Algorithms and Complexity. Exercise session 5

Flows. Reductions

Altered flow

a) Describe an efficient algorithm that finds a new maximum flow if the capacity of a particular edge increases by one unit.
Algorithm time complexity will be linear, ie $O(|V|+|E|)$.
b) Describe an efficient algorithm that finds a new maximum flow if the capacity of a particular edge decreases by one unit.
Algorithm time complexity will be linear, ie $O(|V|+|E|)$.

Quick bin packing Bin packing is the following problem. You are given n objects, each weighting between 0 and 1 kg . Moreover, you are also given a number of boxes to place such objects in. The goal is to find the minimum number of boxes needed to store n objects with no box containing more than 1 kg .
This is a well-known problem and it is difficult to solve exactly (it's a so called NP-complete problem). Therefore, we may be happy to find a solution which is not optimal, by using the following simple algorithm:
Assume that both objects and boxes are numbered from 1 to n. Pick one object at a time (sequentially) and put it in the first box which can handle it (ie the box with a remaining weight which can handle the object).

Your task is to describe how this algorithm can be implemented so that it runs in time $O(n \log n)$ (in the worst case with unit cost). To achieve this, you will have to build a heaplike data structure in which you can quickly look up the first box that holds the current object.

Negative reduction In the last exercise we described an algorithm that finds an approximate solution to the bin packing problem. The algorithm works by placing each object in the first box that can handle it. The goal was to implement the algorithm in time $O(n \log n)$. Show that $\Omega(n \log n)$ is a lower bound for the algorithm time complexity.

Positive reduction A useful way to solve problems is to find a reduction to a problem which you already know how to solve. You should use this method to solve the following problem.

Input: A connected undirected graph $G=(V, E)$ and a positive integer K between 1 and $|V|$.
Problem: Is it possible to remove K edges from the graph G to make it disconnected (ie. divided into connected components)?

Reduction between decision-, optimization- and construction problems Assume that the algorithm $\operatorname{GraphColouring}(G, k)$ at time $T(n)$ (where n is the number of vertices in G) is 1 iff the vertices of G can be colored with k colors and no edge has both ends of the same color.
a) Construct an algorithm that given a graph G with n vertices determines the minimum number of colors needed to color G. The time complexity should be $O(\log n \cdot T(n))$.
b) Construct an algorithm that given a graph G with n vertices colors each vertex with the minimum number of colors in time $O(P(n) T(n))$, where $P(n)$ is a polynomial.

