
Formal definition of P

A formal language L is a set of strings.

Example:

{“abc”, “qwerty”, “xyzzy”}
{binary strings of odd lenght}
{binary strings that represents prime numbers }
{syntactically correct C-programs}

A language can be describe in different ways:

• An enumeration of the strings in the lan-
guage.

• A set of rules defining the language.

• An algorithm which recognize the strings
in the language.

To every decision problem there is a corre-
sponding language:
The language of all yes-instances.

We say that the algorithm A decides L if

A(x) = Yes if x ∈ L,

A(x) = No if x 6∈ L.

A runs in polynomial time if A(x) runs in time
O(|x|k) for all x and some integer k.

P = {L : ∃A that decides L i polynomial time}

A formal definition of NP

A verifies the instance x of the problem L if
there is a certificate y such that |y| ∈ O(|x|s)
and

A(x, y) = Yes ⇔ x ∈ L

This means that A decides the language
L = {x ∈ {0,1}∗ : ∃y ∈ {0,1}∗ : A(x, y) = Ja}

NP = {L : ∃A that verifies L in polynomial time}

P ⊆ since all problem that can be decided in
polynomial time also can be verified in poly-
nomial time.

A second definition of NP:

A non-deterministic algorithm is an algorithm
that makes random choices. The output is
stochastic. We say that A decides a language
L if:

x ∈ L⇒ A(x) = Yes with probabilty > 0

x /∈ L⇒ A(x) = No with probability 1

NP = {L : ∃polynomial time non-deterministic
algorithm that decides L}

Proving NP-Completeness

In order to show that A is NP-Complete it is
enough to show that A ∈ NP and SAT ≤P A.
Why: If X ∈ we know that X ≤ SAT . If we
also have SAT ≤ A we know that X ≤ A!
This shows that A is NP-Complete.

Another approach: We can form i directed
graph such that A→ B means A ≤ B.
SAT → A→ B → C → ... tells us that A,B,C, ...

are NP-Complete.

To show that A is NP-Complete we can try to
find a known NP-Complete problem B such
that B ≤ A.

HAMILTONIAN CYCLE ≤ TSP

TSP

Input: A weighted complete graph G and a
number K.
Goal: Is there a Hamiltonian cycle of length
at most ≤ K in G?

HAMILTONIAN CYCLE

Input: A graph G.
Goal : Is there a Hamiltonian cycle in G?

Let x = G be input to HC. We construct a
complete graph G′ with w(e) = 0 if e ∈ G and
w(e) = 1 if e /∈ G. Then set K = 0. This will
be the input to the TSP.

Other NP-Complete problems

Exact Cover
Given a set of subsets of a setM , is it possible
to find a selection of the subsets such that
each element in M is in exactly one of the
subsets?

Subset Sum
Given a set P of positive integers and an
integer K, is there a subset of the numbers
in P with sum K?

Integer Programming
Given an m× n-matrix A, an m-vektor b, an
n-vektor c and a number K, is there an n-
vektor x with integer coefficients such that
Ax ≤ b and c · x ≥ K?

If we relax the condition that the coefficients
x should be integers we get a special case of
Linear Programming.

Subgraph isomorphism is NP-Complete

Given two graphs G1 and G2, Is G1 a
subgraph of G2?

The problem obviously belongs to NP.

We reduce from Hamilton Cycle.

A graph G = (V,E) contains a Hamiltonian
cycle if and only if it contains a subgraph that
is a cycle C with |V | nodes. So we can set
G1 = C and G2 = G. som G.

Partition is NP-Complete

Given a set S of positive integers.
Can we split S into two disjoint parts S1

and S2 such that
∑

x∈S1
x =

∑
x∈S2

x?

The problem is obviously in NP.

We reduce from Subset Sum:
Given an instance p1, p2, . . . , pn and K of Sub-
set Sum we create the following instance of
Partitioning: Set P =

∑
pi

p1, p2, . . . pn, P − 2K

if K ≤ P/2 and

p1, p2, . . . pn,2K − P

otherwise.

There is a partitioning precisely when there
is a subset sum K.

0/1-programming is NP-Complete

Given an m× n-matris A and an m-vektor b.
Is there an n-vektor x with coefficients
∈ {0, 1} such that Ax ≤ b?

The problem is in NP since, given x, we can
check in time O(n2) if Ax ≤ b.

We reduce from 3-CNF-SAT:
Let Φ be an instance of 3-CNF-SAT With
n variables. To each xi in Φ we define a
corresponding variable yi ∈ {0,1} and let 1
Mean True and 0 mean False.

FOr each clause cj = l1 ∨ l2 ∨ l3 we define an
inequality

T (l1) + T (l2) + T (l3) ≥ 1

where T (xi) = yi and T (¬xi) = (1− yi).

And that’s it!

