks to answer whether there are alterna-
tive ways to design virtual touch keyboards. An alternative
design may require training to use, but the user should be
able to use it viably after a reasonable amount of prac-
tice. Optimally, the user should also have the potential to
reach a higher level of efficiency than what is possible on
the standard touch keyboard design.

Analysis is done by researching current and previous
attempts at alternative keyboard designs, and by imple-
menting an own prototype based on observations made on
the researched designs. The thesis concludes that there is
an interest in solving issues encountered in this area, and
that there is good potential in building viable virtual key-
boards using alternative design paradigms.

iv

Referat
Utformning av ett bättre pektangentbord

Den växande marknaden för smarttelefoner och surfplattor
har gjort pekskärmen till en stor del av hur folket interage-
rar med dagens teknologi. Det virtuella standardtangent-
bordet som används på dessa enheter är baserad på dator-
tangentbordet – en design som möjligen inte är särskilt bra
anpassad för pekskärmar.

Denna uppsats söker att besvara om det finns alterna-
tiva sätt att designa ett virtuellt pektangentbort. En al-
ternativ design kan kräva träning för att kunna användas,
men användaren ska gångbart kunna använda den efter en
rimlig övningsmängd. Optimalt sett ska användaren ha po-
tentialen att uppnå högre nivåer av effektivitet än vad som
är möjligt på pektangentbordets standarddesign.

Analysen görs genom undersökning av nuvarande och
föregående försök till alternativa tangentbordsdesigner. Dess-
utom implementeras en egen prototyp baserad på observa-
tioner på de granskade designerna. Uppsatsen drar slutsat-
sen att det finns ett intresse för att lösa de problem som
hör till detta område och att det finns bra potential till att
bygga tillämpbara virtuella tangentbord med alternativa
designparadigm.

Contents

Contents v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Purpose . 2
1.3 Approach . 3

2 Background 5
2.1 Chord Keyboards . 5
2.2 NLS . 6
2.3 Microwriter . 7
2.4 ASETNIOP . 8
2.5 UpSense . 9

3 Method 11
3.1 Scope . 11
3.2 Technologies . 11
3.3 The Application . 12

3.3.1 Touch Keys . 12
3.3.2 Cross-client Communication 13
3.3.3 Chord Highlighting . 14

3.4 Character Mapping . 14
3.4.1 Observations . 14
3.4.2 The TactionType Mapping 15

3.5 User Testing . 17

4 Analysis 19
4.1 Usability . 19

4.1.1 Key Calibration . 19
4.1.2 Pressing Chords . 20
4.1.3 User Satisfaction . 20

4.2 Chord Memorability . 20
4.3 Typing Speeds . 21

v

vi CONTENTS

5 Conclusions 25

Bibliography 27

Appendices 27

A Source Code 29
A.1 Server-side Code . 29

A.1.1 app.coffee . 29
A.1.2 environments.coffee . 29
A.1.3 webserver.coffee . 30
A.1.4 websocketserver.coffee . 30

A.2 Client-side Code . 31
A.2.1 main.coffee . 31
A.2.2 app.coffee . 32
A.2.3 input.coffee . 32
A.2.4 touchpoint.coffee . 33
A.2.5 touchkey.coffee . 34
A.2.6 keyhandler.coffee . 36
A.2.7 keydefinitions.coffee . 37

Chapter 1

Introduction

Since the popularization of smartphone and tablet devices, touch screens have be-
come a big part of how we interact with technology today. While the touch screen
in many cases allows for a simpler and more intuitive interaction with applications,
the process of typing text has not evolved much from its physical origins — the
computer keyboard.

The smartphone and tablet market is constantly expanding, embracing new
audiences of users with limited computer experience. Because of the expected fa-
miliarity with computer keyboards that current text input implementations depend
on today, it is of interest to research alternative and better suited solutions for text
input on touch devices.

1

2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement
In the adaption process of the physical computer keyboard to touch devices, certain
compromises have had to been made. Touch devices of today are in general much
smaller than the size of a regular computer keyboard, which forces the keys to
be shrunk down to fit on the screen. This leads to a need of very precise finger
positioning when typing, often leading to many mistakes.

Another drawback with the virtual computer keyboard is the loss of tactility
when put on a touch screen. Most experienced computer users rely on being able to
feel where their fingers are positioned, allowing them to quickly move their fingers
to the chosen keys. Without being able to feel where the fingers are in relation to
other keys, the ability to type quickly and without looking at the keys is severely
degraded.

With these inherent drawbacks of the standard touch input systems of today,
the major advantage is the fact that it is of a familiar format to users with previous
computer experience. However, with the increased number of inexperienced com-
puter users that are starting to use touch devices, this advantage is becoming more
and more irrelevant.

The familiar format certainly makes it easy for experienced computer users to
start typing on touch devices without having much or any training. However, a
user might be able to type more efficiently if efforts were put into learning to use an
alternative text input system. This alternative system would optimally be designed
specifically for touch screens, embracing their constraints instead of trying to fight
against them.

This brings us to the primary questions that this thesis seeks to answer: Is it
possible to design a text input alternative on touch devices that

• is viable,

• has the potential of being more efficient,

• and is not based on the ill-suited design of the computer keyboard?

1.2 Purpose
As previously described, there are a number of critical flaws in the design of current
standard touch keyboards. This thesis explores alternative text input methods
on touch devices with the aim of providing inspiration and ideas in disrupting
the current popular, but arguably flawed, design paradigm. The ultimate goal of
research and exploration within this area is to gain important insight into how a
better text input system on touch devices can be designed for both experienced and
inexperienced computer keyboard users.

The aspired practical results of exploration within this area of interaction design
is not to allow us to build a system that instantly improves our ability to type on
current touch keyboards. Instead, the ultimate goal is to be able to design input

1.3. APPROACH 3

methods that truly utilize the strengths of touch screens, and once learned, have the
potential of providing a more efficient and pleasant typing experience than current
systems.

1.3 Approach
The undertaken approach to answer the questions presented in the problem state-
ment of this thesis is divided into multiple steps. As a starting point, background
research of current and previous attempts at designing a keyboard alternative is
conducted. This is presented to the reader in a summarized form in the Background
chapter.

With the gathered information as inspiration, a prototype is built where the
strengths and drawbacks of the researched systems are taken into consideration.
This process and the results of it is detailed out in the Method chapter. The pro-
totype is then user tested and measured, with results and analysis in the Analysis
chapter.

Finally, based on the gained insights from the previous steps, conclusions are
drawn and presented in the Conclusions chapter.

Chapter 2

Background

A number of attempts at creating alternative text input systems have been made
since the introduction of the QWERTY keyboard, many of which had the goal of
designing a system to be used with a single hand. The concepts explored within
these systems have later found their way into implementations of alternative touch
keyboards. This chapter is dedicated to give the reader an overview of significant
entries in this area, both physical and virtual.

