
About complexity

We define the class informally P in the following
way:

P = The set of all problems that can be
solved by a polynomial time algorithm, i.e.,
an algorithm that runs in time O(nk) in the
worst case, where k is some integer and n is
the size of the input.

We can contrast this class with

EXP=The set of all problems that can be
solved by an exponential time algorithm, i.e.,
an algorithm that runs in time O(cn

k
) in the

worst case, where k is some integer, c > 1

some real number and n is the size of the
input.

It is universally agreed that an algorithm is
efficient if and only if it is polynomial.



This makes it critical to define the size of
the input in a ”correct way”. For instance,
we must be careful if we have numbers as
input.



Number theoretical algorithms

Number theoretical algorithms are algorithms
handling problems such as deciding if a num-
ber is a prime, finding greatest common di-
visor and so on. Input to the algorithms are
integers. The natural measure of the size of
the input is the logarithm of the numbers.

Ex: Test if a number is a prime.

PRIME(n)
(1) for i ← 2 to

√
n

(2) if i|n
(3) return Not prime
(4) return Prime

This algorithm has complexity O(
√
n). It is to

slow for large numbers. We would like to have
an algorithm that runs in time O((logn)k) for
some k.



Greatest Common Divisor

Greatest common divisor: gcd(a, b) = is the
largest integer that divides both a and b.

Euclides’ algorithm:

The gcd(a, b) can be computed by the following
method:

r1 = a mod b

r2 = b mod r1

r3 = r1 mod r2

...

rn+1 = rn−1 mod rn = 0

Then gcd(a, b) = rn.

It is easy to verify that ri+2 < ri
2 for all i.

This means that the algorithm stops after
O(logn) steg. So the algorithm is efficient.



The algorithm can be implemented recursi-
vely.

EUKLIDES(a, b)
(1) if b = 0

(2) return a

(3) return EUKLIDES( b, a mod b)



If gcd(a, b) = d there are integers x, y such
that ax + by = d. (x, y can be negative). In
fact, d is the smallest integer > 0 on that
form. The integers x, y can be found by a
modified version of Euclides’ algorithm:

MOD-EUKLIDES(a, b)
(1) if b = 0

(2) return (a,1,0)

(3) (d′, x′, y′) ← MOD-EUKLIDES(b, a
mod b)

(4) (d, x, y) ← (d′, y′x′ − [ab ]y
′)

(5) return (d, x, y)

Finding the inverse: If gcd(a, n) = 1 there
are integers x, y such that ax+ny = 1. Then
x = a−1 mod n. So we can find a−1 by using
MOD-EUKLIDES(a, n).



Modular exponentiation

In cryptography it is important to be able to
compute ab mod n for very large numbers in
an efficient way. The following simple algo-
rithm is not efficient:

POT(a, b, n)
(1) d ← 1

(2) for i ← 2 to b

(3) d ← d · a mod n

(4) return d

The following modified algorithm, though, is
efficient:

MOD-EXP(a, b, n)
(1) d ← 1

(2) Let (bk, bk−1, ..., b0) be the binary repre-
sentation off b

(3) for i ← k to 0
(4) d ← d · d mod n

(5) if bi = 1

(6) d ← d · a mod n

(7) return d



To decide of a number is a prime

Fermat’s Theorem: If p is a prime and a

is an integer such that an then ap−1 ≡ 1 (

mod p).

We can set a = 2. If n is such that 2n−1 #≡ 1(

mod n) then n cannot be a prime. Therefore,
we can use the following algorithm to test if
n is a prime:

FERMAT(n)
(1) k ← MOD-EXP(2, n− 1, n)

(2) if k #≡ 1( mod n)

(3) return FALSE
(4) return TRUE

If FERMAT returns FALSE we know for su-
re that n is not a prime. But unfortunately,
FERMAT might return TRUE even if n is not
a prime. For instance, 2340 ≡ 1 mod 341 but
341 is not a prime.



We can use a so probabilistic algorithm which
randomly choses a number a in [2, n−1] and
does a Fermat test with a.

PROB-FERMAT(n, s)
(1) for j ← 1 to s

(2) a ← RANDOM(2, n− 1)

(3) k ← MOD-EXP(a, n− 1, n)

(4) if k #≡ 1( mod n)

(5) return FALSE
(6) return TRUE

The algorithm is probabilistic in the sence
that it can give different answers at different
times even if it starts with the same input.
The following must, however, be true:

if n is a prime then the algorithm must re-
turn TRUE. This means that the algorithm
returns FALSE then we know that n is not a
prime. So FALSE is the only definite answer
we can get.



P (n is not prime |
The algorithm returns FALSE ) = 1

What about the probability
P (n Is prime |The algorithm returns TRUE )?
It can be shown that for almost all non-prime
n we get:

P ( The algorithm returns FALSE ) > 1
2.

(For primes n we have
P ( Algoritmen svarar TRUE ) = 1.)

Problem are caused by so called Carmichael
numbers.

Carmichael numbers : A Carmichael num-
ber is a non-prime integer n such that an−1 ≡
1( mod n) for all a ∈ [2, n−1]. The smallest
Carmichael number is 341.

