Haptic visualization of computational fluid dynamics data using reactive forces

Karljohan Lundin
Mattias Sillén
Matthew Cooper
Anders Ynnerman

Computational Fluid Dynamics

- Evaluate aircraft design
 - Find dangerous vortices, shock waves
- Complex data
 - Multivariate
 - Multifield
 - Turbulent

Scientific Visualization

- 3D visualization
 - Pressure rendering
 - Opacity from pressure or curl
 - Stream-ribbons
 - Show flow
 - Color from speed
 - Color from pressure
User Interface

- Reachin Desktop Display
 - PHANToM haptic device
 - Personal VR workstation

User Interface

- Virtual Reality
 - direct interaction
- Integrated GUI
 - no context switch needed
- Stream Ribbons
 - visualize flow
 - place and drag

Haptic Force Feedback

- Guide the user
 - physical support
 - pathway to features
- Present information from data
 - complement to visual feedback
 - sometimes more intuitive through touch
 - ex: flow strength and pressure
Haptic Force Feedback

- **Force Functions**
 - Been around since early 90's
 - Vector valued functions
 - etc: viscosity, pressure
- **Proxy-based Methods**
 - Common in surface interaction
 - Recently also for volume haptics
 - Passive representation of features
 - feedback answers to our actions -
 does not actively push

Proxy-based Methods

- Proxy is controllable representation of probe
 1) Determine local data properties
 - scalar value interpolation, gradient estimation, etc.
 2) Move proxy to simulate constraints from data
 \[
 x_{\text{proxy}} = \begin{cases}
 x_{\text{proxy}} + \dot{x}(x_{\text{proxy}} - x_{\text{probe}}), & \text{if } \dot{s} \leq k(\ddot{x} - \ddot{q}) \\
 x_{\text{proxy}}, & \text{otherwise}
 \end{cases}
 \]
 3) Calculate force feedback from coupling
 \[
 \mathbf{f}_{\text{feedback}} = -k(x_{\text{probe}} - \mathbf{v}_{\text{probe}}) - D(\mathbf{v}_{\text{probe}} - \mathbf{v}_{\text{probe}})
 \]

Proxy Balance Equation

Move a proxy to minimize residual force

\[
\mathbf{f}_{\text{residual}} = -k(x_{\text{proxy}} - x_{\text{probe}}) + \sum_{n \in \text{forces}} n_i q_i + \sum_{n \in \text{forces}} \begin{cases}
0, & \text{if } |n| = 0 \\
\frac{1}{2} |n|^2, & \text{if } |n| < \frac{1}{2} |n| \\
\frac{1}{2} |n|, & \text{if } |n| \geq \frac{1}{2} |n|
\end{cases}
\]

\[
+ \sum_{n \in \text{forces}} \begin{cases}
0, & \text{if } \dot{q} \leq 0 \\
\frac{1}{2} \dot{q}^2, & \text{if } \dot{q} > 0
\end{cases}
\]
Direct Volume Haptics

Haptic Modes

- Follow Mode
 - feedback restricting movement across the vector field
 - encourages the instrument to follow the field
 - convey air flow orientation
 - guides the user to find where flow originates
 - also presents air speed by strength

- Surface Mode

- Viscosity Mode

Haptic Modes represent different features
- ex: flow orientation, vorticity, pressure gradient
- does not necessarily mimic flow

Choose right mode for right task
- find shock waves
- search for dangerous vortices

QuickTime™ and a decompressor are needed to see this picture.
Conclusions

- Take advantage of human perception
 - immersion – direct navigation
 - natural and intuitive interaction
 - present data and guide actions
- Need training
 - learn to understand local cues for global features
 - learn to take advantage of given feedback
 - hard to teach – need experience

Haptic exploration of heart flow

- Interactive exploration
- Clip planes placed with pen
- Stream ribbons interactively placed in the flow
- Structural feedback from heart walls
- All flow modes implemented
- Clinical evaluation shows promising results
Sneak Preview

- Time resolved data
- Beating heart
- Force feedback generated
- Optical flow in between frames
- General method – can deal with data from simulators and sensors

The Future of Volume Haptics

- New methods for volume haptics
 - more intuitive abstraction layer for programming
 - a more versatile palette of available modes
 - No constraints on how to use the haptic modes
- General visualization platforms with haptics
 - Cheaper haptic equipment
 - Increased availability from new methods