
Dynamic Programming

Dynamic Programming is a general technique for constructing algorithms.
When the method works it almost always gives an efficient solution to a
problem. In order to apply the method you should go trough the following
steps:

1. Find a way if splitting your problem into subproblems. The solutions to the
subproblems will usually be recorded in an array.

2. Find a recursion formula that relates the values of subproblems to the values of
simpler subproblems.

3. Find a natural ordering of the subproblems and then compute the values of all
subproblems in that order, using the recursion formula.

Selection of weighted intervals

As in lecture 2 we have a set of activities given by time intervals [s[i], f[i]).
We assume that the intervals are sort by increasing finishing time. In this
problem we have weights w[i] on the intervals. The problem is this:

Input: n Intervals [s[i], f[i]) with weights w[i].

Goal: Find a selection of non-overlapping intervals with maximal weight sum.

1. How can we find natural subproblem? Why not index problems after the
numbers of intervals?

Def: Let M[k] be the maximal weigth sum you can get if you only are allowed
to use the first k intervals.

2. How do we find a recursion formula? It is obvious that M[1] = w[1].

If we want to use n intervals, how do we do? Do we include interval n in the
solution or not?

M[1] = w[1]

M[n] = max (M[n-1], M[k]+ w[n]) where k is the largest number such that f[k] < s[n]

If we don't then obviously we get M[n] = M[n-1].

If we do, then there is a largest k such that interval k does not overlap
interval n. Then we must have M[n] = M[k] + w[n].

But now we can compare these two possible values of M[n] and see which
value is largest. From this we can tell what the best choice is.

3. We now compute the values M[1], M[2], ... , M[n] in the natural order.
We use an array choose[k] that indicates if interval k should be a part of
the optimal choice for M[k] and an array p[k] that indicates what the
previous choice in the selection corresponding to Mk] is.

Since the algorithm has two loops of size n (in
the worst case) we get complexity O(n)

When the algorithm has stopped we get the
solution from M[n]. If we want to know which
intervals we should choose we just check the
sequence

choose[n], choose[p[n]], choose[p[p[n]]], ...
and so on for the value TRUE.

In some of the problems we study we will just be
interested in finding the optimal values of the
choices rather than the actual choices.

The recursion formula normally involves the
values of the optimal choices and it's easiest to
first write a program for solving the equation.
Then a slight modification of the program will
give us the actual choices.

M[1] ← 1

p[1] ← NULL

choose[1] ←TRUE

For i ←2 to n

 If f[1] > s[i]

 If w[i] > M[i-1]

 M[i] ←w[i]

 choose[i] ←TRUE

 p[i] ←NULL

 Else

 M[i] ←M[i-1]

 choose[i] ←FALSE

 p[i] ←i-1

 Else

 k ←1

 While f[k] ≤ s[i]

 k ←k+1

 k ←k-1

 If M[i-1] > M[k] + w[i]

 M[i] ←M[i-1]

 choose[i] ←FALSE

 p[i] ←i-1

 Else

 M[i] ←M[k] + w[i]

 choose[i] ←TRUE

 p[i] ←k

Increasing sequence of numbers

Problem: Given a sequence of numbers

x1, x2, ..., xn we want to compute the longest
sequence of increasing consecutive numbers.

Let v(i) = be the length of the longest se-
quence ending in xi.

Algoritm:

(1) v(1) ← 1

(2) for i = 2 to n

(3) if x(i− 1) ≤ x(i)

(4) v(i) ← v(i− 1) + 1

(5) else
(6) v(i) ← 1

(7) return v

Then we compute max
i

v(i).

Let the numbers be x[1], x[2], ... , x[n].

Set v[i] = Length of the longest increasing sequence ending in x[i]

We have a sequence of n numbers. We want to find a longest increasing subsequence.

In this case the numbers don't have to be consecutive.

