
PSPACE Problems

Space Complexity: If an algorithm A solves
a problem X by using O(f(n)) bits of memory
where n is the size of the input we say that
X ∈ SPACE(f(n)).

The Class PSPACE

Def: X ∈ PSPACE if and only if X ∈ SPACE(nk)

for some k.

PSPACE Problems are interesting since:

• They form the first interesting class po-
tentially greater than NP.

• The problem of finding winning strategies
is in PSPACE.



P ⊆ PSPACE

Assume X∈ P and there is a Turing Machine
that decides X in time O(nk). This algorithm
can use at most O(nk) bits of memory. So
we get X ∈ P ⇒ X ∈ PSPACE.



In the other direction

Assume Y ∈ PSPACE and that a Turing Machi-
ne M uses cnk bits of memory. If we have 3
possible symbols (0,1,#) on the input tape
there are 3cn

k
possible contents on the tape

and cnk possible positions for the head. No
possible combination of content/position can
be repeated. (Since the machine then would
be looping.) This shows that the machine
must stop after at most O(nk3cn

k
) steps. So

the time complexity cannot be worse than
exponential, i.e. Y ∈ EXPTIME.



The game (GENERALIZED)
GEOGRAPHY

Let G be a directed graph with a start vertex
v.

Let us assume that we have two players I and
II.

I makes the first move. Then the players take
turns and make moves.

The moves allowed are moves from a vertex
x to an adjacent vertex y which has not been
visited before.

The first player that cannot move loses the
game.

Input: A graph G and a start vertex v.

Goal: Is there a winning strategy for player I?



GEOGRAFI ∈ PSPACE

We will look at a sketch of an algorithm
which decides if there is a winning strategy
for the first player in GEOGRAPH.

Given the start configuration < G, v > we let
G1 be G with v and all edges going from v

removed.

Let v1, v2, . . . , vk be the neighbors of v.

Test if < G1, v1 >,< G1, v2 >, · · · < G1, vk >

recursively. If any of these problems does not
have a winning strategy we return Yes, ot-
herwise we return No.

It is easy to see that this algorithm can be
implemented so that it uses polynomial size
memory.



Savitch’ Theorem

Given a graph G with n vertices and two verti-
ces a, b there is an algorithm with space com-
plexity O((logn)2) which decides if there is a
path between a and b or not.



We define

Path(x, y, L)
(1) if L = 1 and x = y or (x, y) ∈ E(G)

(2) return 1
(3) if L > 1

(4) Enumerate all vertices with a counter
using logn bits of memory

(5) foreach z ∈ V (G)

(6) Compute Path(x, z, "L2#). Erase
used memory and return value

(7) Compute Path(z, y, "L2#). Erase
used memory and return value

(8) save all returned values
(9) if both computations returns 1
(10) return 1
(11) return 0

Compute Path(a, b, n). If the answer is 1 we
know that there is a path a → b.



In each recursive step we store the informa-
tion x, y, L. That takes 3 logn bits of memo-
ry. The recursion depth is at most logn. The
space complexity is O((logn)2).



NP ⊆ PSPACE

We know that 3-SAT is NP-Complete. So we
just have to show that 3-SAT ∈ PSPACE.

Given φ with n variables we run true all 2n

possible value assignments one at a time.
The amount of space needed is log 2n = n to
keep count of the number of the assignment
and +k extra bits of memory.. This gives us
space complexity O(n).



Different Complexity Classes

We now have the classes

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

where EXPTIME is the class of problems
that can be decided in TIME(cn

k
) for so-

me numbers c, k. It is possible to show that
P "= EXPTIME. No other inequalities are
known. This means that no inequalities li-
ke P "= NP eller NP "= PSPACE are shown to
be true.



PSPACE Complete Problems

A problem is PSPACE-Complete if

1. A ∈ PSPACE

2. Every problem B ∈ PSPACE can be re-
duced to A, i.e. B ≤P A.



The problem QSAT

A QSAT-formula is of the form

∃x1∀x2∃x3 . . . ∀xn−1∃xnφ(x1, . . . , xn)

where φ is in 3-SAT-form.

possible values for the variables are {0,1}.

