2D1257: Visualization
3. Algorithms and data structures

April 2, 2007

Introduction

Methods and algorithms that we will familiarize ourselves with in this lab are the following:
o Apply different types of filters on data to create visualizations
e Define your own data types and read in files with custom file formats
e Usage of implicit functions
e Evaluate the application for different visualization methods
Guides for using VTK can be found in these locations:
e Course notes
e The Visualization Toolkit Book
e http://www.vtk.org

e http://www.vtk.org/doc/release/5.0/html/

Getting started

It is a good idea to re-use the Makefile from the previous lab. The Makefile must be adjusted to this
lab by changing the file names inside the Makefile.

Lab files

The lab files that you will be using for this lab are located at
http://www.csc.kth.se/utbildning/kth/kurser/2D1257/visual07/1lab3/lab3.zip
and can be unzipped by writing unzip lab3.zip in the terminal. These files are:

e ImpFunc.cc This contains the skeleton code for the implicit function definition.
e TraceReader.hh Contains the skeleton code for your own data reader.

e mob.data This file contains the data which you will try to read using your data reader.

2D1257: Visualization 3. Algorithms and data structures

Note on VTK

VTK uses forward declaration (declaring a type for the purpose of providing an interface or protocol
for the programmer - that’s you, without writing what the type does). This can cause compiler errors
if one tries to cast a type that is not fully declared. To prevent this from occurring, one can include the
header file which contains the full declaration of the type.

In Short, always remember to include the header file of the type that you will use in your program,
i.e.,if youuse vtkLight, you must add #include <vtkLight.h> to your program.

How to do this lab

In this lab, you are asked to complete only 1 of 2 tasks. You may choose which task you wish to
complete. The two tasks that you may choose from are:

e Studying the wave function of a hydrogen atom using isosurfaces and implicit functions, writing
and reading to and from file. (See Task 1)

o Studying the motion of an electron using vector fields and streamlines, reading from file. (See
Task 2)

Remember to add interactivity to the visualization like you did in the previous lab.

1 Task 1: Wave Function of a Hydrogen Atom

1.1 What you will be doing in this exercise

In this exercise, we will use the wave function of a hydrogen atom in the state 2p which gives us the
probability of finding an electron at each position of the atom. To be able to visualize this, we will
use an isosurface. This is where the implicit function comes in. We create an implicit function for the
purpose of visualizing the wave function using VTK’s isosurface.

1.2 The wave function

The wave function can be written in the following form using the spherical coordinate system.

F(¢, 0, 1) = [Y(¢, O)R(r)]?

Y(gp,) = i\/g(singbcos b) eF?

(Z)3 Zr -z
- e 2a
2ag \/§a0

Z:1, a():l

R(r) = ey

In our case, we can set:

We have a set of equations which allow us to go between the Cartesian coordinate system and the
spherical coordinate system (More info can be found at the wikipedia website). To go from the

2D1257: Visualization 3. Algorithms and data structures

spherical coordinate system to the Cartesian coordinate system, use:
x = rsin ¢ cos 6
y =rsin¢sinf

Z =17cos¢

To go from the Cartesian coordinate system to the spherical coordinate system, use:

e JTIPET
¢ = cos T (z/\/22 4+ 2 + 22)
6 = tan"*(y/z)

Note that we do not support complex numbers. This means that we have to change the evaluation

of Y (¢, 6) to avoid going into complex numbers. There are a few ways of doing this, one way is to
consider a complex number in terms of a vector.

z=a++bi
Can be written as a vector
z=(a,b)"

When we do this, we must remember that when we take the absolute value |z| of our complex number,
we actually calculate the length of the number in the Argand Diagram. Thus, when we calculate the
absolute value of our vector z, we end up calculating its length instead. So now we can re-write the
functions Y and R from above (note we can remove the 4 because everything is squared in the end).

2

F(6, 0, 1) = [\ (0, Do + Y6, Dhmaginary B
Y (¢, 0)Rear = \/E (sin ¢ cos @) (cos 6)
Y (®, 0) 1maginary = \/g (sin ¢ cos @) (sin 0)

Nlw

1 —r

T -
R(T) = <2> 7\/36 2
1.3 Implicit function

To create an implicit function you have to define a subclass to vtkImplicitFuncion. Copy the
content from the file ImpFunc. cc to your program and implement the functions. The following
code shows you how to use your functions to create the iso surfaces. Iso surfaces should then be your
input to a vtkPolyDataMapper.

ImpFunc % function = ImpFunc::New();

vtkSampleFunction % sample = vtkSampleFunction::New();
sample->SetImplicitFunction (function);
sample—>SetModelBounds (...);
sample->SetSampleDimensions (...);
sample—>ComputeNormalsOff ();

2D1257: Visualization 3. Algorithms and data structures

vtkContourFilter » iso = vtkContourFilter::New();
iso->SetInputConnection (sample->GetOutputPort ());
iso->SetValue(...);

Fill in the rest and set the values for the three surfaces. VTK will not sort the polygons, so
the blending of semi-transparent rasters performed by the graphics hardware will result in artifacts,
making it look like elements furthest away are in front of the elements that are close to the viewer.

1.4 What to do

You shall implement the wave function and then let it be sampled in a Cartesian coordinate system
with the resolution 32 x 32 x 32. The origin should be in the centre of the volume with range [—6, 6]
in each dimension.