2.1 Chord Keyboards
A chord keyboard is an alternative to regular keyboards that builds around the
concept of pressing multiple keys at once to produce different outputs. Much like
how a chord is played on a piano, the user simultaneously presses down a number
of keys to build a chord, producing a certain output.

The first chord keyboard is thought to have been created by Benjamin Livermore
in 1857 with the invention of Livermore’s Permutation Typograph[1]. This device
featured six keys and a roll of paper inside on which the entered characters were
printed.

The chorded keyboard concept is not unseen on regular keyboards, the SHIFT,
CTRL and ALT keys on a PC are specifically meant to be used in chords. However,
a chord keyboard uses chords at a larger extent, allowing a greater set of characters
to be produced by a limited number of keys. Without any mechanic other than
registering keys being pressed down at the same time, a set of n keys can produce
a number of characters given by the formula:

2n − 1 (2.1)

This formula is devised from the simple realization that we can think of each key
as a bit in a binary number of length n, with the digit 1 representing pressed down
keys and the digit 0 indicating unpressed keys. This binary number can represent
2n different values, but we need to subtract the state where none of the keys are
pressed down (all bits are 0), leaving us with the formula above. As an example, a

5

6 CHAPTER 2. BACKGROUND

5-key chord keyboard can produce 31 different characters, which is enough for every
letter in the English alphabet.

A drawback with the extensive use of key combinations is the difficulty of settings
labels to which letters a key produces. In a fully utilized n-key setup, a single key
is used in producing

2n − 2n−1 (2.2)

different outputs (the difference in the number of outputs of n − 1 and n keys). In
our 5-key example, one single key would be used for typing 16 different characters.

This leads to the absolute necessity of memorizing the key outputs and learning
to type without looking at the keys, a practice that is usually called touch typing.
This contrasts to how a user can look down on a regular keyboard to find the correct
key – hunt and peck typing.

2.2 NLS
The NLS, On-Line System, was a multi-user system demonstrated1 by Douglas
Engelbart in 1968. The system included a first of its kind computer mouse and
a five key chorded keyset, which were to be used simultaneously. The goal of the
system was not to make computing more accessible to the general public, but to
enable experienced computer users to improve their productivity by learning a more
optimized system.

In addition to the mouse and chorded keyset, the system also had a regular
QWERTY keyboard. The QWERTY keyboard was to be used when typing longer
sequences of text, while the mouse and chorded keyset combination would be used
to more efficiently edit text. By pointing the mouse at different parts of the text
and entering commands on the keyset, characters could be inserted and removed
from the text in a more efficient manner. The mouse had three keys, two of which
could also be used when building chords with the keyset to extend the range of
available characters and commands.

Engelbart used a relatively simple mapping scheme between chords and the 26
English alphabetic letters. The letters A to Z were numbered according to their
alphabetic order, and each chord would represent a 5-bit binary number. Pressing
the rightmost key represented the binary number 00001, the decimal number 1,
corresponding to the first letter of the alphabet, A. Pressing the first, second and
fifth key forming 11001 (decimally 25), produced Y, the 25th letter in the alphabet.

Tests done in early 1960 concluded that the system could be mastered in less
than two hours, and while regular keyboard are faster in normal typing, editing
and text manoeuvring was much more efficient with Engelbart’s mouse and keyset
system.[2]

1This demonstration later became to be called The Mother of All Demos, since it introduced
experimental versions of many common technologies of today, such as: the computer mouse, video
and teleconferencing, hypertext and hypermedia, object addressing and dynamic file linking, word
processing and a collaborative real-time editor.

2.3. MICROWRITER 7

2.3 Microwriter

The Microwriter was a portable word processing device sold in the early 1980s by
Microwriter Ltd. The device featured a 6-key chorded keyboard and a small LCD
display for a single line of text. The thumb had two keys, one for regular letter
chords and the other for switching input modes. The rest of the four fingers of the
hand had each a dedicated button for chords.

A notable feature of the Microwriter was its approach to mapping chords to
letters. Instead of a simple method based on alphabetic order such as in Engelbart’s
keyset, most of the chords represented a shape that should be easy to remember
for the user. The device came with a booklet of mnemonics that would aid in
learning and remembering the letters. When ordering the main five keys to form a
pattern resembling an upside down V, different letter shapes could be imagined to
be overlaid on top of the corresponding keys. (See figure 2.1)

Figure 2.1. A sample of the letter mnemonics in the booklet Microwriting in Prac-
tice[3]

8 CHAPTER 2. BACKGROUND

2.4 ASETNIOP

ASETNIOP is a chorded virtual keyboard built by Pointesa LLC. It has ten keys at
fixed positions, meant to be used with all ten fingers simultaneously. The thumbs
are used for space bar and shift while the rest are used to build chords. There are a
total of 28 chords, with 18 for letters and 10 for commonly used punctuation marks.
There is also an alternative layout that can be switched to on the fly to gain access
to numbers and other symbols.

The name, ASETNIOP, represents the eight letters that can be typed without
chords, assigned in order to the fingers from left to right. The placement corresponds
to the fingers that would be used when normally typing on a regular QWERTY
keyboard. These letters have been chosen to include the most frequently used
characters in the English language. The developers claim that 65% of all keystrokes
are accounted for without having to use any chords at all.

For the remainder of the 18 letters, two fingers chords are used with regards to
letter frequency, fingers that would normally be used for that letter on a QWERTY
keyboard, and chord difficulty. The purpose of designing ASETNIOP around the
layout of the QWERTY keyboard is not only to make learning easier, but also to not
affect the ability to type on a regular keyboard after learning to use ASETNIOP.[4]

On top of the aim of efficient letter placement, a set of other features are used
to simplify the learning process, increasing the typing speed, and to reduce typing
errors:

Disambiguation
A disambiguation scheme is used with aims to allow users to ignore the chord-
ing process when first getting started. As an example, if the user wanted to
type the word this – requiring the letter H which is not included in the eight
non-chorded letters – the word tnis could instead be typed and the system
automatically replaces it with the correct word.

Stenographic Combinations
While all the letters of the alphabet are available with a maximum of two
fingers presses together, three finger chords or more allow digraphs, trigraphs
and sometimes entire words to be entered instantly. For example, pressing
down the fingers for typing T, H and E at the same time, regardless of order,
produces the word the.

Autocorrection
The system tries to autocorrect words that may have been mistyped as a
consequence of mistakenly using a chord instead of two subsequent letters, or
the other way around. Whenever the user inputs a word that cannot be found
in a standard English dictionary, the system tries to replace pairs of single
letters into the corresponding chord or chord letters into their component
parts to see if a word is produced.

2.5. UPSENSE 9

2.5 UpSense
UpSense by Inpris Ltd is another recently introduced touch keyboard replacement
to be used on smartphones and tablets. In addition to using chords to form letters,
swipes with one or more fingers in four different directions are also used.

The keyboard can be configured to be used with four, five or ten fingers. Every
letter can be customized to the user’s own preferred chord or gesture, but the
defaults have the aim of being as intuitive as possible, with gestures that follow the
shape of the letters.