∃x1∀x2φ(x1, x2) means that there is a value
for x1 (0 or 1) such that φ(x1, x2) Is true for
all values for x2 (0 och 1).

We want to decide if a formula of this kind
are valid or not.



QSAT:

Indata: En QSAT-formel.

MÄÄ1
2l: AvgÄÅr om formeln ÄÂr logiskt gil-

tig eller inte.

Obs: SAT ÄÂr problemet att avgÄÅra om en
formel pÄÄ1

2 formen

∃x1∃x2∃x3 . . . ∃xn−1∃xnφ(x1, . . . , xn)

ÄÂr logiskt giltig eller inte.



QSAT ∈ PSPACE

Let the formulas we use be written
QixiQi+1xi+1 . . . Qnxnφi(xi, . . . , xn).



QSAT-REK(φ)
(1) if The first quantifier is ∃xi
(2) if

QSAT-REK(Qi+1 . . .φ(0, xi+1, . . . , xn)) =

1

(3) or
(4) QSAT-REK

(Qi+1 . . .φ(1, xi+1, . . . , xn)) =

1

(5) Erase all recursively active
memory

(6) return 1
(7) if The first quantifier is ∀xi
(8) if

QSAT-REK(Qi+1 . . .φ(0, xi+1, . . . xn)) =

1

(9) and
(10) QSAT-REK

(Qi+1 . . .φ(1, xi+1, . . . xn)) =

1

(11) Erase all recursively active
memory

(12) return 1
(13) if φ does not contain any quan-

tifier
(14) Compute the value of φ and

return it



When we have a formula with k variables we
use p(k) bits of memory for each variable.
This shows that p(n) + p(n − 1) + . . . p(1) ≤
np(n) bits of memory are used and this shows
that QSAT ∈ PSPACE.



NSPACE

A non-deterministic algorithm decides a lan-
guage L if

• A(x) = Yes with probability > 0 ⇔ x ∈ L.

• A(x) = No with probability 1 ⇔ x /∈ L.

TIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a deter-
ministic algorithm.

NTIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a non-
deterministic algorithm.

It is possible to show that A ∈ NTIME(f(n)) ⇒
A ∈ TIME(cf(n))



A ∈ P ⇔ A ∈ TIME(nk) for some k.

A ∈ NP ⇔ A ∈ NTIME(nk) for some k

In the same way we can define NPSPACE by

A ∈ NPSPACE ⇔ A ∈ NSPACE(nk) for some
k



The Planning Problem

We have a set of state variables c1, c2, . . . , cn

with values 0 or 1. The values of c1, c2, . . . , cn

tells us what state we are in. We have ope-
rators O1, O2, . . . Ok which changes the state
variables. The problem is:

Input : Lists c1, c2, . . . , cn and O1, O2, . . . Ok. A
start state C0 and a goal state C∗.

Goal: Is there a sequence Oi1, Oi2, . . . Oij that
transforms C0 to C∗?



Planning ∈ PSPACE

We use Savitch’s Theorem. There can be
at most 2n different states in Planning. We
want to know if there is a path C0 → C∗.
Such a path has length ≤ 2n − 1. Use the al-
gorithm in Savitch’s Theorem. It uses O(n)

bits of memory.



PSPACE = NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a
non-deterministic Turing Machine which de-
cides X and uses O(nk) bits of memory. The
computation graph contains at most O(cn

k
)

vertices.

The algorithm in Savitch’s Theorem finds
an accepting computation in the computa-
tion graph (if there is one) and uses at most
O((log cn

k
)2) = O(n2k).

So we get X ∈ PSPACE.



GEOGRAPHY is PSPACE-Complete

We know that GEOGRAPHY ∈ PSPACE.

It is possible to make a reduction QSAT ≤P

GEOGRAPHY.