P ( The algorithm returns TRUE |
n is a Carmichael number ) = 1.



In order to handle Carmichael numbers we
can use the following algorithm:

WITNESS(a, n)
(1) Let n− 1 = 2tu, t ≥ 1, where u is odd
(2) x0 ← MOD-EXP(a, u, n)

(3) for i ← 1 to t

(4) xi ← x2i−1 mod n

(5) if xi = 1 och xi−1 $= 1 och xi−1 $=
n− 1

(6) return TRUE
(7) if xt $= 1

(8) return TRUE
(9) return FALSE

The following can be shown for WITNESS:

P ( WITNESS returns TRUE |
n Is not prime ) > 1

2 for all n. If you make
repeated calls to WITNESS can get arbit-
rarily high probability for a correct answer.
This version of the algorithm is called Miller
- Rabin’s Test.



MILLER-RABIN(n, s)
(1) for j ← 1 to s

(2) a ← RANDOM(1, n− 1)

(3) if WITNESS(a, n)
(4) return Not prime
(5) return Prime

Here

P ( The algorithm returns Prime |
n is prime) = 1.

P ( The algorithm returns Not prime |
n is not prime ) > 1− 1

2s.



It is, of course, also interesting to study the
”reversed” conditional probabilities:

P (n is not prime |
The algorithm returns Not prime) = 1.

The probability
P (n is prime | The algorithm returns Prime )

is trickier. It can be computed as
P (n is prime and the algorithm returns Prime)

P ( The algorithm returns Prime) =
P (n is prime)

P ( The algorithm returns Prime)

But then we need to know P (n is prime). If
we know that the probability is α we can use
Baye’s law to show that
P (n is prime | The algorithm returns Prime )

> 2s

2s+(1α−1)
.



Since August 2002 it is known that there is
an algorithms that decides primality (in the
usual non-probabilistic sense) in polynomial
time. This algorithm is much more complica-
ted and slower than Miller-Rabin’s algorithm.



The Miller -Rabin algorithm is an example
of probabilistic algorithms. The general with
probabilistic algorithms are that they use a
certain amount of randomness, usually from
a pseudo-random generator. We will look at
a more general definition of probabilistic al-
gorithms.



Monte Carlo algorithms

Suppose that we have a decision problem,
i.e. a problem with yes/no as answer. We say
that F is a Yes-based Monte Carlo algo-
rithm for solving the problem if F is polyno-
mial and:

1. If the answer to the problem is yes, then
F (x) = Y es with probability 1.

2. If the answer to the problem is no, then
F (x) = No with probability > 1

2.

No-based Monte Carlo algorithms are defined
in the obvious, symmetrical way.

Definition: The class RP is the set of all
problems that can be solved by a Yes-based
Monte Carlo algorithm.

It is easily seen that P ⊆ RP .



Probabilistic algorithms

Ex: Is the polynomial

f(x, y) = (x−3y)(xy−5x)2−10x3y+25x3+

3x2y3 + 30x2y2 − 75x2y

identically equal to 0?

Test: Chose some values xi, yi randomly and
test if f(xi, yi) = 0.

Two possibilities:

1. f(xi, yi) "= 0. Then f "= 0.

2. f(xi, yi) = 0 for all chosen values xi, yi.
What is then the probability for f = 0?



Theorem: If f(x1, ..., xm) is not identically
equal to 0 and each variable occurs with de-
gree at most d and M is an integer, then the
number of zeros in the set {0,1, ...,M − 1}m

is at most mdMm−1. This gives us:

P [ A random integer in {0,1, ...,M−1}m is a zero]
= 1

mdMm−1 = δ.

This means that if we have done k tests in-
dicating f = 0, then P [f = 0] ≥ (1− δ)k.



The probabilistic algorithms are closely rela-
ted to randomized algorithms. The difference
is that the randomized algorithms usually are
deterministic but nevertheless, use random
steps in the computation. What is uncertain
is the running time rather than the result. An
example is the famous Quick sort algorithm
( or more exactly, the randomized version of
it).



Quick sort

QuickSort(v[i..j])
(1) if i < j

(2) m ← Partition(v[i..j], i, j)
(3) QuickSort(v[i..m])
(4) QuickSort(v[m+1..j])

The complexity analysis is more complicated
than it is for Merge sort. It can nevertheless
be shown that the complexity is O(n logn) in
the mean.



Sorting in linear time

Sorting algorithms that only uses compari-
sons between elements can never be faster
than Θ(n logn). But there are algorithms which
use extra information about the elements.
For instance, if we want to sort integers we
might know upper and lower bounds for the
integers. Then it is possible to sort in linear
time.



Counting sort

Assume that we have n objects A[1..n] with
keys which are integers in [1, k]. The following
algorithm sorts in time O(n+ k):

CountingSort(A,B, k)
(1) for i = 1 to k

(2) C[i] ← 0

(3) for i = 1 to n

(4) C[A[i]] ← C[A[i]] + 1

(5) for i = 2 to k

(6) C[i] ← C[i− 1] + C[i]

(7) for j = n to 1
(8) B[C[A[j]]] ← A[j]

(9) C[A[j]] ← C[A[j]]− 1