As an example, the letters N and M are formed by swiping two and three fingers
downward, respectively, while swiping up with two and three fingers forms the letter
V and W. The swipes represent the downward tips in the letters N and M, and the
upward tips of V and W. Many of the other letters follow this similar approach.

If the user ever forgets how to type a particular letter, the bottom of the screen
has a row of all letters lined up. Pressing any of these reveal the gesture to form
the letter, but does not actually type the letter out.

To distinguish between the different fingers of the user’s hand, the input needs
to first be calibrated by placing down all fingers on the screen. This places out rings
on the screen that mark the touch area for each finger. When performing swipe
gestures, the swipe needs to start inside the marked rings and moved outside before
lifting the fingers.[5]

Chapter 3

Method

To explore the capabilities of alternative virtual keyboards and the possible difficul-
ties in designing one, a relatively simple prototype was implemented for the project.
The implementation, hereby also referred to as TactionType, runs in a web browser
and uses chords on five touch keys to produce the letters of the English alphabet.

3.1 Scope
Because of the expected scope of this project, the prototype has certain limitations:

• The prototype runs in a limited environment, with the aim of demonstrating
the design rather than running as a deeply integrated process on the system.
This means that the prototype cannot be used everywhere on the operating
system as a replacement to the regular touch keyboard.

• Only English letters are available, and a very limited set of non-letter charac-
ters are assigned. When designing for efficiency, only the character frequency
of the English language is considered.

• The prototype is specifically designed towards touch screens with enough room
to comfortably contain all five fingers of one hand, which in general means
tablet devices.

3.2 Technologies
The prototype is built using web technologies – HTML, CSS and JavaScript1 – and
therefore runs inside the device’s web browser. Developing the prototype in this
environment was a natural choice for the author due to his previous experience and

1In reality, the implementation uses LESS and CoffeeScript instead of CSS and JavaScript. Both
of these provide syntactic sugar and mechanisms for a more pleasurable working environment, and
ultimately compile down to their plain counterparts.

11

12 CHAPTER 3. METHOD

level of comfort in working with web technologies, but it also provided set of other
benefits:

• The amount in friction of setting up and letting other users test the prototype
is greatly reduced. With the server running, all the user needs to do is to
connect to the server IP in the device’s web browser, which can be done on
any supported device without any installations or pre-configurations.

• The web browser provides a set of APIs for easily handling touch input on the
device, reducing the amount of work in building surrounding systems.

• The use of WebSockets allows the input from the touch device to be synced
to other connected devices, setting up a great environment for testing and
demonstration purposes.

The back-end is powered by Node.js. As most of the application logic lies in the
front-end, its main tasks is only to serve files and direct the WebSocket communi-
cation between clients.

The prototype was mainly tested on a third generation iPad, but it should be
compatible on any tablet device running a web browser implementing the required
set of HTML5 features.

3.3 The Application
Here follows a run through of the different aspects and features of TactionType.
Figure 3.1 should also give a good overview of how the application looks in its
running state.

3.3.1 Touch Keys
The interaction starts with the user placing their five fingers on the touch screen,
which places out the five touch keys for future use. Should the user at any later
point feel discontent with the position of the keys, holding down all five fingers
again for one second allows the placement to be re-calibrated.

The design decision of letting the user place out the keys themselves borrows
from that of UpSense. This allows for a more comfortable hand placement once
typing, instead of being restricted to a set position as is the case with ASETNIOP.

The touch key areas are each marked with a uniquely colored circle. However,
the keys are not absolute hit points and only serve as guidance, as any touch made
outside of these is automatically assigned to the nearest unpressed key. As an
example, this allows the user to press down with all five fingers anywhere on the
screen, even outside any of the keys, and the system still registers that as all five
keys being pressed down simultaneously.

To group touches together as chords, a small grace period is needed between the
time a touch is registered and a letter is typed. This grace period is reset between

3.3. THE APPLICATION 13

Figure 3.1. A screenshot of TactionType, with the first and third button highlighted
– the chord for producing the letter D.

each new registered touch. In essence, this means that a set of keys being pressed in
a quick succession are registered as a single chord, rather than separate key presses.
A value between 50 and 100 milliseconds for the length of the grace period usually
produces the best results.

3.3.2 Cross-client Communication

By utilizing WebSockets and a publish-subscribe messaging pattern, communication
and syncing between different devices connected to the web page can be managed
with a relatively small amount of code.

Once a touch device has registered as the input system, other connected clients,
regardless of having a touch screen or not, can display all the touch actions and
typed letters from the input device.

This setup provides a great environment for testing and demonstrating the vir-
tual keyboard with other users. It also allows the application to be user tested
remotely, without sacrificing the test supervisor’s ability to see what the user is
doing in real-time.

14 CHAPTER 3. METHOD

3.3.3 Chord Highlighting
To help the user with remembering the chord for each letter, a system of highlighting
chords for corresponding letters is available. By connecting to the web page with
a computer with a physical keyboard, the user or test supervisor can press any of
the assigned letters on the computer keyboard to highlight the chord keys for that
particular letter. (This is seen in action on figure 3.1)

This method of chord guidance is clearly contrived for this specific prototype
environment, but a real-world version could be designed similarly to the strip of
letters at the bottom of the screen given on the UpSense system. By providing a
guidance system that does not type out any characters itself, the user is encouraged
to eventually memorize all of the chords.

3.4 Character Mapping
A big challenge in designing a character mapping scheme is finding a good balance
between memorability and efficiency. Let us imagine a system that reads input by
letting the user write the letters in handwritten form on the screen. This would
be very intuitive and memorable since the user presumably already knows how to
write by hand, but the level of efficiency would be very low since large gestures are
required for each letter input. The gesture complexity is also not in any way related
to how often the letter is typed.

An efficient system would on the other hand map frequently used letters to
simple commands that are quick to execute, while assigning the less used letters to
more complicated inputs. The drawback of this system is that the letter gestures
would be more difficult to remember, because they are not based on something that
has already been taught to the user.

3.4.1 Observations
Before we get to the character mapping of TactionType, let us analyze the input
systems from the Background section.

NLS
Douglas Engelbart’s binary mapping scheme is not specifically designed with
efficiency in mind. The mapping is easy to understand to anyone acquainted
to the binary numeral system, which many of the people within the target
group of NLS would likely have been.
However, understanding the mapping system does not necessarily make it
easier for users to quickly remember the chord for a specific letter in the
midst of typing. Apart from the first and possibly last couple of letters in the
alphabet, quickly knowing the exact positional order of a letter in the middle
of the alphabet is not something that most people are capable of without any
training, and even less when the number needs to be in binary form.

