
Uncomputability

About functions:

Older view of functions:

A function is presented as a rule for compu-
ting.

Ex: f(x) = 2sin(x) + 3

Modern view of functions: A function is a set
of pairs {(x, y) such that if (x, y1) and (x, y2)

are pairs in the function, then y1 = y2.

Functions can be uncomputable

What is computable?

Def: f is computable if and only if there is a
Turing Machine such that f(n) = m ⇔ T (n)

halts and returns m.



First proof of uncomputability

The set of computable functions is enume-
rable. The set of all functions are not!

Let us see some more details:

Let f1, f2, f3, ... be a list of all computable
functions. Take the array





f1(1) f1(2) f1(3) ...
f2(1) f2(2) f2(3) ...
f3(1) f3(2) f3(3) ...
... ... ... ...





We define a function φ such that





φ(n) = fn(n) + 1 if f(n) is defined
φ(n) = 1 if f(n) is undefined

Then φ is uncomputable. (What happens if
φ = fk for some k?)



A decision problem is decidable if there is so-
me algorithm that decides the problem (correct-
ly) in finite time for every instance.

The opposite is when there, for some reason,
is no such algorithm. Then we say that the
problem is undecidable.

It is usually the case that there is an algo-
rithm that decides the problem for some, but
not all, instances.

If output is not Yes/No we normally speak
about computable and uncomputable pro-
blems.



Ex. 1: The Post Correspondence
Problem

Given a set of pairs of words {(xi, yi)}.

Is there a sequence of integers a1, a2, . . . , ak
such that xa1xa2 · · ·xak = ya1ya2 · · · yak?

Example:

{(abb, bbab)︸ ︷︷ ︸
1

, (a, aa)︸ ︷︷ ︸
2

, (bab, ab)︸ ︷︷ ︸
3

, (baba, aa)︸ ︷︷ ︸
4

, (aba, a)︸ ︷︷ ︸
5

}

has solution a = [2,1,1,4,1,5]:

a︸︷︷︸
x2

abb︸︷︷︸
x1

abb︸︷︷︸
x1

baba︸ ︷︷ ︸
x4

abb︸︷︷︸
x1

aba︸︷︷︸
x5

= aa︸︷︷︸
y2

bbab︸ ︷︷ ︸
y1

bbab︸ ︷︷ ︸
y1

aa︸︷︷︸
y4

bbab︸ ︷︷ ︸
y1

a︸︷︷︸
y5

but

{(bb, bab), (a, aa), (bab, ab), (baba, aa), (aba, a)}

has no solution.



Ex. 2: The Halting Problem

Given a program P and input X

Does the program P halt when run with
input X?

It doesn’t matter what programming langu-
age we use. P could be a Turing Machine.



Ex. 3: Some more applied problems:

Program Verification
Given a program P and a specification S

for what the program is supposed to do,
does the program in fact do it?

Behavior of programs
Can a given line in a program P be re-
ached for some input?

All these problems are undecidable due to
close relation to the Halting Problem.

But certain instances of these problems can,
of course, be decided.



Proof of decidability/undecidability

Proof of undecidability:

Direct proof
Give a ”direct” logical proof why the pro-
blem is undecidable.

Reduction
We reduce from a known undecidable pro-
blem to our problem. If the reduction is
computable, then our problem must be
uncomputable.

Proofs of decidability:

• Give an algorithm that decides the pro-
blem and show that it works correctly and
runs in finite time.



The Halting Problem is undecidable

Suppose there is an algorithm H(P,X) that
decides the Halting Problem. Now consider
the following program:

M(P )
(1) if H(P, P ) = Y es

(2) get into an infinite loop
(3) else
(4) return

What happens when we run M(M)?

M(M) halts: Then H(M,M) must return
No in order for Return to be reached — im-
possible.

M(M) does not halt: Then H(M,M) re-
turns Yes and then the program will go into
the infinite loop and never halt — impossible.

We reach a contradiction. The conclusion is
that H(P,X) cannot decide the Halting Pro-
blem correctly.



Example of reduction

Almost all variants of the Halting Problem
are undecidable
for instance:

Does the program P halt on all inputs?

We can show that there cannot exist an algo-
rithm HaltAll(P ) that decides this problem.
Indeed, look at the following reduction:

H(P,X)
(1) Construct the program Q :

Q(Y )

if X = Y

P (X)

else
Halt

(2) return HaltAll(Q)

If HaltAll(·) worked correctly, then we could
decide the Halting Problem — impossible.


