Formal definition of P

A formal language L is a set of strings.

Example:

{"abc", "qwerty", "xyzzy"}
{binary strings of odd lenght}
{binary strings that represents prime numbers }
{syntactically correct C-programs}

A language can be describe in different ways:

- An enumeration of the strings in the language.
- A set of rules defining the language.
- An algorithm which recognize the strings in the language.

To every decision problem there is a corresponding language:

The language of all yes-instances.

We say that the algorithm A decides L if

$$A(x) =$$
Yes if $x \in L$,
 $A(x) =$ No if $x \notin L$.

A runs in *polynomial time* if A(x) runs in time $O(|x|^k)$ for all x and some integer k.

 $P = \{L : \exists A \text{ that decides } L \text{ i polynomial time}\}$

A formal definition of NP

A verifies the instance x of the problem L if there is a certificate y such that $|y| \in O(|x|^s)$ and

$$A(x,y) =$$
Yes $\Leftrightarrow x \in L$

This means that A decides the language

 $L = \{x \in \{0, 1\}^* : \exists y \in \{0, 1\}^* : A(x, y) = \mathsf{Ja}\}$

 $NP = \{L : \exists A \text{ that verifies } L \text{ in polynomial time}\}$

 $P \subseteq$ since all problem that can be decided in polynomial time also can be verified in polynomial time.

A second definition of NP:

A non-deterministic algorithm is an algorithm that makes random choices. The output is stochastic. We say that A decides a language L if:

$$x \in L \Rightarrow A(x) =$$
Yes with probability > 0
 $x \notin L \Rightarrow A(x) =$ No with probability 1

 $NP = \{L : \exists polynomial time non-deterministic algorithm that decides L\}$

Proving NP-Completeness

In order to show that A is NP-Complete it is enough to show that $A \in NP$ and $SAT \leq_P A$. Why: If $X \in$ we know that $X \leq SAT$. If we also have $SAT \leq A$ we know that $X \leq A$! This shows that A is NP-Complete.

Another approach: We can form i directed graph such that $A \rightarrow B$ means $A \leq B$. $SAT \rightarrow A \rightarrow B \rightarrow C \rightarrow ...$ tells us that A, B, C, ... are NP-Complete.

To show that A is NP-Complete we can try to find a known NP-Complete problem B such that $B \leq A$.

HAMILTONIAN CYCLE \leq TSP

TSP

Input: A weighted complete graph G and a number K. Goal: Is there a Hamiltonian cycle of length at most $\leq K$ in G?

HAMILTONIAN CYCLE

Input: A graph G. Goal : Is there a Hamiltonian cycle in G?

Let x = G be input to HC. We construct a complete graph G' with w(e) = 0 if $e \in G$ and w(e) = 1 if $e \notin G$. Then set K = 0. This will be the input to the TSP.

Other NP-Complete problems

Exact Cover

Given a set of subsets of a set M, is it possible to find a selection of the subsets such that each element in M is in exactly one of the subsets?

Subset Sum

Given a set P of positive integers and an integer K, is there a subset of the numbers in P with sum K?

Integer Programming

Given an $m \times n$ -matrix A, an m-vektor b, an n-vektor c and a number K, is there an n-vektor x with integer coefficients such that $Ax \leq b$ and $c \cdot x \geq K$?

If we relax the condition that the coefficients x should be integers we get a special case of **Linear Programming**.

Subgraph isomorphism is NP-Complete

Given two graphs G_1 and G_2 , Is G_1 a subgraph of G_2 ?

The problem obviously belongs to NP.

We reduce from Hamilton Cycle.

A graph G = (V, E) contains a Hamiltonian cycle if and only if it contains a subgraph that is a cycle C with |V| nodes. So we can set $G_1 = C$ and $G_2 = G$. som G.

Partition is NP-Complete

Given a set S of positive integers. Can we split S into two disjoint parts S_1 and S_2 such that $\sum_{x \in S_1} x = \sum_{x \in S_2} x$?

The problem is obviously in NP.

We reduce from Subset Sum: Given an instance p_1, p_2, \ldots, p_n and K of Subset Sum we create the following instance of Partitioning: Set $P = \sum p_i$

$$p_1, p_2, \dots p_n, P - 2K$$

if $K \leq P/2$ and

$$p_1, p_2, \dots p_n, 2K - P$$

otherwise.

There is a partitioning precisely when there is a subset sum K.

0/1-programming is NP-Complete

Given an $m \times n$ -matrix A and an m-vektor b. Is there an n-vektor x with coefficients $\in \{0,1\}$ such that $Ax \leq b$?

The problem is in NP since, given x, we can check in time $O(n^2)$ if $Ax \leq b$.

We reduce from 3-CNF-SAT:

Let Φ be an instance of 3-CNF-SAT With n variables. To each x_i in Φ we define a corresponding variable $y_i \in \{0, 1\}$ and let 1 Mean True and 0 mean False.

FOr each clause $c_j = l_1 \lor l_2 \lor l_3$ we define an inequality

 $T(l_1) + T(l_2) + T(l_3) \ge 1$ where $T(x_i) = y_i$ and $T(\neg x_i) = (1 - y_i)$.

And that's it!