3.4. CHARACTER MAPPING 15

Microwriter
The Microwriter featured a blend between memorable and efficient letter map-
ping. The letter E, which is the most commonly used letter in the English
language, was mapped to a single press with the index finger, an efficient
mapping.
The mnemonics served as an aid in learning the chords, even though many of
them could often feel contrived or far-fetched. As an example, the mnemonic
"most common finger for most common letter E" does not make much sense –
are not all fingers equally common?
However, the point of mnemonics is to aid the brain in translating informa-
tion into a more retainable form, regardless of its silliness. Even if the user
were to take offense at the lacking sensibility of the mnemonic above, then
it has already served its purpose in making that particular letter mapping
memorable.

ASETNIOP
While ASETNIOP is mostly designed around typing efficiency, the mapping of
the 8 single finger letters are based on a regular QWERTY keyboard, making
it more intuitive and memorable for an experienced computer user. The name
of the system itself also serves as a mnemonic for remembering the order of
these 8 letters. When combined with the disambiguation system, the user is
able to start typing a majority of words without needing to learn any chords.

UpSense
UpSense bases its character mapping on an intuitive and memorable system.
Once the user learns that a downwards swipe with three fingers produces the
letter M, it is easy to see that the swiping up with the same fingers produces
W. Even though the use of swipes in addition to chords gives a greater freedom
in assigning gestures to letters according to their shapes, the shape tracing
approach does not work with all letters of the alphabet.
The creators of UpSense do not seem to consider typing efficiency in their
default mapping. As an example, the most common letter E is mapped to
a swipe to the right with three fingers, which is far from being as efficiently
performed as pressing a single key.

3.4.2 The TactionType Mapping
When mapping out the characters to chords, the frequency of the letter in the
English language was used as a big factor in determining the number of keys to be
used in the chord. A chord with a lesser number of keys should map to a more
frequently used letter. All of the chords and their corresponding letters can be seen
in figure 3.2.

In addition to using the usage frequency of letters in the mapping, the letter
shapes are also taken into consideration. Similar to the design of UpSense, mapping

16 CHAPTER 3. METHOD

Character Chord
A 1
B 1-3-4
C 2-5
D 1-3
E 2
F 1-4-5
G 1-2-4
H 2-4
I 5
J 1-2-5
K 2-3-5
L 1-4
M 2-3-4
N 3-4

Character Chord
O 4
P 2-4-5
Q 1-3-4-5
R 2-3
S 1-2
T 3
U 3-5
V 4-5
W 3-4-5
X 1-3-5
Y 1-5
Z 1-2-4-5
BACKSPACE 1-2-3
SPACE 1-2-3-4-5

Figure 3.2. A table of all the mapped characters. The chord lists the keys numbered
by their position from left to right.

chords in relation to the shape of the letter helps in making the system more intuitive
and easier to remember for the user.

Peter Norvig, Director of Research at Google Inc, used data based on the English
books that have been scanned by Google to produce the following ordered sequence
of letters based on their frequency: ETAOIN SRHLDCU MFPGWYB VKXJQZ.[6]

The five most frequent letters E, T, A, O and I are all mapped to single keys. The
ten two-key chords are mostly mapped to the following ten most frequent letters,
with some exceptions to favor memorability over typing efficiency.

The only letters mapped to four-key chords are Q and Z, the two most infre-
quently used letters in the English language.

While not all chords have any greater significance behind their mapping, there
are some notable ones:

• N and V map to two fingers, representing the two tips of the letters. Their
three-tipped counterparts, M and W, are naturally mapped to three fingers
by adding a finger to the left of the chord for N and V.

• The American Sign Language has signs for each letter in the alphabet. The
letter I is signed by holding up the little finger, and Y is signed by holding up
the thumb and little finger. This is reflected in their chord mapping. While
the user cannot be assumed to know American Sign Language, informing the

3.5. USER TESTING 17

user of the significance behind these letter mappings will serve as a mnemonic
for remembering them.

• The shapes of the letters J and G both have a low center of mass, while P
and F have their center of mass at the top. This is used in their chords, if
the fingers are imagined to be positioned vertically, with the thumb at the
bottom.

• The backspace key uses the three leftmost keys, to resemble going back to the
left when deleting characters.

3.5 User Testing

The prototype was user tested three participants with varying levels of training with
the system. While the prototype should be trained and tested with users over a
long time period to truly measure its potential, the expected scope of this project
has been a limiting factor in regards to the extent of the user testing. That said,
the relatively limited user testing has still been a valuable resource for identifying
drawbacks and strengths of the design.

To measure the user’s typing efficiency on the system, the elapsed time of typing
two separate sentences were used as benchmarks. The first of these sentences is the
famous English pangram2 "The quick brown fox jumps over the lazy dog". This
sentence elegantly measures the user’s ability and efficiency in finding the chords
for all the letters of the alphabet. This sentence would also be used in training for
memorizing all the chords.

The second of the benchmarking sentences is a nonsensical statement consisting
only of letters producible by using chords with two keys at most – "The salty
coastlines to the north are trendy". This sentence was used to more accurately
portray the way a user would regularly type in a real-world scenario, because of
the correlation between the number of keys in a chord and the letter’s frequency of
appearance in the English language. Based on the data gathered by Peter Norvig[6],
the set of letters producible by single keys or two-key chords cover approximately
85% of the combined total of letters used in a body of regular English text, on
average.

Users were allowed to use the chord guidance mechanisms during the tests, but
only as a last resort if they were unable to remember the chord for the current letter.
Both sentences were typed and timed a number of times, out of which the average
speed and best attempts were recorded. The users were then asked to type the same
sentences with the device’s standard QWERTY keyboard, once again recording the
average speed and the best entry.

When measuring the typing speed on the device QWERTY keyboard, auto-
correction had been turned off. While this may be a feature the user has turned

2A pangram is a sentence using every letter of the alphabet at least once.

18 CHAPTER 3. METHOD

on when typing regularly on the device, it is not a feature that is specific to the
design of that input system. An auto-correction mechanism could just as well be
implemented with TactionType, without altering the design of the system itself.

Chapter 4

Analysis

This chapter is dedicated to analysis of the insights gained from building the pro-
totype and from the user feedback. Both data and observations are discussed to
build a basis from which conclusions can be drawn in the final chapter.

4.1 Usability

An aspect that is difficult to quantify, but nonetheless very important, is the general
usability of the prototype. While the topics of memorability and efficiency are a
part of application usability, these two will be covered in greater depth in later
sections. What this section aims to focus at is more specifically the interaction
process of pressing the keys of TactionType.

4.1.1 Key Calibration

As described in the previous chapter, the interaction starts with the user placing
down all five fingers to set the positions of the keys. This allowed the users to easily
find a comfortable hand position for using the keyboard.

This follows the design of the UpSense keyboard to a certain extent, however
avoiding a core issue that the author found with it. The author would often miss one
or more of the UpSense keys when typing, leading to a completely different character
or no character at all being produced. By automatically assigning a touch to the
nearest unpressed key on the TactionType keyboard, typing errors caused by missed
keys were less likely to occur.