The data that this function produces shall be visualized as three iso surfaces; the iso-values are
0.001, 0.002 and 0.003. Adjust the colour ramp with vtkPolyDataMapper to work within the in-
terval [0.0008, 0.004] (Set ScalarRange is part of vtkPolyDataMapper2D but also works for
vtkPolyDataMapper). Define the surfaces to be transparent. Do that with the class vtkProp—
erty through vtkActor by using the function GetProperty ().

The volume that you have created should now be saved to disk. Write some code in you program
which writes the data to file. Make a modified version of the program that reads in a file instead
of calculating it from the data again. Look at the file that you created and take a look at how it
is structured. You may feel inclined to use the following VTK types for reading and writing data:
vtkStructuredPointsReader and vtkStructuredPointsWriter.

1.5 How do I use sin and cos in C++

To use trigonometric functions as well as powers and square roots, you have to include the C math
header.

#include <cmath>

This will give you access to the following functions:

pow (double, double) // x*1.5 can be written as pow(x,1.5)
sqgrt (double) // calculates the square root
cos (double) // trig functions

sin (double)
tan (double)
acos (double) // inverse trig functions

asin (double)

atan (double)

. // there are more functions, but you do not
have to worry about them

2 Task 2: Motion of an Electron

2.1 Data representation

In this exercise, you shall write a program which reads in an external file containing data (more
specifically mob.data). The data describes the motion of an electron moving in a magnetic field.
The data consist of the position vector, p, and velocity vector, v. Each row of the file consists of p,, py,

4

2D1257: Visualization 3. Algorithms and data structures

Dz, Uz, Uy, V. The class TraceReader that you shall implement is defined in TraceReader . hh.
You shall create a VTK data structure containing the point positions, the square of the x velocity
component, and the cell structure of the points. The VTK classes that you will need to build this are
the following:

e vtkPolyData, the main object that will contain all the other objects
e vtkCellArray, defines the order of the cells and what points should belong to which cell
e vtkPoints, defines the position of a point

e vtkFloatArray, defines an array with the type float. The number of values in each field in
the array is specified by SetNumberOfComponents ().

The cell array defines how the points in the data set are connected into primitives. This is an
attribute of the vtkPolyData object. The positions of the points are associated with the base type
of the object, the vtkPointSet. Thus, the functions used to assign the positions of the data points
are found in the documentation of this class. The data of the points, i.e. the square of the x velocity
component in this case, is associated with another base type, the vt kDataSet class.

Put your code that reads the data in the GetOutput function of your reader class. Be careful so
that the data is only fetched from the file once and not every time the VTK pipeline system calls your
function.

FILE * dataFile = fopen(fileName, "r");
float pos([3];
float vel[3];
while (fscanf (dataFile, " %f %f %f %$f %f %f \n",
pos, pos+l, pos+2, vel, vel+l, vel+2) != EOF) {
// Create elements in dataset

}
fclose (dataFile);

Now build a small program that reads in the dataset from the file mob.data. You can easily
draw the data with vtkPolyDataMapper. Set the scalar range in the mapper to [0.0, 0.01] so that
the points are coloured correctly using the v2 values.

Go back to you reader class. Modify it to connect all the points into one single long line. To
generate lines, the cell array contains series of points in each cell. If all points are in a single line then
all points must be in the same cell.

2.2 Vector fields

Above, you created a 3D volume from an implicit function. Another method for creating image data is
to directly build the data-cluster in the code. You shall now define the magnetic field that the particle
was moving in and visualize it together with the particle trace.

This you do by first creating a structure with the help of vtkStructuredPoints. Set the
dimension to 64 x 64 x 64, and the origo of the volume to (—1, —1, —1). Set the spacing to 1/32
(spacing is a feature of the volume). After this, create a triple loop to calculate the magnetic field in
each point location and assign vectors to a vtkFloatArray structure.

The single 1D index for indexing the array is calculated as follows:

i =k + 64(1 + 64m)

2D1257: Visualization 3. Algorithms and data structures

where k, [and m correspond to the point in x, y and z. Coordinate z is therefore calculated as:

= —1 —_—
z + 32m

(since spacing is 1/32). The magnetic field B is defined as
B = (bg, by, b>)
where the elements are calculated as follows:
b, = tanh(z),b, = 0.188,b, = 0.1

Fetch after this the point-data from the structured points and assign the vectors to this.

[Note: A common mistake is to do integer division when floating point division is required.]

To visualize this data you should first use a hedge-hog plot. This is simply done by using the
vtkHedgeHog class. Play around to find a suitable scale factor.

2.3 Stream lines and stream tubes

We will now create some streamlines to visualize the magnetic field B, together with the particle trace.
Use vtkStreamLine to do that. Streamline requires you to specify a set of points that the lines
should pass through. One way of doing this is by defining a plane and then choosing certain points on
this plane.

Use vtkPlaneSource and set its origin to (-1,-1,0). Set point 1 as (1,1,0) and point 2 as (1,0,0).
Set the resolution to 5 in each dimension. You are encouraged to experiment with this! Use this plane
as a source for the streamlines. The data to the streamlines is the magnetic field we created before.
Investigate suitable values for step length, integration step length as well as maximum propagation
time. To make the streamlines appear on both sides of the plane you have to make sure that the
integration happens in both directions. Now we have both lines to visualize the magnetic field as well
as the path of the particle.

Now use vtkTubeFilter to create 3D-tubes instead of lines. The input data to the tube filter
is of course the streamlines.

	Task 1: Wave Function of a Hydrogen Atom
	What you will be doing in this exercise
	The wave function
	Implicit function
	What to do
	How do I use sin and cos in C++

	Task 2: Motion of an Electron
	Data representation
	Vector fields
	Stream lines and stream tubes