(Strictly speaking, by increasing we will rather mean non-decreasing, i.e. ≤)

Longest subsequences (case 2)

Then v[1] = 1. For larger i we set v[i] = max (v[k] + 1) where the max runs over all k such
that x[k] ≤ x[i].

v[1] ←1

For i ←2 to n

 max ←1

 For k ←1 to i-1

 If x[k] < x[i] and v[k] + 1 > max

 max ←v[k]+1

 v[i] ←max

max ←0

For j ←1 to n

 If v[j] > max

 max ←v[j]

Return max

We can implement this with the algorithm:

The complexity is O(n). The algorithm just
gives us the length of the sequences but we
can modify it to give us the actual
sequences.

One more problem

Problem: Find the path from top to bottom
that maximizes the sum of the numbers.

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$
7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

!
!"

!
!"

#
#$

!
!"

Let aij be the number in row i, column j.

Let V [i, j] be the value of the best path from
(i, j) down to bottom row n. Then

V [i, j] =

{
aij i = n,

aij +max
{
V [i+1, j], V [i+1, j +1]

}
otherwise.

Compute all V [i, j]:

(1) for j = 1 to n

(2) V [n, j] ← anj
(3) for i = n− 1 to 1

(4) for j = 1 to i

(5) V [i, j] ← aij+

max{V [i+1, j], V [i+1, j +1]}

The runtime for finding V [1,1] is Θ(n2).

What are the natural subproblems here? We can try to get the sum M by using fewer
than n integers. Or we can try to get a smaller sum than M. In fact, we will combine
these two ideas.

Subset Sum

We assume that we have n positive integers a[1], a[2], ... , a[n]. We are given an
integer M. We want to know if there is a subset of the integers with sum M.

Set v[i,m] = 1 if there is a subset of a[1], a[2], ... , a[i] with sum m and v[i,m] = 0
otherwise.

If v[i,m] = 1 it must be either because we can get m just by using the numbers
a[1], a[2], ... , a[i-1] or because we can get the sum m - a[i] by using the same
numbers. We get the recursion

v[1, 0] = 1

For all i such that 2 ≤ i ≤ n and all m M such that a[i] ≤ m

v[i,m] = max (v[i-1,m], v[i-1,m-a[i]])

We now try to construct an algorithm. We have to order the subproblems. We
compute all v[i,m] by running an outer loop over 1 ≤ i ≤ n and an inner loop over

1 ≤ m ≤ M.

When the algorithm stops, the value of v[n,M] tells us the solution to the
problem. (1 = " It's possible" , 0 = " It's not possible".) The complexity is O(n M).

Set all v[i,j] = 0

For i ←1 to n

 v[i,0] ←1

For i ←2 to n

 For m ←1 to M

 If v[i-1, m] = 1

 v[i,m] ←1

 Else If m > a[i] and v[i-1, m-a[i]] = 1

 v[i, m] ←1

Shortest paths in graphs

In lecture 3 we discussed the problem of finding shortest paths in graphs with negative
weights. Floyd-Warshall's algorithm is a dynamic programming algorithm for solving
the problem. Actually it find the shortest distances between all pairs of nodes. We
assume that we have no negative cycles.

d[i,j,0] = w[i,j] for all i,j (w[i,j] = ∞ if there is no edge (i,j))

d[i,j,k] = max (d[i,j, k-1] , d[i,k, k-1] + d[k,j, k-1]) 1 ≤ k ≤ n

Recursion:

Subproblems:

 We set d[i,j,k] = length of shortest path using just nodes i,j and

 nodes 1,2, ... , k.

For i ←1 to n

 For j ←1 to n

 d[i,j,0]←w[i,j]

 p[i,j,0]←i

For k ←1 to n

 If d[i, j, k-1] ≤ d[i, k, k-1] + d[k, j, k-1]

 d[i, j, k] ←d[i, j, k-1]

 p[i,j,k] ←p[i,j,k-1]

 Else

 d[i, j, k] ←d[i, k, k-1] + d[k, j, k-1]

 p[i,j,k] ←p[k,j,k-1]

For i ←1 to n

 For j ←1 to n

 d[i,j] ←d[i,j,n]

 p[i,j] ←p[i,j,n]

Algorithm:

The algorithm has complexity

O(n).