Of course, the system could still assign a touch to the unintended key. However,
the size of the key markers encouraged the user to leave a good amount of space
between each finger, reducing the risk of pressing the wrong keys.

With the five keys placed where the user’s fingers would naturally touch when
pressing down, the user is much more likely to focus their sight on the written
text rather than the keys themselves. By constantly looking at the written text,
typing errors are caught and fixed more quickly by the user. This is something

19

20 CHAPTER 4. ANALYSIS

that an experienced computer user would beneficially do when typing on a physical
keyboard, but often struggle with on regular touch keyboards. Auto-correction on
touch keyboards often helps in fixing minor typing errors without requiring any ac-
tion to be taken by the user, but the auto-correction system can sometimes produce
unintended results that completely change the meaning of the written sentences.

4.1.2 Pressing Chords

Because of the improbability of the user being able to press down all keys in a chord
at exactly the same time, an added grace period between touches and a chords being
registered is used. The length of the grace period proved to be a difficult value
to calibrate for every user – it needs to be short enough to distinguish between
separate letters being typed in a quick succession, but not so short that typing
chords with multiple keys becomes too difficult. While occurrence of the described
issues certainly were minimized with proper grace period calibration, more work
would be required to reduce these errors to a negligible level.

One alternative would be to register chords once the user lifts all fingers off the
screen, but this also limits the ability to fluidly type chords in a quick succession,
since all fingers need to be removed from the screen before starting on the next
chord.

4.1.3 User Satisfaction

One aspect that is often discussed in regards to usability is the satisfaction that
the user feels when using the application. Depending on the user’s hand dexterity,
certain chords could feel very cumbersome or awkward to type. Extended periods
of use could also feel straining, more so than using the regular keyboard on the
device. This is most likely the cause of the user not being used to performing these
types of gestures in a repeated fashion, something that the user could adjust to over
time.

Despite the described discomforts associated with using TactionType, users
would commonly describe the virtual keyboard of being "fun" to use. A certain
level of satisfaction and accomplishment could be felt once the user was beginning
to learn the chords, something that can be compared to the feelings experienced
when learning to play a new instrument. While the enjoyment gained in using a
text input system might not be the first thing a user looks for, it is nonetheless an
interesting aspect to take note of.

4.2 Chord Memorability
As discussed in the previous chapter, finding a good blend between efficient and
memorable character mapping is a tough task. TactionType focuses primarily on
mapping the letters to efficient chords rather than memorable ones. However, the
few mnemonics that are used proved to be a good help for the user in remembering

4.3. TYPING SPEEDS 21

those corresponding chords. The chords that do not carry any significance, such as
the chord for the letter D (thumb and middle finger), would be the ones that users
struggled the most with.

When the user would forget a specific chord, the chord highlighting system
quickly helped in refreshing the user’s memory. However, the user would often
within a short duration forget the chord again, having to look it up once more. It
is probable that a more extensive use of mnemonics could help alleviate this issue.
These mnemonics could then be displayed together with the highlighted keys when
the user forgets a chord, to more efficiently educate the user.

It would take the average user around one to two hours to learn and memorize
all the chords, a time period very similar to the reported learning time of the NLS
keyset. This might not seem to be a very long time to learn a completely new
system, but it does cause a friction for new users that should preferably be reduced
to its minimum. However, such friction reductions should not be at the cost of
efficiency or other usability aspects.

Once the user has memorized all the chords, there is still a lot of room to improve
the user’s efficiency with the system. These improvements can only be achieved
through extensive use, by allowing the chords to be put into muscle memory and
improving hand dexterity to be able to more elegantly form the different gestures.
Because of the limited project scope, the long term aspects of TactionType could
unfortunately not be analyzed.

4.3 Typing Speeds

Approximate Training Time

User A 1 hour

User B 1-2 hours

User C 2-3 hours

Author 4-5 hours

Figure 4.1. The approximate time each user had spent using TactionType before
the typing speed tests were performed.

When measuring users’ typing speeds on TactionType compared to the device’s
standard QWERTY keyboard, both an average and best entry were recorded. The
best entries serve as frame of reference for the potential attainable typing speeds.
The results from the first sentence, seen in figure 4.2, show large speed differences
between different users on TactionType, with more consistent results on the QW-
ERTY touch keyboard. While the amount of training with TactionType varied

22 CHAPTER 4. ANALYSIS

"The quick brown fox jumps over the lazy dog"
TactionType

User Average Best

User A 95s 80s

User B 90s 76s

User C 40s 33s

Author 35s 29s

Device QWERTY Keyboard

User Average Best

User A 16s 12s

User B 15s 11s

User C 10s 8s

Author 12s 10s

Figure 4.2. The average and best typing speeds for the sentence "The quick brown
fox. . . " on TactionType and the device’s standard QWERTY keyboard.

greatly between users (see figure 4.1), everyone were already experienced with typ-
ing on QWERTY keyboards on touch devices.

The second sentence, with results displayed in figure 4.3, is a more accurate
representation of the letters that a user would more commonly type when writing
regular English text. The results show clear speed improvements for most users
compared to results in figure 4.2, something that is expected based on the simpler
chords that this sentence consists of. It is apparent that the typing speeds of the
two sentences on the device’s QWERTY keyboard do not vary much at all, the set
of used letters does not change the attainable typing speeds to any considerable
extent.

"The salty coastlines to the north are trendy"
TactionType

User Average Best

User A 100s 85s

User B 55s 40s

User C 28s 23s

Author 25s 20s

Device QWERTY Keyboard

User Average Best

User A 15s 11s

User B 14s 11s

User C 10s 8s

Author 12s 9s

Figure 4.3. The average and best typing speeds for the sentence "The salty coast-
lines. . . " on TactionType and the device’s standard QWERTY keyboard.

From these results, a potential TactionType typing speed ranging between 30-
50% of speeds on the QWERTY touch keyboard can be observed. This converts to
a range of around 20-25 WPM1 on TactionType, and 35-50 WPM on the standard

1Words per minute, a typing measurement where every five characters are counted as one word.

4.3. TYPING SPEEDS 23

device keyboard.
This does show a great potential, considering the relatively small amount of

training with TactionType compared to the users’ many years of experience with
QWERTY keyboards. An important aspect to remember is the also fact that Tac-
tionType only uses one hand for text input, while the device’s QWERTY keyboard
is built for use with two hands.

Chapter 5

Conclusions

Going back to the introduction, the question that this thesis seeks to answer is
whether a viable touch keyboard alternative can be designed, one that is not based
on the computer keyboard and has the potential of being more efficient. It is appar-
ent that UpSense, ASETNIOP and TactionType all build on design paradigms that
are far separated from the design of the physical keyboard. The three alternatives
are designed to not require precise finger positioning to hit the correct keys on the
keyboard. This makes it easier for the user to focus their sight on the written text
rather than their fingers, which is crucial in being able to quickly adjust potential
typing errors.

