Formal definition of P

A formal language L is a set of strings.

Example:
\{"abc", "qwerty", "xyzzy"\}
\{binary strings of odd lenght\}
\{binary strings that represents prime numbers \}
\{syntactically correct C-programs\}
A language can be describe in different ways:

- An enumeration of the strings in the language.
- A set of rules defining the language.
- An algorithm which recognize the strings in the language.

To every decision problem there is a corresponding language:
The language of all yes-instances.

We say that the algorithm A decides L if

$$
\begin{aligned}
& A(x)=\text { Yes if } x \in L \\
& A(x)=\text { No if } x \notin L
\end{aligned}
$$

A runs in polynomial time if $A(x)$ runs in time $O\left(|x|^{k}\right)$ for all x and some integer k.
$P=\{L: \exists A$ that decides L i polynomial time $\}$

A formal definition of NP

A verifies the instance x of the problem L if there is a certificate y such that $|y| \in O\left(|x|^{s}\right)$ and

$$
A(x, y)=\text { Yes } \quad \Leftrightarrow \quad x \in L
$$

This means that A decides the language

$$
L=\left\{x \in\{0,1\}^{*}: \exists y \in\{0,1\}^{*}: A(x, y)=\mathrm{Ja}\right\}
$$

$N P=\{L: \exists A$ that verifies L in polynomial time $\}$
$P \subseteq$ since all problem that can be decided in polynomial time also can be verified in polynomial time.

A second definition of NP:

A non-deterministic algorithm is an algorithm that makes random choices. The output is stochastic. We say that A decides a language L if:
$x \in L \Rightarrow A(x)=$ Yes with probabilty >0
$x \notin L \Rightarrow A(x)=$ No with probability 1
$N P=\{L: \exists$ polynomial time non-deterministic algorithm that decides $L\}$

Proving NP-Completeness

In order to show that A is NP-Complete it is enough to show that $A \in N P$ and $S A T \leq_{P} A$. Why: If $X \in$ we know that $X \leq S A T$. If we also have $S A T \leq A$ we know that $X \leq A$! This shows that A is NP-Complete.

Another approach: We can form i directed graph such that $A \rightarrow B$ means $A \leq B$. $S A T \rightarrow A \rightarrow B \rightarrow C \rightarrow \ldots$ tells us that A, B, C, \ldots are NP-Complete.

To show that A is NP-Complete we can try to find a known NP-Complete problem B such that $B \leq A$.

HAMILTONIAN CYCLE \leq TSP

TSP

Input: A weighted complete graph G and a number K.
Goal: Is there a Hamiltonian cycle of length at most $\leq K$ in G ?

HAMILTONIAN CYCLE

Input: A graph G.
Goal : Is there a Hamiltonian cycle in G ?

Let $x=G$ be input to HC . We construct a complete graph G^{\prime} with $w(e)=0$ if $e \in G$ and $w(e)=1$ if $e \notin G$. Then set $K=0$. This will be the input to the TSP.

Other NP-Complete problems

Exact Cover

Given a set of subsets of a set M, is it possible to find a selection of the subsets such that each element in M is in exactly one of the subsets?

Subset Sum

Given a set P of positive integers and an integer K, is there a subset of the numbers in P with sum K ?

Integer Programming

Given an $m \times n$-matrix A, an m-vektor b, an n-vektor c and a number K, is there an n vektor x with integer coefficients such that $A x \leq b$ and $c \cdot x \geq K ?$

If we relax the condition that the coefficients x should be integers we get a special case of Linear Programming.

Subgraph isomorphism is NP-Complete

Given two graphs G_{1} and G_{2}, Is G_{1} a subgraph of G_{2} ?

The problem obviously belongs to NP.

We reduce from Hamilton Cycle.
A graph $G=(V, E)$ contains a Hamiltonian cycle if and only if it contains a subgraph that is a cycle C with $|V|$ nodes. So we can set $G_{1}=C$ and $G_{2}=G$. som G.

Partition is NP-Complete

Given a set S of positive integers.
Can we split S into two disjoint parts S_{1} and S_{2} such that $\sum_{x \in S_{1}} x=\sum_{x \in S_{2}} x$?

The problem is obviously in NP.

We reduce from Subset Sum:
Given an instance $p_{1}, p_{2}, \ldots, p_{n}$ and K of Subset Sum we create the following instance of Partitioning: Set $P=\sum p_{i}$

$$
p_{1}, p_{2}, \ldots p_{n}, P-2 K
$$

if $K \leq P / 2$ and

$$
p_{1}, p_{2}, \ldots p_{n}, 2 K-P
$$

otherwise.

There is a partitioning precisely when there is a subset sum K.

0/1-programming is NP-Complete

Given an $m \times n$-matris A and an m-vektor b. Is there an n-vektor x with coefficients $\in\{0,1\}$ such that $A x \leq b$?

The problem is in NP since, given x, we can check in time $O\left(n^{2}\right)$ if $A x \leq b$.

We reduce from 3-CNF-SAT: Let Φ be an instance of 3 -CNF-SAT With n variables. To each x_{i} in Φ we define a corresponding variable $y_{i} \in\{0,1\}$ and let 1 Mean True and 0 mean False.

FOr each clause $c_{j}=l_{1} \vee l_{2} \vee l_{3}$ we define an inequality

$$
T\left(l_{1}\right)+T\left(l_{2}\right)+T\left(l_{3}\right) \geq 1
$$

where $T\left(x_{i}\right)=y_{i}$ and $T\left(\neg x_{i}\right)=\left(1-y_{i}\right)$.

And that's it!

