PSPACE Problems

Space Complexity: If an algorithm A solves
a problem X by using O(f(n)) bits of memory
where n is the size of the input we say that
X € SPACE(f(n)).

The Class PSPACE

Def: X € PSPACE if and only if X € SPACE(nF)
for some k.

PSPACE Problems are interesting since:

e T hey form the first interesting class po-
tentially greater than NP.

e [ he problem of finding winning strategies
is in PSPACE.



P C PSPACE

Assume Xe& P and there is a Turing Machine
that decides X in time O(n*). This algorithm
can use at most O(nF) bits of memory. So
we get X € P = X € PSPACE.



In the other direction

Assume Y € PSPACE and that a Turing Machi-
ne M uses cnf bits of memory. If we have 3
possible symbols (0, 1,#) on the input tape
there are 3C”k possible contents on the tape
and cn® possible positions for the head. No
possible combination of content/position can
be repeated. (Since the machine then would
be looping.) This shows that the machine
must stop after at most O(n¥3°") steps. So
the time complexity cannot be worse than
exponential, i.e. Y € EXPTIME.



The game (GENERALIZED)
GEOGRAPHY

Let G be a directed graph with a start vertex

V.

Let us assume that we have two players I and
II.

I makes the first move. Then the players take
turns and make moves.

The moves allowed are moves from a vertex
x to an adjacent vertex y which has not been
visited before.

The first player that cannot move loses the
game.

Input: A graph G and a start vertex w.

Goal: Is there a winning strategy for player I7?



GEOGRAFI € PSPACE

We will look at a sketch of an algorithm
which decides if there is a winning strategy
for the first player in GEOGRAPH.

Given the start configuration < G,v > we let
G1 be G with v and all edges going from v
removed.

Let vq,vo,...,v be the neighbors of v.

Test if < G1,v1 >, < Gy, >, < Gq,v >
recursively. If any of these problems does not
have a winning strategy we return Yes, ot-
herwise we return NoO.

It is easy to see that this algorithm can be
implemented so that it uses polynomial size
memory.



Savitch’ Theorem

Given a graph G with n vertices and two verti-
ces a, b there is an algorithm with space com-
plexity O((logn)?) which decides if there is a
path between a and b or not.



We define

Path(z,y, L)

(1) ifL=1andz=uyor (z,y) € E(G)

(2) return 1

(3) i fL>1

(4) Enumerate all vertices with a counter
using logn bits of memory

(5) foreach z ¢ V(G)

(6) Compute Path(z, z, %1). Erase
used memory and return value

(7) Compute Path(z,y,[5]). Erase
used memory and return value

(8) save all returned values

(9) if both computations returns 1

(10) return 1

(11) return O

Compute Path(a,b,n). If the answer is 1 we
know that there is a path a — b.



In each recursive step we store the informa-
tion x,y, L. That takes 3logn bits of memo-
ry. The recursion depth is at most logn. The
space complexity is O((logn)?).



NP C PSPACE

We know that 3-SAT is NP-Complete. So we
just have to show that 3-SAT € PSPACE.

Given ¢ with n variables we run true all 2"
possible value assignments one at a time.
The amount of space needed is log2"™ = n to
keep count of the number of the assignment
and +k extra bits of memory.. This gives us
space complexity O(n).



Different Complexity Classes

We now have the classes

P C NP C PSPACE C EXPTIME

where EXPTIME is the class of problems
that can be decided in TIME(¢™) for so-
me numbers c, k. It is possible to show that
P # EXPTIME. No other inequalities are
known. This means that no inequalities li-
ke P = NP eller NP = PSPACE are shown to
be true.



PSPACE Complete Problems

A problem is PSPACE-Complete if

1. A e PSPACE

2. Every problem B € PSPACE can be re-
duced to A, i.e. B<p A.



The problem QSAT

A QSAT-formula is of the form

dxqVaodxrs ... Va,_13znd(x1,...,2n)

where ¢ is in 3-SAT-form.

possible values for the variables are {0, 1}.

Jr1Vxood(x1,22) means that there is a value
for x1 (O or 1) such that ¢(x1,zo) Is true for
all values for x> (0 och 1).

We want to decide if a formula of this kind
are valid or not.



QSAT:
Indata: En QSAT-formel.

I\/IAA%I: AvgAAr om formeln AAr logiskt gil-
tig eller inte.

Obs: SAT AAr problemet att avgAAra om en
formel pAAL formen

Jxqdrodxsz ... dx,_1Txnd(xq, ..., 20)

AAr logiskt giltig eller inte.



QSAT € PSPACE

Let the formulas we use be written
QixiQi+1%i41 - - - Qnandi(x;, ..., Tn).



QSAT-REK(¢)
(1) if The first quantifier is Jdz;

(2) if
QSAT-REK(Qj41---#(0,jq1,...,Tn)) =
1

(3) or

(4)  QSAT-REK
(Qig1---0(1,zi41,...,20)) =

1
(5) Erase all recursively active
memory
(6) return 1
(7) if The first quantifier is Vx;
(8) if
QSAT-REK(Qj11 .- (0, 2j4 1, Tn)) =
1
(9) and

(10) QSAT-REK
(Qig1--- (L, miq1,...2n)) =
1

(11) Erase all recursively active

memory
(12) return 1
(13) if ¢ does not contain any quan-
tifier
(14) Compute the value of ¢ and

rotiirn it



When we have a formula with k variables we
use p(k) bits of memory for each variable.
This shows that p(n) +p(n—1) 4+ ...p(1) <
np(n) bits of memory are used and this shows
that QSAT € PSPACE.



NSPACE

A non-deterministic algorithm decides a lan-
guage L if

e A(x) = Yes with probability >0 < x € L.

e A(x) = No with probability 1 <z ¢ L.

TIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a deter-
ministic algorithm.

NTIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a non-
deterministic algorithm.

It is possible to show that A € NTIME(f(n)) =
A € TIME(cf (M)



AeP e Ae TIME(nF) for some k.
A e NP < A e NTIME(nF) for some k
In the same way we can define NPSPACE by

A € NPSPACE < A € NSPACE(n*) for some
k



The Planning Problem

We have a set of state variables c1,co,...,cn
with values O or 1. The values of ¢1,¢o,...,cn
tells us what state we are in. We have ope-
rators O1,05,...0, Which changes the state
variables. The problem is:

Input : Lists ¢q,¢cp,...,¢cn and O1,09,...0. A
start state Cy and a goal state C*.

Goal: Is there a sequence O
transforms Cp to C*7

117 Oi27 ce O’ij that



Planning € PSPACE

We use Savitch’s Theorem. There can be
at most 2" different states in Planning. We
want to know if there is a path Cqo — C*.
Such a path has length < 2™ — 1. Use the al-
gorithm in Savitch’'s Theorem. It uses O(n)
bits of memory.



PSPACE = NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a
non-deterministic Turing Machine which de-
cides X and uses O(n*) bits of memory. The
computation graph contains at most O(c“k)
vertices.

The algorithm in Savitch's Theorem finds
an accepting computation in the computa-
tion graph (if there is one) and uses at most
O((log ¢™)?) = O(n2k).

So we get X € PSPACE.



GEOGRAPHY is PSPACE-Complete

We know that GEOGRAPHY € PSPACE.

It is possible to make a reduction QSAT <p
GEOGRAPHY.