It is difficult to objectively determine the viability of a text input system. The
viability of the keyboard design is very dependent on the dedication of the user,
but this is also true for inexperienced users learning to use a QWERTY keyboard.
Having all the chords memorized, a feat usually achieved within two hours of use,
allows the user to successfully type on TactionType at a steady speed. Although
the user’s typing speed at that point might be much slower than the speed on the
device’s QWERTY keyboard, it should be considered a viable keyboard alternative.

From the results seen from measuring the crude TactionType prototype, po-
tential typing speeds reaching up to a half of the speed on the device’s QWERTY
keyboard can be observed. These speeds were achieved relatively quickly, and even
greater speeds should be attainable with further training. This shows good poten-
tial in allowing users to become efficient with the system, especially considering that
the system only utilizes one hand.

The design of TactionType may not be the optimal one within the area of
alternative keyboard designs, but it displays what can be achieved with a relatively
limited amount of work and research. The UpSense and ASETNIOP keyboards
show that there is an interest in exploring this area, and the author is hopeful of
seeing more virtual keyboards with alternative designs entering the market in the
future.

25

Bibliography

[1] Bill Buxton, Feb 2012, Haptic Input: Chord Keyboards
http://www.billbuxton.com/input06.ChordKeyboards.pdf
Downloaded 2013-02-10

[2] Doug Engelbart Institute, 2008, "Father of the Keyset"
http://www.dougengelbart.org/firsts/keyset.html
Downloaded 2013-02-10

[3] Microwriter Ltd, 1980, Microwriting in Practice
http://research.microsoft.com/en-
us/um/people/bibuxton/buxtoncollection/a/pdf/Microwriting%20in%20Practice.pdf
Downloaded 2013-02-10

[4] Pointesa LLC, 2012, About ASETNIOP
http://www.asetniop.com/about.html
Downloaded 2013-02-10

[5] Inpris Ltd, July 2012, UpSense User Guide
http://www.inprisltd.com/media/UpSenseGuide-English.pdf
Downloaded 2013-02-10

[6] Peter Norvig, Jan 2013, English Letter Frequency Counts: Mayzner Revisited
or ETAOIN SRHLDCU
http://norvig.com/mayzner.html
Downloaded 2013-02-15

27

Appendix A

Source Code

Here follows the relevant parts of the TactionType source code. The source code in
its entirety is also available at https://github.com/JoelBesada/taction-type.

A.1 Server-side Code

A.1.1 app.coffee

###
Express Bootstrap
###
expre s s = r e q u i r e " expre s s "
async = r e q u i r e " async "

app = expre s s ()

r e q u i r e (" . / c o n f i g / environments ") . i n i t app , expre s s

webServer = r e q u i r e (" . / webserver ") . i n i t app
webSocketServer = r e q u i r e (" . / websocket se rver ") . i n i t webServer

A.1. The server bootstrap code.

A.1.2 environments.coffee

###
Environment Conf igurat ion
###
export s . i n i t = (app , expre s s) −>

General
app . c o n f i g u r e −>

app . use expre s s . l o g g e r " dev "
app . use expre s s . cook i ePar s e r ()
app . use expre s s . methodOverride ()
app . use app . r o u t e r
app . use r e q u i r e (" connect−a s s e t s ") ()
app . use expre s s . s t a t i c ("#{__dirname } / . . / p u b l i c ")

29

30 APPENDIX A. SOURCE CODE

app . s e t " port " , p r o c e s s . env .PORT or 3000
app . s e t " views " , "#{__dirname } / . . / views "
app . s e t " view engine " , " e j s "

Development
app . c o n f i g u r e " development " , −>

app . use expre s s . e r rorHandle r ()
app . s e t " port " , p r o c e s s . env .PORT or 4000

A.2. The server environment settings.

A.1.3 webserver.coffee

###
Web Server Setup
###
http = r e q u i r e " http "

export s . i n i t = (app) −>
http . c r e a t e S e r v e r (app) . l i s t e n app . get (" port ") , −>

c o n s o l e . l og " Express s e r v e r l i s t e n i n g on port #{app . get " port " } "

app . get " / " , (req , r e s) −>
r e s . render " index " , port : req . app . get " port "

A.3. The web server setup.

A.1.4 websocketserver.coffee

###
WebSocket Server Setup
WebSockets are used with in the a p p l i c a t i o n to communicate with
other connected d e v i c e s . Only one input dev i ce can be a c t i v e
at a time , a l l other d e v i c e s act as " audience " d e v i c e s .
#
Communication between d e v i c e s i s handled by sending a JSON
o b j e c t with an event and data f i e l d . These events w i l l then
be t r i g g e r e d on a l l r e c e i v i n g a p p l i c a t i o n s , l i k e any other
JavaScr ipt event .
###
_ = r e q u i r e " underscore "
WebSocketServer = r e q u i r e (" websocket ") . s e r v e r
c l i e n t s = {}
inputDeviceID = n u l l

export s . i n i t = (webServer) −>
webSocketServer = new WebSocketServer

httpServer : webServer
autoAcceptConnections : f a l s e

webSocketServer . on " r e que s t " , (req) −>
setupConnect ion req . accept (nu l l , req . o r i g i n)

setupConnect ion = (connect ion) −>
Give a unique ID to every connected dev i c e
ID = _. uniqueId ()

A.2. CLIENT-SIDE CODE 31

c l i e n t s [ID] =
connect ion : connect ion

connect ion . on " message " , (message) −>
Allow only one connected dev i c e be r e g i s t e r e d as the input
i f message . utf8Data i s "INPUT_DEVICE" and inputDeviceID i s n u l l

c o n s o l e . l og "New input dev i c e s e t : #{ID} "
inputDeviceID = ID

Trigger a a newinput event on a l l other connec t i ons
f o r c l i en t ID , c l i e n t o f c l i e n t s

cont inue i f c l i e n t I D i s ID
c l i e n t . connect ion . sendUTF JSON. s t r i n g i f y (event : " newinput ")

re turn

Forward a l l messages to other c l i e n t s
f o r c l i en t ID , c l i e n t o f c l i e n t s

c l i e n t . connect ion . sendUTF(message . utf8Data) u n l e s s c l i e n t I D i s ID

connect ion . on " c l o s e " , (reasonCode , d e s c r i p t i o n) −>
d e l e t e c l i e n t s [ID]

Allow a new input dev i ce to connect
inputDeviceID = n u l l i f ID i s inputDeviceID

A.4. The WebSocket server setup.

A.2 Client-side Code

A.2.1 main.coffee

#= r e q u i r e _ t r e e l i b
#= r e q u i r e _ t r e e s r c

Extend the g l o b a l TactionType o b j e c t with a couple o f methods
_. d e f a u l t s TactionType ,

jQuery f i ed v e r s i o n o f TactionType , used to l i s t e n to and t r i g g e r events
$: $ TactionType

I s t h i s an input dev i c e ?
inputDevice : " ontouchstar t " o f window and window . l o c a t i o n . hash i s "#input "

Trigger an event a c r o s s a l l connected d e v i c e s through the WebSocket .
This a l s o t r i g g e r s the event l o c a l l y .
t r i gge rSynced : (event , data) −>

@connection . send JSON. s t r i n g i f y
event : event
data : data

TactionType . $. t r i g g e r event , data

$ −>
TactionType . connect ion =

new WebSocket (" ws://#{window . l o c a t i o n . hostname}:#{ TactionType .SOCKET_PORT} ")

Trigger events f o r a l l incoming messages on the WebSocket connect ion
TactionType . connect ion . addEventListener " message " , (e) −>

message = JSON. parse e . data
TactionType . $. t r i g g e r (message . event , message . data)

32 APPENDIX A. SOURCE CODE

The a p p l i c a t i o n i s ready
TactionType . $. t r i g g e r " ready "

A.5. The client bootstrap code.

A.2.2 app.coffee

$ −>
Refresh when input d e v i c e s r e f r e s h e s
TactionType . $. on " newinput " , −> window . l o c a t i o n . r e l o a d ()

Send keyboard key p r e s s events to a l l d e v i c e s
$ (document) . on " keypres s " , (e) −>

TactionType . t r i gge rSynced " c h a r p r e s s " , keyCode : e . which

A.6. The application (non-input device) code.

A.2.3 input.coffee

Lis t en f o r touch events and send them out through the socke t
setupTouchListeners = −>

R e g i s t e r with the s e r v e r as an input dev i ce
TactionType . connect ion . send "INPUT_DEVICE"

$ (document)
. on (" t o u c h s t a r t touchmove touchend touchcance l touch leave " , (e) −>

e . preventDefau l t ()
e . stopPropagat ion ()

)
. on (" t o u c h s t a r t " , (e) −>

t r i g g e r " t o u c h s t a r t " ,
touches : formatTouches e . o r i g i n a l E v e n t . changedTouches

)
. on (" touchmove " , (e) −>

Throt t l e the events f o r a c o n s i s t e n t update r a t e
t r i g g e r T h r o t t l e d " touchmove " ,

touches : formatTouches (e . o r i g i n a l E v e n t . touches , t rue)
)
. on (" touchend touchcance l touch leave " , (e) −>

t r i g g e r " touchend " ,
touches : formatTouches e . o r i g i n a l E v e n t . changedTouches

)

Local shorthand f o r t r i g g e r i n g a synced event
t r i g g e r = −> TactionType . t r i gge rSynced . apply (TactionType , arguments)

A t h r o t t l e d v e r s i o n o f t r i g g e r
t r i g g e r T h r o t t l e d = _. t h r o t t l e (t r i g g e r , 10)

Pick out the i n f o we are i n t e r e s t e d in from the l i s t o f touches
formatTouches = (touches , move) −>

l i s t = []
pressedNow = {}
f o r touch in touches

formatted =
id : touch . i d e n t i f i e r

A.2. CLIENT-SIDE CODE 33

x : touch . pageX / document . width
y : touch . pageY / document . he ight

u n l e s s move
key = determineKey touch , pressedNow
pressedNow [key] = true
formatted [" key "] = key

l i s t . push formatted
l i s t

Return the c l o s e s t key f o r the g iven touch
determineKey = (touch , pressedNow) −>

return n u l l u n l e s s TactionType . TouchKey . c a l i b r a t e d
key = $ (touch . t a r g e t) . data (" id ")
re turn key i f key and not (TactionType . TouchKey . i s P r e s s e d key or pressedNow key)
x = touch . pageX
y = touch . pageY

ava i l ab l eKeys = _. f i l t e r TactionType . TouchKey . unpressedTouchKeys () , (touchKey) −>
not pressedNow [touchKey . key]

Not a c t u a l d i s tance s , but good enough f o r f i n d i n g the c l o s e s t key
d i s t a n c e s = _. map ava i lab leKeys , (touchKey) −>

key : touchKey . key
d i s t a n c e : Math . abs (touchKey . x ∗ document . width − touch . pageX) +

Math . abs (touchKey . y ∗ document . he ight − touch . pageY)

_. min (d i s tance s , (item) −> item . d i s t a n c e) ? . key

$ −>
This code should only run on the input dev i ce
re turn u n l e s s TactionType . inputDevice

TactionType . $. on " ready " , −>
$ (" body ") . addClass " input "
TactionType . connect ion . onopen = setupTouchListeners

A.7. The input device code.

A.2.4 touchpoint.coffee

Disp lays a s i n g l e touch po int on the s c r e e n
c l a s s TactionType . TouchPoint

c o n s t r u c t o r : (@id , @x, @y) −>
@$el = $ ("<div>") . addClass (" touch−point ")
$ (" body ") . append @$el
@$el . addClass " show "
@move x , y

move : (x , y) −>
@x = x
@y = y
@$el . c s s

" webkit−trans form " : " t rans la teX (#{x ∗ document . width }px)
t rans la teY (#{y ∗ document . he ight }px)
t r a n s l a t e Z (0) "

remove : −>
@$el . removeClass " show "

34 APPENDIX A. SOURCE CODE

setTimeout (=>
@$el . remove ()

, 250)

@touchPoints = {}
@touchCount = −> _. keys (@touchPoints) . l ength

@in i t : =>
Touch p o in t s are only rendered on " audience " dev ice s , i . e .
not the touch dev i c e i t s e l f
r e turn i f TactionType . inputDevice

TactionType . $
. on (" t o u c h s t a r t " , (e , data) =>

f o r touch in data . touches
@touchPoints [touch . id] = new @(touch . id , touch . x , touch . y)

)
. on (" touchend " , (e , data) =>

f o r touch in data . touches
@touchPoints [touch . id] ? . remove ()
d e l e t e @touchPoints [touch . id]

)
. on (" touchmove " , (e , data) =>

f o r touch in data . touches
@touchPoints [touch . id] ? . move touch . x , touch . y

)

$ −>
TactionType . $. on " ready " , TactionType . TouchPoint . i n i t

A.8. The code to render touches on connected devices.

A.2.5 touchkey.coffee

The touchkeys v i s i b l e on the input dev i ce
c l a s s TactionType . TouchKey

The i n t e r v a l time in ms f o r grouping touches t oge t he r as chords
KEY_GROUPING_INTERVAL = 120

The time in ms that the user should hold down a l l f i v e
f i n g e r s on the s c r e en b e f o r e keys are r e c a l i b r a t e d
CALIBRATION_TRIGGER_TIME = 1000

$charBox = n u l l
ca l ib rat ionTimeout = n u l l
previousTouchKeys = n u l l

c o n s t r u c t o r : (@id , @x, @y) −>
@$el = $ ("<div>") . addClass (" touch−key ")
$ (" body ") . append @$el
@$el . addClass " show "
@move x , y

move : (x , y) −>
@x = x
@y = y
@$el . c s s

" webkit−trans form " : " t rans la teX (#{x ∗ document . width }px)
t rans la teY (#{y ∗ document . he ight }px)
t r a n s l a t e Z (0) "

A.2. CLIENT-SIDE CODE 35

remove : −>
setTimeout @$el . remove , 500

@ca l ibrated : f a l s e
@ c a l i b r a t i n g : f a l s e
@touches : {}
@touchKeys : {}
@isPressed : (key) −> _presses [key]

Get a l l keys that are not c u r r e n t l y pre s s ed
@unpressedTouchKeys : −> _. f i l t e r @touchKeys , (touchKey) −>

not _presses [touchKey . key]

@in i t : =>
$charBox = $ " . char−box "
TactionType . $

. on (" t o u c h s t a r t " , (e , data) =>
pressKeys data . touches
@touches [touch . id] = touch f o r touch in data . touches

i f _. keys (@touches) . l ength i s 5
i f @ca l ibrated or @ c a l i b r a t i n g

ca l ib rat ionTimeout = setTimeout s t a r t C a l i b r a t i o n , CALIBRATION_TRIGGER_TIME
e l s e

s t a r t C a l i b r a t i o n () i f _. keys (@touches) . l ength i s 5
)
. on (" touchend " , (e , data) =>

f o r touch in data . touches
key = @touches [touch . id] . key
$key (key) . removeClass (" pre s sed ") i f key
d e l e t e @touches [touch . id]

c learTimeout ca l ib ra t ionTimeout
endCa l ibrat ion () i f @ c a l i b r a t i n g

)
. on (" touchmove " , (e , data) =>

return u n l e s s @ c a l i b r a t i n g
@touchKeys [touch . id] ? . move touch . x , touch . y f o r touch in data . touches

)
. on (" c h a r p r e s s " , showCharacter)
. on (" keypressed " , h ideCharacter)

C a l i b r a t e / p lace out the touch keys
s t a r t C a l i b r a t i o n = =>

Remove the unintented space that was added on re−c a l i b r a t i o n
TactionType . KeyHandler . backspace ()

@ c a l i b r a t i n g = true
previousTouchKeys = @touchKeys
touchKey . $ e l . h ide () f o r id , touchKey o f previousTouchKeys

@touchKeys = {}
f o r id , touch o f @touches

@touchKeys [id] = new @(id , touch . x , touch . y)

Lay down the keys and g ive them i d e n t i f i e r s based on t h e i r p o s i t i o n s
from l e f t to r i g h t
endCa l ibrat ion = =>

@ c a l i b r a t i n g = f a l s e
@ca l ibrated = true
touchKey . remove () f o r id , touchKey o f previousTouchKeys

36 APPENDIX A. SOURCE CODE

touchKeyList = _. sortBy ((touch f o r id , touch o f @touchKeys) , " x ")
touchKey . $ e l . a t t r (" data−id " , touchKey . key = i + 1) f o r touchKey , i in touchKeyList

_presses = {}

Keypresses with in smal l i n t e r v a l s o f each other
are grouped toge the r as one chord
_pressKeys = _. debounce (=>

keys = _. keys (_presses) . s o r t ()
_presses = {}
$key (key) . addClass " pre s s ed " f o r key in keys
_. d e f e r =>

$ (" . p re s s ed ") . each (index , element) =>
u n l e s s _. findWhere (@touches , key : $ (element) . data (" id "))

$ (element) . removeClass (" pre s sed ")

i f TactionType . inputDevice
TactionType . t r i gge rSynced " keypressed " , keys : keys

, KEY_GROUPING_INTERVAL)

pressKeys = (touches) −>
f o r id , touch o f touches

_presses [touch . key] = true i f touch . key
_pressKeys ()

Retr i eve the jQuery element f o r a g iven key
$key = (key) −> $ (" . touch−key [data−id=\"#{key } \ "] ")

Show the guide h i g h l i g h t f o r a key pre s s ed on a remote keyboard
showCharacter = (e , data) −>

char = S t r i n g . fromCharCode (data . keyCode) . toUpperCase ()
keys = TactionType . KeyDef in i t i ons . lookup [char]
r e turn u n l e s s keys
h ideCharacter ()

f o r key in keys . s p l i t ("−")
$key (key) . addClass " h i g h l i g h t "

$charBox . t ex t (char) . addClass (" show ")

Hide the c h a r a c t e r h i g h l i g h t
h ideCharacter = −>

$ (" . touch−key . h i g h l i g h t ") . removeClass (" h i g h l i g h t ")
$charBox . removeClass (" show ")

$ −>
TactionType . $. on " ready " , TactionType . TouchKey . i n i t

A.9. Code for handling the touch keys on the input device.

A.2.6 keyhandler.coffee

Handle and render the c h a r a c t e r s o f pre s s ed keys
c l a s s TactionType . KeyHandler

$textArea = n u l l

I n t e r p r e t and render key p r e s s e s as c h a r a c t e r s
handleKeyPress = (e , data) =>

char = TactionType . KeyDef in i t i ons . p r e s s e s [data . keys . j o i n ("−")]

A.2. CLIENT-SIDE CODE 37

r e turn u n l e s s char
i f char i s "BACKSPACE"
@backspace ()

e l s e
$textArea . append (char) i f char

Remove the l a s t l e t t e r
@backspace = −>

$textArea . t ex t $textArea . t ex t () . s u b s t r i n g (0 , $textArea . t ex t () . l ength − 1)

@in i t = −>
TactionType . $. on " keypressed " , handleKeyPress
$textArea = $ " . text−area "

$ −> TactionType . $. on " ready " , TactionType . KeyHandler . i n i t

A.10. Code for rendering pressed characters.

A.2.7 keydefinitions.coffee

D e f i n i t i o n s o f a l l keys .
Fingers :
1 : Thumb
2 : Index f i n g e r
3 : Middle f i n g e r
4 : Ring f i n g e r
5 : L i t t l e f i n g e r

c l a s s TactionType . KeyDef in i t i ons
@presses :

" 1 " : "A"
" 2 " : "E"
" 3 " : "T"
" 4 " : "O"
" 5 " : " I "

"1−2" : " S "
"2−3" : "R"
"3−4" : "N"
"4−5" : "V"
"1−3" : "D"
"2−4" : "H"
"3−5" : "U"
"1−4" : "L"
"2−5" : "C"
"1−5" : "Y"

"1−2−3" : "BACKSPACE"
"2−3−4" : "M"
"3−4−5" : "W"
"1−2−4" : "G"
"2−3−5" : "K"
"1−3−4" : "B"
"2−4−5" : "P"
"1−2−5" : " J "
"1−4−5" : "F"
"1−3−5" : "X"

"1−2−3−4":
"2−3−4−5":

38 APPENDIX A. SOURCE CODE

"1−3−4−5" : "Q"
"1−2−4−5" : "Z"
"1−2−3−5":

"1−2−3−4−5" : " "

@lookup : _. i n v e r t @presses

A.11. The chord to character mapping.

